Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 1

Eric Zivot

January 12, 2015

Univariate Random Variables

Defnition: A random variable (rv) X is a variable that can take on a given set of values, called the sample space S_X , where the likelihood of the values in S_X is determined by the variable's probability distribution function (pdf).

Examples

- X = price of microsoft stock next month. $S_X = \{\mathbb{R} : \mathbf{0} < X \leq M\}$
- X = simple return on a one month investment. $S_X = \{\mathbb{R} : -1 \leq X < M\}$
- X = 1 if stock price goes up; X = 0 if stock price goes down. $S_X = \{0, 1\}$

Discrete Random Variables

Definition: A discrete rv X is one that can take on a finite number of n different values x_1, \dots, x_n

Definition: The pdf of a discrete rv X, p(x), is a function such that $p(x) = \Pr(X = x)$. The pdf must satisfy

- 1. $p(x) \ge 0$ for all $x \in S_X$; p(x) = 0 for all $x \notin S_X$
- 2. $\sum_{x \in S_X} p(x) = 1$
- 3. $p(x) \leq 1$ for all $x \in S_X$

State of Economy	$S_X = Sample Space$	$p(x) = \Pr(X = x)$
Depression	-0.30	0.05
Recession	0.0	0.20
Normal	0.10	0.50
Mild Boom	0.20	0.20
Major Boom	0.50	0.05

Table 1: Discrete Distribution for Annual Return

Example: Probability Distribution for Annual Return on Microsoft

Example: Bernouli Distribution

Consider two mutually exclusive events generically called "success" and "failure".

Let X = 1 if success occurs and let X = 0 if failure occurs.

Let $Pr(X = 1) = \pi$, where $0 < \pi < 1$, denote the probability of success. Then $Pr(X = 0) = 1 - \pi$ is the probability of failure. A mathematical model describing this distribution is

$$p(x) = \Pr(X = x) = \pi^x (1 - \pi)^{1-x}, \ x = 0, 1.$$

When x = 0, $p(0) = \pi^0(1 - \pi)^{1-0} = 1 - \pi$ and when x = 1, $p(1) = \pi^1(1 - \pi)^{1-1} = \pi$.

Continuous Random Variables

Definition: A continuous rv X is one that can take on any real value

Definition: The pdf of a continuous rv X is a nonnegative function f(x) such that for any interval A on the real line

$$\Pr(X \in A) = \int_A f(x) dx$$

f(x)

 $Pr(X \in A) =$ "Area under probability curve over the interval A".

The pdf f(x) must satisfy 1. $f(x) \ge 0$; $\int_{-\infty}^{\infty} f(x) dx = 1$

$$\Pr\left(\chi = \chi\right) = 0$$

$$\Pr\left(\chi = \chi\right) = 0$$

$$\Pr\left(\chi > \chi\right) = \Pr\left(\chi > \chi\right)$$
ribution over $[a, b]$

Example: Uniform distribution over [a, b]

Let $X \backsim U[a, b]$, where "\scale" means "is distributed as". Then

$$\int_{-\infty}^{\infty} f(x)dx = \int_{a}^{b} \frac{1}{b-a}dx = \frac{1}{b-a}\int_{a}^{b} dx$$
$$= \frac{1}{b-a}[x]_{a}^{b} = \frac{b-a}{b-a} = 1$$
$$\forall + f$$
$$\int \int \left(\chi - \chi \right) = \int_{\infty}^{c} \int \int \left(\chi - \chi \right) = \int_{\chi}^{c} \int \int f(x)dx$$
$$= \int_{\chi}^{c} \int \int f(x)dx$$
$$= \int_{\chi}^{c} \int \int \int f(x)dx$$

The Cumulative Distribution Function (CDF)

Definition The CDF, F, of a rv X is $F(x) = \Pr(X \le x)$ and

• If
$$x_1 < x_2$$
, then $F(x_1) \le F(x_2)$

•
$$F(-\infty) = 0$$
 and $F(\infty) = 1$

•
$$\Pr(X \ge x) = 1 - F(x)$$

•
$$\Pr(x_1 < X \le x_2) = F(x_2) - F(x_1)$$

•
$$\frac{d}{dx}F(x) = f(x)$$
 if X is a continuous rv.

$$F_{X}(x) = Pr(X \leq x)$$

and, for example,

$$\Pr(0 \le X \le 0.5) = F(0.5) - F(0)$$

= 0.5 - 0 = 0.5

Note

Then

$$\frac{d}{dx}F(x) = \mathbf{1} = f(x)$$

Remark:

For a continuous rv

$$\Pr(X \le x) = \Pr(X < x)$$

 $\Pr(X = x) = 0$

Example: Quantile function of uniform distn on [0,1]

$$F_X(x) = x \Rightarrow q_{lpha} = lpha$$

 $q_{.01} = 0.01$
 $q_{.5} = 0.5$

The Standard Normal Distribution

Let X be a rv such that $X \sim N(0, 1)$. Then

Mean (center) Standwed devintern (speud) **Shape Characteristics**

- Centered at zero
- Symmetric about zero (same shape to left and right of zero)

$$Pr(-1 \le x \le 1) = \Phi(1) - \Phi(-1) = 0.67$$

$$Pr(-2 \le x \le 2) = \Phi(2) - \Phi(-2) \Leftarrow 0.95$$

$$Pr(-3 \le x \le 3) = \Phi(3) - \Phi(-3) \notin 0.99$$

Finding Areas under the Normal Curve

•
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 1$$
, via change of variables formula in calculus

•
$$\Pr(a < X < b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = \Phi(b) - \Phi(a)$$
, cannot be computed analytically!

• Special numerical algorithms are used to calculate $\Phi(z)$

Excel functions

- 1. NORMSDIST computes $\Pr(X \leq z) = \Phi(z)$ or $p(z) = \phi(z)$
- 2. NORMSINV computes the quantile $z_{\alpha} = \Phi^{-1}(\alpha)$

R functions

- 1. pnorm computes $\Pr(X \leq z) = \Phi(z)$
- 2. qnorm computes the quantile $z_{\alpha} = \Phi^{-1}(\alpha)$
- 3. dnorm computes the density $\phi(z)$

Some Tricks for Computing Area under Normal Curve

Example In Excel use

$$Pr(-1 \le X \le 2) = Pr(X \le 2) - Pr(X \le -1)$$

= NORMSDIST(2) - NORMSDIST(-1)
= 0.97725 - 0.15866 = 0.81860

In R use

$$pnorm(2) - pnorm(-1) = 0.81860$$

The 1%, 2.5%, 5% quantiles are

$$\begin{aligned} & \mathsf{Excel}: z_{.01} = \Phi^{-1}(0.01) = \mathsf{NORMSINV}(0.01) = -2.33 \\ & \mathsf{R}:\mathsf{qnorm}(0.01) = -2.33 \\ & \mathsf{Excel}: z_{.025} = \Phi^{-1}(0.025) = \mathsf{NORMSINV}(0.025) = -1.96 \\ & \mathsf{R}:\mathsf{qnorm}(0.025) = -1.96 \\ & \mathsf{Excel}: z_{.05} = \Phi^{-1}(.05) = \mathsf{NORMSINV}(.05) = -1.645 \\ & \mathsf{R}:\mathsf{qnorm}(0.05) = -1.645 \end{aligned}$$

Shape Characteristics of pdfs

- Expected Value or Mean Center of Mass
- Variance and Standard Deviation Spread about mean
- Skewness Symmetry about mean
- Kurtosis Tail thickness

Expected Value - Discrete rv

$$E[X] = \mu_X = \sum_{x \in S_X} x \cdot p(x)$$
$$= \sum_{x \in S_X} x \cdot \Pr(X = x)$$

E[X] = probability weighted average of possible values of X

Expected Value - Continuous rv

$$E[X] = \mu_X = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Note: In continuous case, $\sum_{x \in S_X}$ becames $\int_{-\infty}^{\infty} E[X] = \int_{-\infty}^{\infty} H^{uss'}$
 $E[\tau] \times \int_{-\infty}^{\infty} E[\tau] \times \int_{-\infty}^{\infty} E[\tau] + \int_{$

State of Economy	$S_X = Sample Space$	$p(x) = \Pr(X = x)$
Depression	-0.30	0.05
Recession	0.0	0.20
Normal	0.10	0.50
Mild Boom	0.20	0.20
Major Boom	0.50	0.05

Table 2: Discrete Distribution for Annual Return

Expected value of discrete random variable

Using the discrete distribution for the return on Microsoft stock in the above table, the expected return is

$$E[X] = (-0.3) \cdot (0.05) + (0.0) \cdot (0.20) + (0.1) \cdot (0.5) + (0.2) \cdot (0.2) + (0.5) \cdot (0.05) = 0.10.$$

Example:
$$X \backsim U[1, 2]$$

$$E[X] = \int_{1}^{2} x dx = \left[\frac{x^{2}}{2}\right]_{1}^{2}$$
$$= \frac{1}{2}[4-1] = \frac{3}{2}$$

Example: $X \backsim N(0, 1)$

Expectation of a Function of \boldsymbol{X}

Definition: Let g(X) be some function of the rv X. Then

$$E[g(X)] = \sum_{x \in S_X} g(x) \cdot p(x) \text{ Discrete case}$$
$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx \text{ Continuous case}$$

$$X \sim C+S$$
 with plf $f(-)$
 $g(+) = +2$
 $E[+2] = \int_{-00}^{0} x^{2} \cdot f(-) dx$

Variance and Standard Deviation

$$g(X) = (X - E[X])^{2} = (X - \mu_{X})^{2}$$

Var(X) = $\sigma_{X}^{2} = E[(X - \mu_{X})^{2}] = E[X^{2}] - \mu_{X}^{2}$
SD(X) = $\sigma_{X} = \sqrt{Var(X)}$

Note: Var(X) is in squared units of X, and SD(X) is in the same units as X. Therefore, SD(X) is easier to interpret.

Computation of Var(X) and SD(X)

$$\sigma_X^2 = E[(X - \mu_X)^2]$$

= $\sum_{x \in S_X} (x - \mu_X)^2 \cdot p(x)$ if X is a discrete rv
= $\int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f(x) dx$ if X is a continuous rv
 $\sigma_X = \sqrt{\sigma_X^2}$

Remark: For "bell-shaped" data, σ_X measures the size of the typical deviation from the mean value μ_X .

Example: Variance and standard deviation for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1 and the result that $\mu_X = 0.1$, we have

$$\begin{aligned} \mathsf{Var}(X) &= (-0.3 - 0.1)^2 \cdot (0.05) + (0.0 - 0.1)^2 \cdot (0.20) \\ &+ (0.1 - 0.1)^2 \cdot (0.5) + (0.2 - 0.1)^2 \cdot (0.2) \\ &+ (0.5 - 0.1)^2 \cdot (0.05) \\ &= 0.020 \\ \mathsf{SD}(X) &= \sigma_X = \sqrt{0.020} = 0.141. \end{aligned}$$

Given that the distribution is fairly bell-shaped we can say that typical values deviate from the mean value of 0.10 by about 0.141

$$\mu \pm \sigma = 0.10 \pm 0.141 = [-0.041, 0.241]$$

Example: $X \sim N(0, 1)$.

$$\mu_X = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 0$$

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - 0)^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 1$$

$$\sigma_X = \sqrt{1} = 1$$

 $\Rightarrow\,$ size of typical deviation from $\mu_X={\rm 0}$ is $\sigma_X={\rm 1}$

The General Normal Distribution

$$X \sim N(\mu_X, \ \sigma_X^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma_X^2}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu_X}{\sigma_X}\right)^2\right), \ -\infty \le x \le \infty$$

$$E[X] = \mu_X = \text{ mean value}$$

$$Var(X) = \sigma_X^2 = \text{ variance}$$

$$SD(X) = \sigma_X = \text{ standard deviation}$$

Shape Characteristics

- Centered at μ_X
- Symmetric about μ_X

$$\mathsf{Pr}(\mu_X - \sigma_X \le X \le \mu_X + \sigma_X) = 0.67$$

 $\mathsf{Pr}(\mu_X - 2 \cdot \sigma_X \le X \le \mu_X + 2 \cdot \sigma_X) = 0.95$
 $\mathsf{Pr}(\mu_X - 3 \cdot \sigma_X \le X \le \mu_X + 3 \cdot \sigma_X) = 0.99$

• Quantiles of the general normal distribution:

$$q_{\alpha} = \mu_X + \sigma_X \cdot \Phi^{-1}(\alpha) = \mu_X + \sigma_X \cdot z_{\alpha}$$

Remarks:

- $X \backsim N(0,1)$: Standard Normal $\Longrightarrow \mu_X = 0$ and $\sigma_X^2 = 1$
- The pdf of the general Normal is completely determined by values of μ_X and σ_X^2

Finding Areas under General Normal Curve

Excel Functions

- NORMDIST $(x, \mu_X, \sigma_X, \text{cumulative})$. If cumulative = true: $\Pr(X \le x)$ is computed; If cumulative = false, $f(x) = \frac{1}{\sqrt{2\pi\sigma_X^2}}e^{-\frac{1}{2}(\frac{x-\mu_X}{\sigma_X})^2}$ is computed
- NORMINV(α, μ_x, σ_x) computes $q_{\alpha} = \mu_X + \sigma_X z_{\alpha}$

R Runctions

- simulate data: rnorm(n, mean, sd)
- compute CDF: pnorm(q, mean, sd)
- compute quantiles: qnorm(p, mean, sd)
- compute density: dnorm(x, mean, sd)

Standard Deviation as a Measure of Risk

$$R_A = \text{monthly return on asset A}$$

 $R_B = \text{monthly return on assetB}$
 $R_A \sim N(\mu_A, \sigma_A^2), R_B \sim N(\mu_B, \sigma_B^2)$

where

$$\mu_A = E[R_A] = \text{ expected monthly return on asset A}$$

$$\sigma_A = \text{SD}(R_A)$$

$$= \text{ std. deviation of monthly return on asset A}$$

Typically, if

$$\mu_A > \mu_B$$

then

$$\sigma_A > \sigma_B$$

Example: Why the normal distribution may not be appropriate for simple returns

$$R_t = rac{P_t - P_{t-1}}{P_{t-1}} = { ext{simple return}}$$
Assume $R_t \sim N(0.05, (0.50)^2)$

Note: $P_t \ge 0 \implies R_t \ge -1$. However, based on the assumed normal distribution

$$Pr(R_t < -1) = NORMDIST(-1, 0.05, 0.50, TRUE) = 0.018$$

= pnorm(-1, 0.05, 0.50) = 0.018

This implies that there is a 1.8% chance that the asset price will be negative. This is why the normal distribution may not be appropriate for simple returns. **Example**: The normal distribution is more appropriate for cc returns

$$r_t = \ln(1 + R_t) = ext{cc}$$
 return $R_t = e^{r_t} - 1 = ext{ simple return}$ Assume $r_t \sim N(0.05, (0.50)^2)$

Unlike R_t , r_t can take on values less than -1. For example,

$$r_t = -2 \implies R_t = e^{-2} - 1 = -0.865$$

 $\Pr(r_t < -2) = \Pr(R_t < -0.865)$
 $= \text{NORMDIST}(-2, 0.05, 0.50, \text{TRUE}) = 0.00002$

The Log-Normal Distribution

$$\begin{aligned} X &\sim N(\mu_X, \sigma_X^2), \quad -\infty < X < \infty \\ Y &= \exp(X) \sim \mathsf{lognormal}(\mu_X, \sigma_X^2), \ \mathbf{0} < Y < \infty \\ E[Y] &= \mu_Y = \exp(\mu_X + \sigma_X^2/2) \\ \mathsf{Var}(Y) &= \sigma_Y^2 = \exp(2\mu_X + \sigma_X^2)(\exp(\sigma_X^2) - 1) \end{aligned}$$

Example: log-normal distribution for simple returns

$$r_t \sim N(0.05, (0.50)^2), \ r_t = \ln(1 + R_t)$$

 $\exp(r_t) = 1 + R_t \sim \text{lognormal}(0.05, (0.50)^2)$
 $\mu_{1+R} = \exp(0.05 + (0.5)^2/2) = 1.191$
 $\sigma_{1+R}^2 = \exp(2(0.05) + (0.5)^2)(\exp(0.5^2) - 1) = 0.563$

R Runctions

- simulate data: rlnorm(n, mean, sd)
- compute CDF: plnorm(q, mean, sd)
- compute quantiles: qlnorm(p, mean, sd)
- compute density: dlnorm(y, mean, sd)

Skewness - Measure of symmetry

$$g(X) = ((X - \mu_X)/\sigma_X)^3$$

Skew(X) = $E\left[\left(\frac{X - \mu_X}{\sigma_X}\right)^3\right]$
= $\sum_{x \in S_X} \left(\frac{x - \mu_X}{\sigma_X}\right)^3 p(x)$ if X is discrete
= $\int_{-\infty}^{\infty} \left(\frac{x - \mu_X}{\sigma_X}\right)^3 f(x) dx$ if X is continuous

Intuition

- If X has a symmetric distribution about μ_X then Skew(X) = 0
- $Skew(X) > 0 \Longrightarrow pdf$ has long right tail, and median < mean
- $Skew(X) < 0 \implies pdf$ has long left tail, and median > mean

Example: Using the discrete distribution for the return on Microsoft stock in Table 1, the results that $\mu_X = 0.1$ and $\sigma_X = 0.141$, we have

skew
$$(X) = [(-0.3 - 0.1)^3 \cdot (0.05) + (0.0 - 0.1)^3 \cdot (0.20) + (0.1 - 0.1)^3 \cdot (0.5) + (0.2 - 0.1)^3 \cdot (0.2) + (0.5 - 0.1)^3 \cdot (0.05)]/(0.141)^3 = 0.0$$

Example: $X \sim N(\mu_X, \sigma_X^2)$. Then

$$\mathsf{Skew}(X) = \int_{-\infty}^{\infty} \left(\frac{x - \mu_X}{\sigma_X}\right)^3 \frac{1}{\sqrt{2\pi\sigma_X^2}} \exp\left(\frac{-\frac{1}{2}\left(\frac{x - \mu_X}{\sigma_X}\right)^2}{\sqrt{2\pi\sigma_X^2}}\right) dx = 0$$

Example: $Y \sim \text{lognormal}(\mu_X, \sigma_X^2)$. Then

$$\mathsf{Skew}(Y) = \left(\mathsf{exp}(\sigma_X^2) + 2
ight) \sqrt{\mathsf{exp}(\sigma_X^2) - 1} > 0$$

$$g(X) = ((X - \mu_X)/\sigma_X)^4$$

Kurt $(X) = E\left[\left(\frac{X - \mu_X}{\sigma_X}\right)^4\right]$
$$= \sum_{x \in S_X} \left(\frac{x - \mu_X}{\sigma_X}\right)^4 p(x) \text{ if } X \text{ is discrete}$$
$$= \int_{-\infty}^{\infty} \left(\frac{x - \mu_X}{\sigma_X}\right)^4 f(x) dx \text{ if } X \text{ is continuous}$$

Intuition

- Values of x far from μ_X get blown up resulting in large values of kurtosis
- Two extreme cases: fat tails (large kurtosis); thin tails (small kurtosis)

Example: Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the results that $\mu_X = 0.1$ and $\sigma_X = 0.141$, we have

$$\begin{aligned} \mathsf{Kurt}(X) &= [(-0.3 - 0.1)^4 \cdot (0.05) + (0.0 - 0.1)^4 \cdot (0.20) \\ &+ (0.1 - 0.1)^4 \cdot (0.5) + (0.2 - 0.1)^4 \cdot (0.2) \\ &+ (0.5 - 0.1)^4 \cdot (0.05)]/(0.141)^4 \\ &= 6.5 \end{aligned}$$

Example:
$$X \sim N(\mu_X, \sigma_X^2)$$

$$\operatorname{Kurt}(X) = \int_{-\infty}^{\infty} \left(\frac{x - \mu_X}{\sigma_X}\right)^4 \frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-\frac{1}{2}\left(\frac{x - \mu_X}{\sigma_X}\right)^2} dx = 3$$

Definition: Excess kurtosis = Kurt(X) - 3 = kurtosis value in excess of kurtosis of normal distribution.

• Excess kurtosis $(X) > 0 \Rightarrow X$ has fatter tails than normal distribution

• Excess kurtosis
$$(X) < 0 \Rightarrow X$$
 has thinner tails than normal distribution

The Student's-t Distribution

A distribution similar to the standard normal distribution but with fatter tails, and hence larger kurtosis, is the Student's t distribution. If X has a Student's t distribution with degrees of freedom parameter v, denoted $X \sim t_v$, then its pdf has the form

$$f(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi}\Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-\left(\frac{v+1}{2}\right)}, \quad -\infty < x < \infty, \ v > 0.$$

where $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ denotes the gamma function.

It can be shown that

$$E[X] = 0, v > 1$$

var(X) = $\frac{v}{v-2}, v > 2,$
skew(X) = 0, $v > 3,$
kurt(X) = $\frac{6}{v-4} + 3, v > 4.$

The parameter v controls the scale and tail thickness of distribution. If v is close to four, then the kurtosis is large and the tails are thick. If v < 4, then kurt $(X) = \infty$. As $v \to \infty$ the Student's t pdf approaches that of a standard normal random variable and kurt(X) = 3.

R Runctions

- simulate data: rt(n, df)
- compute CDF: pt(q, df)
- compute quantiles: qt(p, df)
- compute density: dt(x, df)

Here df is the degrees of freedom parameter v.

Linear Functions of a Random Variable

Let X be a discrete or continuous rv with $\mu_X = E[X]$, and $\sigma_X^2 = Var(X)$. Define a new rv Y to be a linear function of X :

$$Y = g(X) = a \cdot X + b$$

a and b are known constants

Then

$$\mu_Y = E[Y] = E[a \cdot X + b]$$

= $a \cdot E[X] + b = a \cdot \mu_X + b$
 $\sigma_Y^2 = \operatorname{Var}(Y) = \operatorname{Var}(a \cdot X + b)$
= $a^2 \cdot \operatorname{Var}(X)$
= $a^2 \cdot \sigma_X^2$
 $\sigma_Y = a \cdot \sigma_X$

Linear Function of a Normal rv

Let
$$X \sim N(\mu_X, \sigma_X^2)$$
 and define $Y = a \cdot X + b$. Then
 $Y \sim N(\mu_Y, \sigma_Y^2)$

with

$$\mu_Y = a \cdot \mu_X + b$$

$$\sigma_Y^2 = a^2 \cdot \sigma_X^2$$

Remarks

- Proof of result relies on change-of-variables formula for determining pdf of a function of a rv
- Result may or may not hold for random variables whose distributions are not normal

Example - Standardizing a Normal rv

Let $X \sim N(\mu_X, \sigma_X^2)$. The standardized rv Z is created using

$$Z = \frac{X - \mu_X}{\sigma_X} = \frac{1}{\sigma_X} \cdot X - \frac{\mu_X}{\sigma_X}$$
$$= a \cdot X + b$$
$$a = \frac{1}{\sigma_X}, \ b = -\frac{\mu_X}{\sigma_X}$$

 ${\rm Properties} \ {\rm of} \ Z$

$$E[Z] = \frac{1}{\sigma_X} E[X] - \frac{\mu_X}{\sigma_X}$$
$$= \frac{1}{\sigma_X} \cdot \mu_X - \frac{\mu_X}{\sigma_X} = 0$$
$$Var(Z) = \left(\frac{1}{\sigma_X}\right)^2 \cdot Var(X)$$
$$= \left(\frac{1}{\sigma_X}\right)^2 \cdot \sigma_X^2 = 1$$
$$Z \sim N(0, 1)$$

Value at Risk: Introduction

Consider a $W_0 =$ \$10,000 investment in Microsoft for 1 month. Assume

$$R =$$
 simple monthly return on Microsoft $R \sim N(0.05, (0.10)^2), \ \mu_R = 0.05, \ \sigma_R = 0.10$

Goal: Calculate how much we can lose with a specified probability α

Questions:

- 1. What is the probability distribution of end of month wealth, $W_1 =$ \$10,000 \cdot (1 + R)?
- 2. What is $Pr(W_1 < \$9,000)$?
- 3. What value of R produces $W_1 =$ \$9,000?
- 4. What is the monthly value-at-risk (VaR) on the \$10,000 investment with 5% probability? That is, how much can we lose if $R \le q_{.05}$?

Answers:

1. $W_1 = \$10,000 \cdot (1+R)$ is a linear function of R, and R is a normally distributed rv. Therefore, W_1 is normally distributed with

$$\begin{split} E[W_1] &= \$10,000 \cdot (1 + E[R]) \\ &= \$10,000 \cdot (1 + 0.05) = \$10,500, \\ &\operatorname{Var}(W_1) = (\$10,000)^2 \operatorname{Var}(R) \\ &= (\$10,000)^2 (0.1)^2 = 1,000,000 \\ &W_1 \sim N(\$10,500,(\$1,000)^2) \end{split}$$

2. Using $W_1 \sim N(\$10, 500, (\$1, 000)^2)$ $\Pr(W_1 < \$9, 000)$ = NORMDIST(9000, 10500, 1000) = 0.067 3. To find R that produces $W_1 =$ \$9,000 solve

$$R = \frac{\$9,000 - \$10,000}{\$10,000} = -0.10.$$

Notice that -0.10 is the 6.7% quantile of the distribution of R:

$$q_{.067} = \Pr(R < -0.10) = 0.067$$

4. Use $R \sim N(0.05, (0.10)^2)$ and solve for the the 5% quantile: $\Pr(R < q_{.05}^R) = 0.05 \Rightarrow$ $q_{.05}^R = \text{NORMINV}(0.05, 0.05, 0.10) = -0.114.$ If R = -11.4% the loss in investment value is at least

$$10,000 \cdot (-0.114) = -1,144$$

= 5% VaR

In general, the $\alpha \times 100\%$ Value-at-Risk (VaR $_{\alpha}$) for an initial investment of W_0 is computed as

$$\mathsf{VaR}_lpha = \$W_0 imes q^R_lpha \ q^R_lpha = lpha imes 100\%$$
 quantile of simple return distn

Remarks:

1. If $R \sim N(\mu_R, \sigma_R^2)$ then $q_{\alpha}^R = \mu_R + \sigma_R q_{\alpha}^Z$, $q_{\alpha}^Z = \alpha \times 100\%$ quantile of $Z \sim N(0, 1)$ and

$$\mathsf{VaR}_{\alpha} = \$W_{\mathbf{0}} \times \left(\mu_{R} + \sigma_{R} q_{\alpha}^{Z}\right)$$

For example, let $W_0 =$ \$10,000, $\mu_R = 0.05$,and $\sigma_R = 0.10$. Then for $\alpha = 0.05, q_{0.05}^Z = -1.645$ and

 $\mathsf{VaR}_{lpha} = \$10,000 imes (0.05 + 0.10 imes (-1.645)) = -1,144$

 Because VaR represents a loss, it is often reported as a positive number. For example, -\$1,144 represents a loss of \$1,144. So the VaR is reported as \$1,144.

VaR for Continuously Compounded Returns

 $r = \ln(1+R)$, cc monthly return $R = e^r - 1$, simple monthly return

Assume

$$r \sim N(\mu_r, \sigma_r^2)$$

 $W_0 = initial investment$

Note: The distribution of R is log-normal so the α -quantile of the distribution of R is not $\mu_R + \sigma_R q_{\alpha}^Z$. That is,

$$q_{\alpha}^{R} \neq \mu_{R} + \sigma_{R} q_{\alpha}^{Z}$$

Q: What is q_{α}^{R} ?

100 $\cdot \, \alpha\%$ VaR Computation

• Compute α quantile of Normal Distribution for r:

$$q_{\alpha}^{r} = \mu_{r} + \sigma_{r} z_{\alpha}$$

• Convert α quantile for r into α quantile for R (quantiles are preserved under increasing transformations):

$$q^R_\alpha = e^{q^r_\alpha} - 1$$

• Compute $100 \cdot \alpha\%$ VaR using q_{α}^R :

$$\mathsf{VaR}_{\alpha} = \$W_{\mathbf{0}} \cdot q_{\alpha}^{R}$$

Example: Compute 5% VaR assuming

$$r_t \sim N(0.05, (0.10)^2), W_0 =$$
\$10,000

The 5% cc return quantile is

$$q_{.05}^r = \mu_r + \sigma_r z_{.05}$$

= 0.05 + (0.10)(-1.645) = -0.114

The 5% simple return quantile is

$$q_{.05}^R = e^{q_{.05}^r} - 1 = e^{-.114} - 1 = -0.108$$

The 5% VaR based on a \$10,000 initial investment is

$$VaR_{.05} = $10,000 \cdot (-0.108) = -$1,077$$