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Univariate Random Variables

Defnition: A random variable (rv) X is a variable that can take on a given
set of values, called the sample space Sy, where the likelihood of the values
in S'x is determined by the variable's probability distribution function (pdf).



Examples

e X = price of microsoft stock next month. Sy = {R:0< X < M}

e X = simple return on a one month investment. Sy = {R : —1
X < M}

e X = 1 if stock price goes up; X = 0 if stock price goes down. Sy
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Discrete Random Variables

Definition: A discrete rv X is one that can take on a finite number of n
different values x1,--- ,xn

Definition: The pdf of a discrete rv X, p(x), is a function such that p(z) =
Pr(X = z). The pdf must satisfy

1. p(x) =2 0forall x € Sx; p(x) =0 for all x ¢ Sx

2. ¥ p(z)=1

xeSx

3. p(x) < 1forall z € Sx



State of Economy Sx = Sample Space p(x) = Pr(X = z)

Depression -0.30 0.05
Recession 0.0 0.20
Normal 0.10 0.50
Mild Boom 0.20 0.20
Major Boom 0.50 0.05

Table 1: Discrete Distribution for Annual Return

Example: Probability Distribution for Annual Return on Microsoft



Example: Bernouli Distribution

Consider two mutually exclusive events generically called “success” and “fail-

ure’ .
Let X = 1 if success occurs and let X = O if failure occurs.

Let Pr(X = 1) = 7w, where 0 < 7 < 1, denote the probability of success.
Then Pr(X = 0) =1 — 7 is the probability of failure. A mathematical model

describing this distribution is
p(z) =Pr(X =z)=7%(1—7)'"%, z=0,1.

When 2 = 0, p(0) = 791 — 7)}"0 = 1 — 7 and when =z = 1,p(1) =
(1 —n)l-1l=nx.



Continuous Random Variables

Definition: A continuous rv X is one that can take on any real value

Definition: The pdf of a continuous rv X is a nonnegative function f(x)
such that for any interval A on the real line

Pr(X € A) = /Af(a:)da:

Pr(X € A) = "Area under probability curve over the interval A".

The pdf f(x) must satisfy

L f(@) > 0; [%%, f(x)de =1 el >



be( X @

Example: Uniform distribution over [a, b]

r(X > ﬂ - Pr[X>/'><)

Let X «~ U [a, b], where "~" means "is distributed as". Then

Properties:

f(x) > 0, provided b > a, and

/_o;f(x)dx:/abb—a dar = b—a/ da
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The Cumulative Distribution Function (CDF)

Definition The CDF, F', of arv X is F(z) = Pr(X < zx) and

o If x1 < xp, then F(x1) < F(x3) ) /// L
— I~ >
A

e F(—oo)=0and F(o0)=1
Fxm\m (s ( N 94)

= Q—-\;\u_,wé\m/

e Pr(z1 < X <xp) = F(xp) — F(x1) Con DY M
\et 4 ob x

o Pr( X >z)=1- F(x)

o %F(x) = f(x) if X is a continuous rv.



R /
Example: Uniform distribution over [0, 1] — /,/, .
X ~U[0,1] o * L
A -1 for0<z<1 bl
fz) =1 T0 |
0 otherwise ‘
Then ) o,
F(m):Pr(Xga:):/O dz )ﬁ
/
/
=[z]lg == \ qy

and, for example,
Pr(0 < X <0.5) = F(0.5) — F(0)
=05—-0=0.5
Note
d
L F(@) =1= f(x)
T



Remark:

For a continuous rv

Pr(X <z)=Pr(X <x)
Pr(X =2)=0



Quantiles of a Distribution

X is a rv with continuous CDF Fx(z) = Pr(X < x) %07,

L Qyw.uhtn

! ot ¥
Definition: The a*100% quantile of Fx for a € [0, 1] is the value gn such

that

1 - N
ﬁr& ~ [f% %X(qa) Pr(X < qa) &f‘\ — E( COL\

The area under the probability cdrve to the left of g is a. If the inverse CDF
F);l exists then

oo = F)?l(a)

1 is sometimes called the “quantile”

Note: F)z

< P
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Example: / Lo\
1% quantile = q g1 /

5% quantile = ¢ g5

50% quantile = ¢ 5 = median




Example: Quantile function of uniform distn on [0,1]

Fx(zx) == qa =«
g.o1 = 0.01
g5 =0.5



The Standard Normal DistributifV/

Let X be a rv such that X -~ N(0,1). Then

f(x) = ¢(x) = \/12_7Texp (—%axz) , —oo<x< oo

d(z) = Pr(X < z) = / xoo () dz




Shape Characteristics

e Centered at zero

e Symmetric about zero (same shape to left and right of zero)
Pr(—1 <z <1) = &(1) — d(—1) = 0.67
Pr(—2 <2 <2)=®¢(2) —d(—-2) %.0.95
Pr(—3<z<3)=%¢(3) — d(—3) £0.99




Finding Areas under the Normal Curve

1.2 ) ) .
° f —5=¢ —2% dx = 1, via change of variables formula in calculus

1,2
e Prla< X <b) = fCIL’ \/%—We_ix dr = ®(b) — ®(a), cannot be computed
analytically!

e Special numerical algorithms are used to calculate ®(z)

/A_/\M - @‘0&-—« _ (4 )



Excel functions
1. NORMSDIST computes Pr(X < z) = ®(z) or p(z) = ¢(z)
2. NORMSINV computes the quantile zo = ¢ 1(a)
R functions
1. pnorm computes Pr(X < z) = ®(z2)
2. qnorm computes the quantile zo, = 7 1(a)

3. dnorm computes the density ¢(z)



Some Tricks for Computing Area under Normal Curve

N(0,1) is symmeric about 0; total area =1
Pr(X <z)=1-Pr(X > 2)

Pr(X > 2) =Pr(X < —2)
Pr(X > 0) = Pr(X < 0) = 0.5




Example In Excel use

Pr(—1 < X <2)=Pr(X <2)—-Pr(X <-1)
— NORMSDIST(2) — NORMSDIST(-1)
= 0.97725 — 0.15866 = 0.81860

In R use
pnorm(2) — pnorm(-1) = 0.81860
The 1%, 2.5%, 5% quantiles are

Excel:z g1 = ®1(0.01) = NORMSINV(0.01) = —2.33
R : gnorm(0.01) = —2.33

Excel:z go5 = @~ 1(0.025) = NORMSINV(0.025) = —1.96
R : gnorm(0.025) = —1.96

Excel:z g5 = ®1(.05) = NORMSINV(.05) = —1.645
R : gnorm(0.05) = —1.645



Shape Characteristics of pdfs

e Expected Value or Mean - Center of Mass

e Variance and Standard Deviation - Spread about mean

e Skewness - Symmetry about mean

e Kurtosis - Tail thickness



Expected Value - Discrete rv

EX]=px= ) =-p(=)
xeSx

= Z x - Pr(X = x)

rxeSx

E[X] = probability weighted average of possible values of X

Expected Value - Continuous rv

BIX] = px = [ @ f(a)da

Note: In continuous case, ZCUESX becames ffooo (33*1

/




State of Economy Sx = Sample Space p(x) = Pr(X = z)

Depression -0.30 0.05
Recession 0.0 0.20
Normal 0.10 0.50
Mild Boom 0.20 0.20
Major Boom 0.50 0.05

Table 2: Discrete Distribution for Annual Return

Expected value of discrete random variable

Using the discrete distribution for the return on Microsoft stock in the above
table, the expected return is

E[X] = (—0.3) - (0.05) + (0.0) - (0.20) 4 (0.1) - (0.5)
+(0.2) - (0.2) + (0.5) - (0.05)
— 0.10.



Example: X -« U[1,2]

E[X] = /1
1

=Jl—1=7

2
Example: X «~ N(0,1)

oo

ux = BIX] = |

— 00




Expectation of a Function of X

Definition: Let g(X) be some function of the rv X. Then

Elg(X)]= >  g(z)-p(z) Discrete case
xeSx

E[g(X)] = /_ O; g(z) - f(z)dz Continuous case

GreV=z xt
A
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Variance and Standard Deviation

g9(X) = (X — E[X])* = (X — px)?
Var(X) = 0% = E[(X — ux)?] = E[X?] — 1%

SD(X) = ox = 1/Var(X)

Note: Var(X) is in squared units of X, and SD(X) is in the same units as X.
Therefore, SD(X) is easier to interpret.

z ' " ' - X
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Computation of Var(X) and SD(X)

0% = Bl(X — ux)’]
= > (z-— nx)? - p(x) if X is a discrete rv
xeSx

oo
= / (z — px)? - f(z)dx if X is a continuous rv
— OO

OX:\/J§<

Remark: For “bell-shaped” data, o x measures the size of the typical deviation
from the mean value ux.

i { - /L Av))
T T vy
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Example: Variance and standard deviation for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1 and
the result that yux = 0.1, we have

Var(X) = (—0.3 — 0.1)? - (0.05) + (0.0 — 0.1)? - (0.20)
+(0.1—0.1)%-(0.5) 4+ (0.2 — 0.1)% - (0.2)
+ (0.5 — 0.1)? - (0.05)
= 0.020
SD(X) = ox = v/0.020 = 0.141.
Given that the distribution is fairly bell-shaped we can say that typical values
deviate from the mean value of 0.10 by about 0.141

p+o =0.10+0.141 = [—0.041, 0.241]



Example: X -~ N(0,1).

/OO L 34 — 0

— €T - e €r —

Hx —00 \V 27
2 > o 1 1.2

oS = r—0)- e 27 doex =1
X /_OO( ) o

O'X:\/I:].

= size of typical deviation from uyxy =0isoxy =1



The General Normal Distribution

X v N(px, 0%)
1 1l (xz—px 2
f(x) = = exp —§< ) , —oo < x < oo

o
27TO'X X

E[X] = px = mean value
Var(X) = agf = variance
SD(X) = ox = standard deviation



Shape Characteristics
e Centered at uy

e Symmetric about uy

Pripx —ox < X <ux +ox)=0.67
Pr(,uX—2°O'XSXSILLX+2-JX):O.95
Pr(ux —3-0x < X <ux+3-0x)=0.99

e Quantiles of the general normal distribution:

o =px +ox P (a) =px +ox - za



Remarks:
¢ X -~ N(0,1): Standard Normal = pux =0 and 0% =1

e The pdf of the general Normal is completely determined by values of ux
and o4
X



Finding Areas under General Normal Curve

Excel Functions

e NORMDIST(x, ux,0x,cumulative). If cumulative = true: Pr(X <
1 ()
e 29X 7 s

2
27T0'X

x) is computed; If cumulative = false, f(x) =

computed

e NORMINV(«, g, o) computes go = tx + 0 x 20



R Runctions

e simulate data: rnorm(n, mean, sd)

e compute CDF: pnorm(q, mean, sd)

e compute quantiles: gnorm(p, mean, sd)

e compute density: dnorm(x, mean, sd)



Standard Deviation as a Measure of Risk

R 4 = monthly return on asset A

Rp = monthly return on assetB

RA 7 N(/*LAa 0-124)7 RB o N(:UJBa O-ZB)

where
na = E[R4] = expected monthly return on asset A
o4 =SD(R4)
— std. deviation of monthly return on asset A
Typically, if
HA > 1B
then

oA > OR



Example: Why the normal distribution may not be appropriate for simple

returns

P — P .
Ry = L =1 simple return
Py 1

Assume R; ~ N(0.05, (0.50)?)

Note: P, > 0 — R; > —1. However, based on the assumed normal
distribution

Pr(R; < —1) = NORMDIST(-1,0.05,0.50,TRUE) = 0.018
= pnorm(-1, 0.05, 0.50) = 0.018

This implies that there is a 1.8% chance that the asset price will be negative.
This is why the normal distribution may not be appropriate for simple returns.



Example: The normal distribution is more appropriate for cc returns

r¢ = In(1 + Rt) = cc return
R = e't —1 = simple return
Assume 74 ~ N(0.05, (0.50)?)

Unlike R¢, r+ can take on values less than —1. For example,
ri=—-2 = Ry=e °—1=-0.865

Pr(r; < —2) = Pr(R; < —0.865)
— NORMDIST(-2,0.05,0.50,TRUE) = 0.00002



The Log-Normal Distribution

XNN(,uX,agf), — 00 < X <o
Y = exp(X) ~ Iognormal(uX,agf), 0<Y <0
E[Y] = py = exp(ux + 0% /2)
Var(Y) = 0% = exp(2ux + 0% )(exp(0%) — 1)

Example: log-normal distribution for simple returns

r¢ ~ N(0.05, (0.50)%), r¢ = In(1 + Ry)
exp(r¢) = 1 + R; ~ lognormal(0.05, (0.50)?)
14 = exp(0.05 + (0.5)?/2) = 1.191
o1, p = exp(2(0.05) + (0.5)%)(exp(0.5%) — 1) = 0.563



R Runctions

e simulate data: rlnorm(n, mean, sd)

e compute CDF: plnorm(q, mean, sd)

e compute quantiles: glnorm(p, mean, sd)

e compute density: dlnorm(y, mean, sd)



Skewness - Measure of symmetry

9(X) = ((X — px)/ox)?
()
ox

3
<az 'uX> p(x) if X is discrete
o

Skew(X)=F

[
)

([T —px }
/ < ) f(x)dx if X is continuous



Intuition

e If X has a symmetric distribution about px then Skew(X) = 0

e Skew(X) > 0 = pdf has long right tail, and median < mean

e Skew(X) < 0 = pdf has long left tail, and median > mean



Example: Using the discrete distribution for the return on Microsoft stock in
Table 1, the results that yuxy = 0.1 and ox = 0.141, we have

skew(X) = [(—0.3 — 0.1)3- (0.05) + (0.0 — 0.1)3 - (0.20)
+(0.1-0.1)%-(0.5) 4+ (0.2 — 0.1)>- (0.2)
+ (0.5 —0.1)%- (0.05)] /(0.141)3
= 0.0



Example: X « N(,uX,ai-). Then

— 3 _LTTHXN2
Skew(X) = /OO (:1: 'uX) - exp( 2(7ox )daz =0

—00 ox \/27‘(‘0‘%

Example: Y « lognormal(pu x, 0%()' Then

Skew(Y) = (exp(agf) + 2> \/exp(ag() —1>0



Kurtosis - Measure of tail thickness

9(X) = (X = px)/ox)*

Kurt(X) =

X,uxl L_/

= > (m — ’uX) p(x) if X is discrete

rESx 7X
4
O J—
:/ (az HX) f(x)dz if X is continuous
—c0 \ Ox

Intuition

e Values of = far from px get blown up resulting in large values of kurtosis

e Two extreme cases: fat tails (large kurtosis); thin tails (small kurtosis)



Example: Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the
results that gy = 0.1 and ox = 0.141, we have

Kurt(X) = [(—0.3 — 0.1)*- (0.05) + (0.0 — 0.1)* - (0.20)
+(0.1—-0.1)*-(0.5) + (0.2 — 0.1)*- (0.2)
+ (0.5 — 0.1)*- (0.05)]/(0.141)*
=6.5



Example: X « N(,LLX,J%)

4 x—

e 7X
ox 27TO'§<

Kurt(X):/ x =23

—Oo0

Definition: Excess kurtosis = Kurt(X) — 3 = kurtosis value in excess of
kurtosis of normal distribution.

e Excess kurtosis (X) > 0 = X has fatter tails than normal distribution




The Student’s-t Distribution

A distribution similar to the standard normal distribution but with fatter tails,
and hence larger kurtosis, is the Student's t distribution. If X has a Student's
t distribution with degrees of freedom parameter v, denoted X ~ ty, then its
pdf has the form

v+1 —UT‘H
flz) = r(zz <1+$—2> ( ), —oco<x<oo, v>0.
VorT (%) v

where I'(z) = [§°t*~Le~tdt denotes the gamma function.



It can be shown that

E[X]=0, v>1

var(X) = - i >

skew(X) =0, v > 3,

v > 2,

kurt(X) =

+ 3, v > 4.
v—4

The parameter v controls the scale and tail thickness of distribution. If v is
close to four, then the kurtosis is large and the tails are thick. If v < 4, then

kurt(X) = 0o. As v — oo the Student’s t pdf approaches that of a standard
normal random variable and kurt(X) = 3.



R Runctions

e simulate data: rt(n, df)

e compute CDF: pt(q, df)

e compute quantiles: qt(p, df)

e compute density: dt(x, df)

Here df is the degrees of freedom parameter v.



Linear Functions of a Random Variable

Let X be a discrete or continuous rv with pxy = E[X], and a§< = Var(X).
Define a new rv Y to be a linear function of X :

Y=9g(X)=a - X+5b

a and b are known constants

Then

py = E[Y] = Ela - X + b
=a-FE[X]+b=a-ux+5b
J%:Var(Y) = Var(a - X + b)
= a? - Var(X)
=a’- 0%

oy =a-0x



Linear Function of a Normal rv

Let X v~ N(ux,0%) and define Y = a- X + b. Then
Y ~ N(py,o0¥)

with
py =a-px +b
a% — a?. a%—
Remarks

e Proof of result relies on change-of-variables formula for determining pdf of
a function of a rv

e Result may or may not hold for random variables whose distributions are
not normal



Example - Standardizing a Normal rv

Let X ~ N(ux, 03(). The standardized rv Z is created using

X — 1
7 — X _ = x _HEX
D¢ D¢ D¢
—a-X+5b
1
O SRS

D¢ gx



Properties of Z

1
E[7] = —E[x] - X
D¢ D¢
_ 1 HX _
= —px - =0
D¢ D¢
1 2
Var(Z) = (—) - Var(X)
OX



Value at Risk: Introduction

Consider a Wy = $10, 000 investment in Microsoft for 1 month. Assume

R = simple monthly return on Microsoft
R ~ N(0.05, (0.10)?), pnp = 0.05, op = 0.10

Goal: Calculate how much we can lose with a specified probability o



Questions:

1. What is the probability distribution of end of month wealth, W7 = $10, 000-
(14 R)?

2. What is Pr(W7 < $9,000)?

3. What value of R produces W7 = $9, 0007

4. What is the monthly value-at-risk (VaR) on the $10,000 investment with
5% probability? That is, how much can we lose if R < q 57



Answers:

1. W1 = $10,000 - (1 4+ R) is a linear function of R, and R is a normally
distributed rv. Therefore, W7 is normally distributed with

E[W1] = $10,000 - (1 + E[R])
— $10,000 - (1 + 0.05) = $10, 500,
Var(W7) = ($10, 000)*Var(R)
— ($10, 000)%(0.1)? = 1,000, 000
W1 ~ N($10,500, ($1,000)?)

2. Using W7 ~ N($10, 500, ($1,000)?)

Pr (W71 < $9,000)
= NORMDIST(9000,10500,1000) = 0.067



3. To find R that produces W7 = $9, 000 solve

9,000 — $10, 000
R = %, 310, = —0.10.
$10, 000

Notice that —0.10 is the 6.7% quantile of the distribution of R :

q.067 = Pr(R < —0.10) = 0.067

4. Use R ~ N(0.05,(0.10)?) and solve for the the 5% quantile:

Pr(R < ¢'ds) = 0.05 =
q'¢s = NORMINV(0.05, 0.05,0.10) = —0.114.
If R = —11.4% the loss in investment value is at least

$10,000 - (—0.114) = —$1, 144
= 5% VaR



In general, the a X 100% Value-at-Risk (VaRgy) for an initial investment of
$W is computed as

VaRqy = $Wp x ¢
q(]f — o X 100% quantile of simple return distn

Remarks:

1. If R~ N(/LR,O'%{) then g = pp + O'ng, qg = «a X 100% quantile of
Z ~ N(0,1) and

VaRa = $Wo x (g + oRal)

For example, let Wy = $10,000, up = 0.05,and op = 0.10. Then for
o = 0.05, g g5 = —1.645 and

VaRy = $10, 000 x (0.05 + 0.10 x (—1.645)) = —1, 144



2. Because VaR represents a loss, it is often reported as a positive number.
For example, —$1, 144 represents a loss of $1, 144. So the VaR is reported
as $1, 144,



VaR for Continuously Compounded Returns
r = In(1 + R), cc monthly return
R =¢€" — 1, simple monthly return
Assume
2
r~ N(:urv 07“)
W = initial investment
Note: The distribution of R is log-normal so the aa—quantile of the distribution

of Ris not up + opgZ. That is,

Qo # LR + ORAS
Q: What is g/t?



100 - % VaR Computation

e Compute «¢ quantile of Normal Distribution for r:

qr, = Mr + orza

e Convert « quantile for r into o quantile for R (quantiles are preserved
under increasing transformations):

g =elo —1

e Compute 100 - a% VaR using ¢/t:

VaRq = $W - ¢



Example: Compute 5% VaR assuming
r¢ ~ N(0.05, (0.10)%), Wy = $10, 000

The 5% cc return quantile is

Q05 = Mr + 072,05
— 0.05 + (0.10)(—1.645) = —0.114

The 5% simple return quantile is
gs = efos —1 = 1% _1=-0.108
The 5% VaR based on a $10,000 initial investment is

VaR g5 = $10,000 - (—0.108) = —$1, 077



