Economics 424:  Computational Finance and Financial Econometrics

Home
Syllabus
Homework
Notes
Excel Hints
R Hints
Announcements
Links
Project
Review

Discussion Board

Class Syllabus

Fall 2010

Note 1: In the Reading column below, ZLM denotes "Zuur, Leno and Meesters", EZ denotes "Eric Zivot", EG denotes "Elton and Gruber", and R denotes "Ruppert" . "*" denotes optional reading.

Note 2: Recent changes to the reading list are denoted with .

Note 3: My lecture notes are preliminary and incomplete and are not guaranteed to be free of errors. Also, as the quarter progresses I will be making changes and additions to the notes so check the revision dates to make sure you have the most up to date set of notes. Please let me know if you find typos or other errors. 

Last updated on  December 6,  2010

Week Topic Reading Additional Material
1
  1. Course Introduction

  2. Computing Asset Returns

  3. Getting financial data from Yahoo!

  4. Excel calculations

  5. Introduction to R

  1. EZ, Lecture notes on return calculations.

  2. EZ, class slides on return calculations.

  3. ZLM, chapters 1-3, 5.

  4. *EG, chapters 1-3

  5. *R, chapter 3, sections 1 and 6.

  6. An Introduction to R, sections 1-3, 6 and 7.

  7. R for Beginners, sections 1-3.

  1. finance.yahoo.com Check out finance/quote section

  2. returnCalculations.xls

  3. returnCalculations.r

  4. msftPrices.csv, sbuxPrices.csv

  5. tablet PC notes for lecture 1

  6. tablet PC notes for lecture 2

  7. returnCalculationsPowerpoint.pdf 

 

2 & 3
  1. Univariate random variables and distributions

  2. Characteristics of distributions

  3. The normal distribution

  4. Linear function of random variables

  5. Quantiles of a distribution, Value-at-Risk

  6. Bivariate distributions

  7. Covariance, correlation, autocorrelation

  8. Linear combinations of random variables

  9. Time Series concepts

  10. Matrix algebra

  1. EZ, Lecture notes on review of univariate random variables and probability.

  2. EZ, Lecture notes on time series concepts.

  3. EZ, Lecture notes on review of matrix algebra.

  4. EZ, class slides on probability review: Part I.

  5. EZ, class slides on probability review: Part II.

  6. EZ, class slides on time series concepts.

  7. EZ, class slides on matrix algebra.

  8. ZLM, chapters 3-7.

  9. *R, chapter 2, sections 1-17; chapter 3, sections 2-5; chapter 4, sections 1-2; chapter 11, sections 1-2.

  10. An Introduction to R, section 8.

  11. R for Beginners, section 4.

  1. probReview.xls

  2. probReview.r

  3. timeSeriesConceptsPowerPoint.pdf

  4. timeSeriesConcepts.r

  5. matrixReviewPowerpoint.pdf

  6. matrixReview.r

  7. tablet PC notes for lecture 3

  8. tablet PC notes for lecture 4 (no tablet pc notes for this lecture, projector broke)

  9. tablet PC notes for lecture 5

  10. tablet PC notes for lecture 6

  11. Working with time series data in R

4-5
  1. Descriptive statistics: histograms, sample means, variances, covariances and autocorrelations

  2. The constant expected return model.

  3. Monte Carlo simulation

  4. Standard errors of estimates

  5. Confidence intervals

  6. Bootstrapping standard errors and confidence intervals

  7. Hypothesis testing 

  8. Midterm solutions.

  1. EZ, class slides on descriptive statistics.

  2. EZ, class slides on CER model.

  3. EZ, lecture notes on the CER model.

  4. EZ, class slides on bootstrapping

  5. EZ, class slides on hypothesis testing in the CER model.

  6. Bootstrap Methods and Permutation Tests, by Tim Hesterberg. Read sections 1 - 5.

  7. *R, chapter 2, sections 18-20; chapter 10, sections 1-2.

  8. An Introduction to R, section 12.

  1. descriptiveStatisticsPowerPoint.pdf

  2. descriptiveStatistics.r

  3. descriptiveStatisticsDailyPowerPoint.pdf

  4. descriptiveStatisticDaily.r

  5. cerModelExamples.r

  6. cerModelPowerPoint.pdf.

  7. bootStrapPowerPoint.pdf

  8. bootStrap.r

  9. hypothesisTestingCERpowerpoint.pdf

  10. hypothesisTestingCER.r

  11. tablet PC notes for lecture 7

  12. tablet PC notes for lecture 8 (no tablet pc notes for this lecture)

  13. tablet PC notes for lecture 9

  14. tablet PC notes for lecture 10

  15. tablet PC notes for lecture 11

6-7
  1. Introduction to portfolio theory

  2. Optimization

  3. Markowitz algorithm

  4. Markowitz Algorithm using the solver and matrix algebra

 

  1. EZ, lecture notes on introduction to portfolio theory.

  2. Notes on using Excel's solver.

  3. EZ, class slides on Introduction to Portfolio Theory.

  4. EZ, class slides on Markowitz algorithm.

  5. EZ, lecture notes on portfolio theory with matrix algebra.

  6. *R, chapter 5; chapter 10, section 3; chapter 11, section 3.

  7. *EG, chapters 5 and 6

 

  1. introPortfolioTheory.xls

  2. 3firmExample.xls (updated: May 11, 2006)

  3. introductionToPortfolioTheory.r

  4. portfolio.r (R functions for portfolio analysis with short sales)

  5. testport.r (Examples of using R functions for portfolio analysis with short sales)

  6. portfoliofunctions.pdf (description of R functions for portfolio analysis with short sales)

  7. tablet PC notes for lecture 12

  8. tablet PC notes for lecture 13

  9. tablet PC notes for lecture 14

  10. tablet PC notes for lecture 15

  11. portfolioTheoryRpowerPoint.pdf. (updated November 12, 2008)

8 & 9
  1. Statistical Analysis of Efficient Portfolios

  2. Beta as a measure of portfolio risk

  3. The Single Index Model

  4. Estimating the Single Index Model using simple linear regression

  1. EZ class slides on statistical analysis of efficient portfolios.

  2. EZ class slides on the single index model.

  3. EZ class slides on estimating single index model using regression.

  4. *R, chapter 6, sections 1-4, 12.

  5. *EG, chapters 6, 7 and 9

  1. rollingPortfoliosPowerpoint.pdf (updated November 17, 2008)

  2. rollingPortfolios.r

  3. single index class example.xls

  4. singleIndex.r

  5. singleIndexPrices.xls (added May 22, 2006)

  6. singleIndexPowerPoint.pdf

  7. tablet PC notes for lecture 17

  8. tablet PC notes for lecture 18

10
  1. The Capital Asset Pricing Model (CAPM)
  2. Testing the CAPM
  3. Course review
  1. R, chapter 7, sections 1-7, 10.
  2. EZ class slides on the single index model and CAPM
  3. EZ class slides on testing the CAPM.
  4. *EG, chapters 13 and 15.
  1. testCAPM.ssc
  2. berndt.csv
  3. capmPowerPoint.ppt
  4. testCapmPowerPoint.ppt
  5. Tablet PC notes for lecture 19
10

Final Exam: Tuesday, December 14, 2010, 830-1020, SAV 264

Final Project: Due Friday, 12/10/10 by 5 pm (in my mail box or my office)