Introduction to Computational Finance and Financial Econometrics

Probability Theory Review: Part 1

Eric Zivot

January 12, 2015

Univariate Random Variables

Defnition: A random variable (rv) X is a variable that can take on a given set of values, called the sample space S_{X}, where the likelihood of the values in S_{X} is determined by the variable's probability distribution function (pdf).

Examples

- $X=$ price of microsoft stock next month. $S_{X}=\{\mathbb{R}: 0<X \leq M\}$
- $X=$ simple return on a one month investment. $S_{X}=\{\mathbb{R}:-1 \leq$ $X<M\}$
- $X=1$ if stock price goes up; $X=0$ if stock price goes down. $S_{X}=$ $\{0,1\}$

Discrete Random Variables

Definition: A discrete rv X is one that can take on a finite number of n different values x_{1}, \cdots, x_{n}

Definition: The pdf of a discrete rv $X, p(x)$, is a function such that $p(x)=$ $\operatorname{Pr}(X=x)$. The pdf must satisfy

1. $p(x) \geqslant 0$ for all $x \in S_{X} ; p(x)=0$ for all $x \notin S_{X}$
2. $\sum_{x \in S_{X}} p(x)=1$
3. $p(x) \leqslant 1$ for all $x \in S_{X}$

State of Economy	$S_{X}=$ Sample Space	$p(x)=\operatorname{Pr}(X=x)$
Depression	-0.30	0.05
Recession	0.0	0.20
Normal	0.10	0.50
Mild Boom	0.20	0.20
Major Boom	0.50	0.05

Table 1: Discrete Distribution for Annual Return
Example: Probability Distribution for Annual Return on Microsoft

Example: Bernouli Distribution

Consider two mutually exclusive events generically called "success" and "failure".

Let $X=1$ if success occurs and let $X=0$ if failure occurs.

Let $\operatorname{Pr}(X=1)=\pi$, where $0<\pi<1$, denote the probability of success. Then $\operatorname{Pr}(X=0)=1-\pi$ is the probability of failure. A mathematical model describing this distribution is

$$
p(x)=\operatorname{Pr}(X=x)=\pi^{x}(1-\pi)^{1-x}, x=0,1
$$

When $x=0, p(0)=\pi^{0}(1-\pi)^{1-0}=1-\pi$ and when $x=1, p(1)=$ $\pi^{1}(1-\pi)^{1-1}=\pi$.

Continuous Random Variables

Definition: A continuous rv X is one that can take on any real value

Definition: The pdf of a continuous rv X is a nonnegative function $f(x)$ such that for any interval A on the real line

$$
\operatorname{Pr}(X \in A)=\int_{A} f(x) d x
$$

$\operatorname{Pr}(X \in A)=$ "Area under probability curve over the interval A ".

The pdf $f(x)$ must satisfy

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=0 \\
& \operatorname{Pr}(X>x)=\operatorname{Pr}(X \geqslant x)
\end{aligned}
$$

Example: Uniform distribution over $[a, b]$
Let $X \backsim U[a, b]$, where " \backsim " means "is distributed as". Then

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }
\end{array} \quad f(\psi)\right.
$$

Properties:
$f(x) \geq 0$, provided $b>a$, and

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{a}^{b} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} d x \\
& =\frac{1}{b-a}[x]_{a}^{b}=\frac{b-a}{b-a}=1 \\
\operatorname{Pr}(X=x) & =\lim _{\delta \rightarrow 0} \operatorname{Pr}(x
\end{aligned} \quad \begin{aligned}
& \leq x \\
& =0
\end{aligned}
$$

The Cumulative Distribution Function (CDF)

Definition The CDF, F, of a rv X is $F(x)=\operatorname{Pr}(X \leq x)$ and

- If $x_{1}<x_{2}$, then $F\left(x_{1}\right) \leq F\left(x_{2}\right)$
- $F(-\infty)=0$ and $F(\infty)=1$
- $\operatorname{Pr}(X \geq x)=1-F(x)$

$F_{x}(x)=\operatorname{Pr}(X \leq x)$
= Avens miner
- $\operatorname{Pr}\left(x_{1}<X \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)$
- $\frac{d}{d x} F(x)=f(x)$ if X is a continuous rv.

Example: Uniform distribution over $[0,1]$

$$
\begin{aligned}
X & \backsim U[0,1] \\
f(x) & =\left\{\begin{array}{cc}
\frac{1}{1-0}=1 & \text { for } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
F(x) & =\operatorname{Pr}(X \leq x)=\int_{0}^{x} d z \\
& =[z]_{0}^{x}=x
\end{aligned}
$$

and, for example,

$$
\begin{aligned}
\operatorname{Pr}(0 & \leq X \leq 0.5)=F(0.5)-F(0) \\
& =0.5-0=0.5
\end{aligned}
$$

Note

$$
\frac{d}{d x} F(x)=1=f(x)
$$

Remark:

For a continuous rv

$$
\begin{aligned}
& \operatorname{Pr}(X \leq x)=\operatorname{Pr}(X<x) \\
& \operatorname{Pr}(X=x)=0
\end{aligned}
$$

Quantiles of a Distribution

Definition: The $\alpha * 100 \%$ quartile of F_{X} for $\alpha \in[0,1]$ is the value q_{α} such that

$$
q_{\alpha}=F_{x}^{-1}\left(F_{X}\left(q_{\alpha}\right)=\operatorname{Pr}\left(X \leq q_{\alpha}\right) F_{x}^{-1}(\alpha)=F_{x}^{-1}(\alpha)\right.
$$

The area under the probability curve to the left of q_{α} is α. If the inverse CDF F_{X}^{-1} exists then

$$
q_{\alpha}=F_{X}^{-1}(\alpha)
$$

Note: F_{X}^{-1} is sometimes called the "quartile" function.
$f(x)$ inverse fructen $f^{-1}()$
sates foe) $f^{-1}(f(x))=x$
$\ln (x), e^{x} \quad e^{\ln (x)}=x$

Example: Quantile function of uniform distn on $[0,1]$

$$
\begin{aligned}
F_{X}(x) & =x \Rightarrow q_{\alpha}=\alpha \\
q .01 & =0.01 \\
q .5 & =0.5
\end{aligned}
$$

The Standard Normal Distribution

Let X be a rv such that $X \sim N(0,1)$. Then

$$
\begin{aligned}
& f(x)=\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right),-\infty \leq x \leq \infty \\
& \Phi(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} \phi(z) d z
\end{aligned}
$$

Shape Characteristics

- Centered at zero
- Symmetric about zero (same shape to left and right of zero)

$$
\begin{aligned}
& \operatorname{Pr}(-1 \leq x \leq 1)=\Phi(1)-\Phi(-1)=0.67 \\
& \operatorname{Pr}(-2 \leq x \leq 2)=\Phi(2)-\Phi(-2) \approx 0.95 \\
& \operatorname{Pr}(-3 \leq x \leq 3)=\Phi(3)-\Phi(-3) \approx 0.99
\end{aligned}
$$

Finding Areas under the Normal Curve

- $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=1$, via change of variables formula in calculus
- $\operatorname{Pr}(a<X<b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=\Phi(b)-\Phi(a)$, cannot be computed analytically!
- Special numerical algorithms are used to calculate $\Phi(z)$

Excel functions

1. NORMSDIST computes $\operatorname{Pr}(X \leq z)=\Phi(z)$ or $p(z)=\phi(z)$
2. NORMSINV computes the quantile $z_{\alpha}=\Phi^{-1}(\alpha)$
R functions
3. pnorm computes $\operatorname{Pr}(X \leq z)=\Phi(z)$
4. qnorm computes the quantile $z_{\alpha}=\Phi^{-1}(\alpha)$
5. dnorm computes the density $\phi(z)$

Some Tricks for Computing Area under Normal Curve
$N(0,1)$ is symmeric about 0 ; total area $=1$

Example In Excel use

$$
\begin{aligned}
\operatorname{Pr}(-1 & \leq X \leq 2)=\operatorname{Pr}(X \leq 2)-\operatorname{Pr}(X \leq-1) \\
& =\operatorname{NORMSDIST}(2)-\operatorname{NORMSDIST}(-1) \\
& =0.97725-0.15866=0.81860
\end{aligned}
$$

In R use

$$
\operatorname{pnorm}(2)-\operatorname{pnorm}(-1)=0.81860
$$

The $1 \%, 2.5 \%, 5 \%$ quantiles are

$$
\begin{aligned}
& \text { Excel: } z .01=\Phi^{-1}(0.01)=\operatorname{NORMSINV}(0.01)=-2.33 \\
& \quad \mathrm{R}: \text { qnorm }(0.01)=-2.33 \\
& \text { Excel: } z .025=\Phi^{-1}(0.025)=\operatorname{NORMSINV}(0.025)=-1.96 \\
& \quad \mathrm{R}: \text { qnorm }(0.025)=-1.96 \\
& \text { Excel: } z .05=\Phi^{-1}(.05)=\operatorname{NORMSINV}(.05)=-1.645 \\
& \quad \mathrm{R}: \text { qnorm }(0.05)=-1.645
\end{aligned}
$$

Shape Characteristics of pdfs

- Expected Value or Mean - Center of Mass
- Variance and Standard Deviation - Spread about mean
- Skewness - Symmetry about mean
- Kurtosis - Tail thickness

Expected Value - Discrete rv

$$
\begin{aligned}
E[X] & =\mu_{X}=\sum_{x \in S_{X}} x \cdot p(x) \\
& =\sum_{x \in S_{X}} x \cdot \operatorname{Pr}(X=x)
\end{aligned}
$$

$E[X]=$ probability weighted average of possible values of X

Expected Value - Continuous rv

$$
E[X]=\mu_{X}=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

Note: In continuous case, $\sum_{x \in S_{X}}$ becames $\int_{-\infty}^{\infty}$

State of Economy	$S_{X}=$ Sample Space	$p(x)=\operatorname{Pr}(X=x)$
Depression	-0.30	0.05
Recession	0.0	0.20
Normal	0.10	0.50
Mild Boom	0.20	0.20
Major Boom	0.50	0.05

Table 2: Discrete Distribution for Annual Return

Expected value of discrete random variable

Using the discrete distribution for the return on Microsoft stock in the above table, the expected return is

$$
\begin{aligned}
E[X] & =(-0.3) \cdot(0.05)+(0.0) \cdot(0.20)+(0.1) \cdot(0.5) \\
& +(0.2) \cdot(0.2)+(0.5) \cdot(0.05) \\
& =0.10
\end{aligned}
$$

Example: $X \backsim U[1,2]$

$$
\begin{aligned}
E[X] & =\int_{1}^{2} x d x=\left[\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{2}[4-1]=\frac{3}{2}
\end{aligned}
$$

Example: $X \backsim N(0,1)$

$$
\mu_{X}=E[X]=\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=0
$$

Expectation of a Function of X

Definition: Let $g(X)$ be some function of the rv X. Then

$$
\begin{aligned}
& E[g(X)]=\sum_{x \in S_{X}} g(x) \cdot p(x) \text { Discrete case } \\
& E[g(X)]=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x \text { Continuous case }
\end{aligned}
$$

$X \sim \operatorname{cts}$ with pdt $f(x)$

$$
\begin{aligned}
g(x) & =x^{2} \\
E\left[x^{2}\right] & =\int_{-0}^{\infty} x^{2} \cdot f(x) d x
\end{aligned}
$$

Variance and Standard Deviation

$$
\begin{aligned}
g(X) & =(X-E[X])^{2}=\left(X-\mu_{X}\right)^{2} \\
\operatorname{Var}(X) & =\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-\mu_{X}^{2} \\
\mathrm{SD}(X) & =\sigma_{X}=\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

Note: $\operatorname{Var}(X)$ is in squared units of X, and $\operatorname{SD}(X)$ is in the same units as X. Therefore, $\mathrm{SD}(X)$ is easier to interpret.

$$
\text { Bis } \operatorname{Var}(x) \text { and his } \operatorname{spl}(x)
$$

$$
\begin{aligned}
& \operatorname{small} \operatorname{sas}(x) \\
& \sin \sin \sin)
\end{aligned}
$$

Computation of $\operatorname{Var}(X)$ and $\operatorname{SD}(X)$

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =\sum_{x \in S_{X}}\left(x-\mu_{X}\right)^{2} \cdot p(x) \text { if } X \text { is a discrete } \mathrm{rv} \\
& =\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} \cdot f(x) d x \text { if } X \text { is a continuous } \mathrm{rv} \\
\sigma_{X} & =\sqrt{\sigma_{X}^{2}}
\end{aligned}
$$

Remark: For "bell-shaped" data, σ_{X} measures the size of the typical deviation from the mean value μ_{X}.

Example: Variance and standard deviation for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1 and the result that $\mu_{X}=0.1$, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =(-0.3-0.1)^{2} \cdot(0.05)+(0.0-0.1)^{2} \cdot(0.20) \\
& +(0.1-0.1)^{2} \cdot(0.5)+(0.2-0.1)^{2} \cdot(0.2) \\
& +(0.5-0.1)^{2} \cdot(0.05) \\
& =0.020 \\
\operatorname{SD}(X) & =\sigma_{X}=\sqrt{0.020}=0.141
\end{aligned}
$$

Given that the distribution is fairly bell-shaped we can say that typical values deviate from the mean value of 0.10 by about 0.141

$$
\mu \pm \sigma=0.10 \pm 0.141=[-0.041,0.241]
$$

Example: $\quad X \sim N(0,1)$.

$$
\begin{aligned}
\mu_{X} & =\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=0 \\
\sigma_{X}^{2} & =\int_{-\infty}^{\infty}(x-0)^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=1 \\
\sigma_{X} & =\sqrt{1}=1 \\
& \Rightarrow \text { size of typical deviation from } \mu_{X}=0 \text { is } \sigma_{X}=1
\end{aligned}
$$

The General Normal Distribution

$$
\begin{aligned}
X & \backsim N\left(\mu_{X}, \sigma_{X}^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right),-\infty \leq x \leq \infty \\
E[X] & =\mu_{X}=\text { mean value } \\
\operatorname{Var}(X) & =\sigma_{X}^{2}=\text { variance } \\
\mathrm{SD}(X) & =\sigma_{X}=\text { standard deviation }
\end{aligned}
$$

Shape Characteristics

- Centered at μ_{X}
- Symmetric about μ_{X}

$$
\begin{aligned}
\operatorname{Pr}\left(\mu_{X}-\sigma_{X} \leq X \leq \mu_{X}+\sigma_{X}\right)=0.67 \\
\operatorname{Pr}\left(\mu_{X}-2 \cdot \sigma_{X} \leq X \leq \mu_{X}+2 \cdot \sigma_{X}\right)=0.95 \\
\operatorname{Pr}\left(\mu_{X}-3 \cdot \sigma_{X} \leq X \leq \mu_{X}+3 \cdot \sigma_{X}\right)=0.99
\end{aligned}
$$

- Quantiles of the general normal distribution:

$$
q_{\alpha}=\mu_{X}+\sigma_{X} \cdot \Phi^{-1}(\alpha)=\mu_{X}+\sigma_{X} \cdot z_{\alpha}
$$

Remarks:

- $X \sim N(0,1):$ Standard Normal $\Longrightarrow \mu_{X}=0$ and $\sigma_{X}^{2}=1$
- The pdf of the general Normal is completely determined by values of μ_{X} and σ_{X}^{2}

Finding Areas under General Normal Curve

Excel Functions

- $\operatorname{NORMDIST}\left(x, \mu_{X}, \sigma_{X}\right.$, cumulative). If cumulative $=$ true: $\operatorname{Pr}(X \leq$
$x)$ is computed; If cumulative $=$ false, $f(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{X}}{\left.\sigma_{X}\right)^{2}}\right.}$ is computed
- $\operatorname{NORMINV}\left(\alpha, \mu_{x}, \sigma_{x}\right)$ computes $q_{\alpha}=\mu_{X}+\sigma_{X} z_{\alpha}$

R Runctions

- simulate data: rnorm(n, mean, sd)
- compute CDF: pnorm(q, mean, sd)
- compute quantiles: qnorm(p, mean, sd)
- compute density: dnorm(x, mean, sd)

Standard Deviation as a Measure of Risk

$$
\begin{aligned}
& R_{A}=\text { monthly return on asset } \mathrm{A} \\
& R_{B}=\text { monthly return on assetB } \\
& R_{A} \backsim N\left(\mu_{A}, \sigma_{A}^{2}\right), R_{B} \backsim N\left(\mu_{B}, \sigma_{B}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{A} & =E\left[R_{A}\right]=\text { expected monthly return on asset } \mathrm{A} \\
\sigma_{A} & =\mathrm{SD}\left(R_{A}\right) \\
& =\text { std. deviation of monthly return on asset } \mathrm{A}
\end{aligned}
$$

Typically, if

$$
\mu_{A}>\mu_{B}
$$

then

$$
\sigma_{A}>\sigma_{B}
$$

Example: Why the normal distribution may not be appropriate for simple returns

$$
\begin{aligned}
R_{t} & =\frac{P_{t}-P_{t-1}}{P_{t-1}}=\text { simple return } \\
\text { Assume } R_{t} & \sim N\left(0.05,(0.50)^{2}\right)
\end{aligned}
$$

Note: $P_{t} \geq 0 \Longrightarrow R_{t} \geq-1$. However, based on the assumed normal distribution

$$
\begin{gathered}
\operatorname{Pr}\left(R_{t}<-1\right)=\operatorname{NORMDIST}(-1,0.05,0.50, \mathrm{TRUE})=0.018 \\
=\operatorname{pnorm}(-1,0.05,0.50)=0.018
\end{gathered}
$$

This implies that there is a 1.8% chance that the asset price will be negative. This is why the normal distribution may not be appropriate for simple returns.

Example: The normal distribution is more appropriate for cc returns

$$
\begin{aligned}
r_{t} & =\ln \left(1+R_{t}\right)=\mathrm{cc} \text { return } \\
R_{t} & =e^{r_{t}}-1=\text { simple return } \\
\text { Assume } r_{t} & \sim N\left(0.05,(0.50)^{2}\right)
\end{aligned}
$$

Unlike R_{t}, r_{t} can take on values less than -1 . For example,

$$
\begin{aligned}
r_{t} & =-2 \Longrightarrow R_{t}=e^{-2}-1=-0.865 \\
\operatorname{Pr}\left(r_{t}\right. & <-2)=\operatorname{Pr}\left(R_{t}<-0.865\right) \\
& =\operatorname{NORMDIST}(-2,0.05,0.50, \text { TRUE })=0.00002
\end{aligned}
$$

The Log-Normal Distribution

$$
\begin{aligned}
X & \sim N\left(\mu_{X}, \sigma_{X}^{2}\right),-\infty<X<\infty \\
Y & =\exp (X) \sim \operatorname{lognormal}\left(\mu_{X}, \sigma_{X}^{2}\right), 0<Y<\infty \\
E[Y] & =\mu_{Y}=\exp \left(\mu_{X}+\sigma_{X}^{2} / 2\right) \\
\operatorname{Var}(Y) & =\sigma_{Y}^{2}=\exp \left(2 \mu_{X}+\sigma_{X}^{2}\right)\left(\exp \left(\sigma_{X}^{2}\right)-1\right)
\end{aligned}
$$

Example: log-normal distribution for simple returns

$$
\begin{aligned}
r_{t} & \sim N\left(0.05,(0.50)^{2}\right), r_{t}=\ln \left(1+R_{t}\right) \\
\exp \left(r_{t}\right) & =1+R_{t} \sim \operatorname{lognormal}\left(0.05,(0.50)^{2}\right) \\
\mu_{1+R} & =\exp \left(0.05+(0.5)^{2} / 2\right)=1.191 \\
\sigma_{1+R}^{2} & =\exp \left(2(0.05)+(0.5)^{2}\right)\left(\exp \left(0.5^{2}\right)-1\right)=0.563
\end{aligned}
$$

R Runctions

- simulate data: rlnorm(n, mean, sd)
- compute CDF: plnorm(q, mean, sd)
- compute quantiles: qlnorm(p, mean, sd)
- compute density: dlnorm(y, mean, sd)

Skewness - Measure of symmetry

$$
\begin{aligned}
g(X) & =\left(\left(X-\mu_{X}\right) / \sigma_{X}\right)^{3} \\
\operatorname{Skew}(X) & =E\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)^{3}\right] \\
& =\sum_{x \in S_{X}}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{3} p(x) \text { if } X \text { is discrete } \\
& =\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{3} f(x) d x \text { if } X \text { is continuous }
\end{aligned}
$$

Intuition

- If X has a symmetric distribution about μ_{X} then $\operatorname{Skew}(X)=0$
- $\operatorname{Skew}(X)>0 \Longrightarrow$ pdf has long right tail, and median $<$ mean
- Skew $(X)<0 \Longrightarrow$ pdf has long left tail, and median $>$ mean

Example: Using the discrete distribution for the return on Microsoft stock in Table 1, the results that $\mu_{X}=0.1$ and $\sigma_{X}=0.141$, we have

$$
\begin{aligned}
\text { skew }(X) & =\left[(-0.3-0.1)^{3} \cdot(0.05)+(0.0-0.1)^{3} \cdot(0.20)\right. \\
& +(0.1-0.1)^{3} \cdot(0.5)+(0.2-0.1)^{3} \cdot(0.2) \\
& \left.+(0.5-0.1)^{3} \cdot(0.05)\right] /(0.141)^{3} \\
& =0.0
\end{aligned}
$$

Example: $X \backsim N\left(\mu_{X}, \sigma_{X}^{2}\right)$. Then

$$
\operatorname{Skew}(X)=\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{3} \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right) d x=0
$$

Example: $Y \backsim \operatorname{lognormal}\left(\mu_{X}, \sigma_{X}^{2}\right)$. Then

$$
\operatorname{Skew}(Y)=\left(\exp \left(\sigma_{X}^{2}\right)+2\right) \sqrt{\exp \left(\sigma_{X}^{2}\right)-1}>0
$$

Kurtosis - Measure of tail thickness

$$
\begin{aligned}
g(X) & =\left(\left(X-\mu_{X}\right) / \sigma_{X}\right)^{4} \\
\operatorname{Kurt}(X) & =E\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)^{4}\right] \\
& =\sum_{x \in S_{X}}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{4} p(x) \text { if } X \text { is discrete } \\
& =\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{4} f(x) d x \text { if } X \text { is continuous }
\end{aligned}
$$

Intuition

- Values of x far from μ_{X} get blown up resulting in large values of kurtosis
- Two extreme cases: fat tails (large kurtosis); thin tails (small kurtosis)

Example: Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the results that $\mu_{X}=0.1$ and $\sigma_{X}=0.141$, we have

$$
\begin{aligned}
\operatorname{Kurt}(X) & =\left[(-0.3-0.1)^{4} \cdot(0.05)+(0.0-0.1)^{4} \cdot(0.20)\right. \\
& +(0.1-0.1)^{4} \cdot(0.5)+(0.2-0.1)^{4} \cdot(0.2) \\
& \left.+(0.5-0.1)^{4} \cdot(0.05)\right] /(0.141)^{4} \\
& =6.5
\end{aligned}
$$

Example: $\quad X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$

$$
\operatorname{Kurt}(X)=\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{4} \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}} d x=3
$$

Definition: Excess kurtosis $=\operatorname{Kurt}(X)-3=$ kurtosis value in excess of kurtosis of normal distribution.

- Excess kurtosis $(X)>0 \Rightarrow X$ has fatter tails than normal distribution
- Excess kurtosis $(X)<0 \Rightarrow X$ has thinner tails than normal distribution

The Student's-t Distribution

A distribution similar to the standard normal distribution but with fatter tails, and hence larger kurtosis, is the Student's t distribution. If X has a Student's t distribution with degrees of freedom parameter v, denoted $X \sim t_{v}$, then its pdf has the form

$$
f(x)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v \pi} \Gamma\left(\frac{v}{2}\right)}\left(1+\frac{x^{2}}{v}\right)^{-\left(\frac{v+1}{2}\right)},-\infty<x<\infty, v>0
$$

where $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$ denotes the gamma function.

It can be shown that

$$
\begin{aligned}
E[X] & =0, v>1 \\
\operatorname{var}(X) & =\frac{v}{v-2}, v>2 \\
\operatorname{skew}(X) & =0, v>3 \\
\operatorname{kurt}(X) & =\frac{6}{v-4}+3, v>4
\end{aligned}
$$

The parameter v controls the scale and tail thickness of distribution. If v is close to four, then the kurtosis is large and the tails are thick. If $v<4$, then $\operatorname{kurt}(X)=\infty$. As $v \rightarrow \infty$ the Student's t pdf approaches that of a standard normal random variable and $\operatorname{kurt}(X)=3$.

R Runctions

- simulate data: $\mathrm{rt}(\mathrm{n}, \mathrm{df})$
- compute CDF: pt (q, df)
- compute quantiles: qt (p, df)
- compute density: $\mathrm{dt}(\mathrm{x}, \mathrm{df})$

Here df is the degrees of freedom parameter v.

Linear Functions of a Random Variable

Let X be a discrete or continuous rv with $\mu_{X}=E[X]$, and $\sigma_{X}^{2}=\operatorname{Var}(X)$. Define a new rv Y to be a linear function of X :

$$
\begin{aligned}
& Y=g(X)=a \cdot X+b \\
& \quad a \text { and } b \text { are known constants }
\end{aligned}
$$

Then

$$
\begin{aligned}
\mu_{Y} & =E[Y]=E[a \cdot X+b] \\
& =a \cdot E[X]+b=a \cdot \mu_{X}+b \\
\sigma_{Y}^{2} & =\operatorname{Var}(Y)=\operatorname{Var}(a \cdot X+b) \\
& =a^{2} \cdot \operatorname{Var}(X) \\
& =a^{2} \cdot \sigma_{X}^{2} \\
\sigma_{Y} & =a \cdot \sigma_{X}
\end{aligned}
$$

Linear Function of a Normal rv

Let $X \backsim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and define $Y=a \cdot X+b$. Then

$$
Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)
$$

with

$$
\begin{aligned}
& \mu_{Y}=a \cdot \mu_{X}+b \\
& \sigma_{Y}^{2}=a^{2} \cdot \sigma_{X}^{2}
\end{aligned}
$$

Remarks

- Proof of result relies on change-of-variables formula for determining pdf of a function of a rv
- Result may or may not hold for random variables whose distributions are not normal

Example - Standardizing a Normal rv

Let $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$. The standardized $\mathrm{rv} Z$ is created using

$$
\begin{aligned}
Z & =\frac{X-\mu_{X}}{\sigma_{X}}=\frac{1}{\sigma_{X}} \cdot X-\frac{\mu_{X}}{\sigma_{X}} \\
& =a \cdot X+b \\
a & =\frac{1}{\sigma_{X}}, b=-\frac{\mu_{X}}{\sigma_{X}}
\end{aligned}
$$

Properties of Z

$$
\begin{aligned}
E[Z] & =\frac{1}{\sigma_{X}} E[X]-\frac{\mu_{X}}{\sigma_{X}} \\
& =\frac{1}{\sigma_{X}} \cdot \mu_{X}-\frac{\mu_{X}}{\sigma_{X}}=0 \\
\operatorname{Var}(Z) & =\left(\frac{1}{\sigma_{X}}\right)^{2} \cdot \operatorname{Var}(X) \\
& =\left(\frac{1}{\sigma_{X}}\right)^{2} \cdot \sigma_{X}^{2}=1 \\
Z & \sim N(0,1)
\end{aligned}
$$

Value at Risk: Introduction

Consider a $W_{0}=\$ 10,000$ investment in Microsoft for 1 month. Assume

$$
\begin{aligned}
& R=\text { simple monthly return on Microsoft } \\
& R \sim N\left(0.05,(0.10)^{2}\right), \mu_{R}=0.05, \sigma_{R}=0.10
\end{aligned}
$$

Goal: Calculate how much we can lose with a specified probability α

Questions:

1. What is the probability distribution of end of month wealth, $W_{1}=\$ 10,000$. $(1+R) ?$
2. What is $\operatorname{Pr}\left(W_{1}<\$ 9,000\right)$?
3. What value of R produces $W_{1}=\$ 9,000$?
4. What is the monthly value-at-risk (VaR) on the $\$ 10,000$ investment with 5% probability? That is, how much can we lose if $R \leq q .05$?

Answers:

1. $W_{1}=\$ 10,000 \cdot(1+R)$ is a linear function of R, and R is a normally distributed rv . Therefore, W_{1} is normally distributed with

$$
\begin{gathered}
\quad E\left[W_{1}\right]=\$ 10,000 \cdot(1+E[R]) \\
=\$ 10,000 \cdot(1+0.05)=\$ 10,500 \\
\\
\operatorname{Var}\left(W_{1}\right)=(\$ 10,000)^{2} \operatorname{Var}(R) \\
= \\
(\$ 10,000)^{2}(0.1)^{2}=1,000,000 \\
\\
W_{1} \sim N\left(\$ 10,500,(\$ 1,000)^{2}\right)
\end{gathered}
$$

2. Using $W_{1} \sim N\left(\$ 10,500,(\$ 1,000)^{2}\right)$

$$
\begin{aligned}
& \operatorname{Pr}\left(W_{1}<\$ 9,000\right) \\
& =\operatorname{NORMDIST}(9000,10500,1000)=0.067
\end{aligned}
$$

3. To find R that produces $W_{1}=\$ 9,000$ solve

$$
R=\frac{\$ 9,000-\$ 10,000}{\$ 10,000}=-0.10
$$

Notice that -0.10 is the 6.7% quantile of the distribution of R :

$$
q .067=\operatorname{Pr}(R<-0.10)=0.067
$$

4. Use $R \sim N\left(0.05,(0.10)^{2}\right)$ and solve for the the 5% quantile:

$$
\begin{aligned}
& \operatorname{Pr}\left(R<q_{.05}^{R}\right)=0.05 \Rightarrow \\
& q_{.05}^{R}=\operatorname{NORMINV}(0.05,0.05,0.10)=-0.114 .
\end{aligned}
$$

If $R=-11.4 \%$ the loss in investment value is at least

$$
\begin{aligned}
\$ 10,000 \cdot(-0.114) & =-\$ 1,144 \\
& =5 \% \mathrm{VaR}
\end{aligned}
$$

In general, the $\alpha \times 100 \%$ Value-at-Risk $\left(\mathrm{VaR}_{\alpha}\right)$ for an initial investment of $\$ W_{0}$ is computed as

$$
\begin{aligned}
\mathrm{VaR}_{\alpha} & =\$ W_{0} \times q_{\alpha}^{R} \\
q_{\alpha}^{R} & =\alpha \times 100 \% \text { quantile of simple return distn }
\end{aligned}
$$

Remarks:

1. If $R \sim N\left(\mu_{R}, \sigma_{R}^{2}\right)$ then $q_{\alpha}^{R}=\mu_{R}+\sigma_{R} q_{\alpha}^{Z}, q_{\alpha}^{Z}=\alpha \times 100 \%$ quantile of $Z \sim N(0,1)$ and

$$
\operatorname{VaR}_{\alpha}=\$ W_{0} \times\left(\mu_{R}+\sigma_{R} q_{\alpha}^{Z}\right)
$$

For example, let $W_{0}=\$ 10,000, \mu_{R}=0.05$, and $\sigma_{R}=0.10$. Then for $\alpha=0.05, q_{0.05}^{Z}=-1.645$ and

$$
\operatorname{VaR}_{\alpha}=\$ 10,000 \times(0.05+0.10 \times(-1.645))=-1,144
$$

2. Because VaR represents a loss, it is often reported as a positive number. For example, $-\$ 1,144$ represents a loss of $\$ 1,144$. So the VaR is reported as $\$ 1,144$.

VaR for Continuously Compounded Returns

$$
\begin{aligned}
r & =\ln (1+R), \text { cc monthly return } \\
R & =e^{r}-1, \text { simple monthly return }
\end{aligned}
$$

Assume

$$
\begin{aligned}
r & \sim N\left(\mu_{r}, \sigma_{r}^{2}\right) \\
W_{0} & =\text { initial investment }
\end{aligned}
$$

Note: The distribution of R is log-normal so the α-quantile of the distribution of R is not $\mu_{R}+\sigma_{R} q_{\alpha}^{Z}$. That is,

$$
q_{\alpha}^{R} \neq \mu_{R}+\sigma_{R} q_{\alpha}^{Z}
$$

Q: What is q_{α}^{R} ?
$100 \cdot \alpha \%$ VaR Computation

- Compute α quantile of Normal Distribution for r :

$$
q_{\alpha}^{r}=\mu_{r}+\sigma_{r} z_{\alpha}
$$

- Convert α quantile for r into α quantile for R (quantiles are preserved under increasing transformations):

$$
q_{\alpha}^{R}=e^{q_{\alpha}^{r}}-1
$$

- Compute $100 \cdot \alpha \%$ VaR using q_{α}^{R}.

$$
\operatorname{VaR}_{\alpha}=\$ W_{0} \cdot q_{\alpha}^{R}
$$

Example: Compute $5 \% \mathrm{VaR}$ assuming

$$
r_{t} \sim N\left(0.05,(0.10)^{2}\right), W_{0}=\$ 10,000
$$

The 5% cc return quantile is

$$
\begin{aligned}
q_{.05}^{r} & =\mu_{r}+\sigma_{r} z .05 \\
& =0.05+(0.10)(-1.645)=-0.114
\end{aligned}
$$

The 5% simple return quantile is

$$
q_{.05}^{R}=e^{q_{.05}^{r}}-1=e^{-.114}-1=-0.108
$$

The $5 \% \mathrm{VaR}$ based on a $\$ 10,000$ initial investment is

$$
\operatorname{VaR}_{.05}=\$ 10,000 \cdot(-0.108)=-\$ 1,077
$$

