Econ 424
 Review of Matrix Algebra

Eric Zivot

January 22, 2015

Matrices and Vectors

Matrix

$$
\begin{aligned}
\underset{(n \times m)}{\mathbf{A}} & =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right] \\
n & =\# \text { of rows, } m=\text { \# of columns }
\end{aligned}
$$

Square matrix : $n=m$
Vector

$$
\underset{(n \times 1)}{\mathbf{x}}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Remarks

- R is a matrix oriented programming language
- Excel can handle matrices and vectors in formulas and some functions
- Excel has special functions for working with matrices. There are called array functions. Must use

$$
<\text { ctrl }>-<\text { shift }>-<\text { enter }>
$$

to evaluate array function

Transpose of a Matrix

Interchange rows and columns of a matrix

$$
\underset{(m \times n)}{\mathbf{A}}{ }^{\prime}=\text { transpose of } \underset{(n \times m)}{\mathbf{A}}
$$

Example

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \mathbf{A}^{\prime}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \\
& \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{x}^{\prime}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
\end{aligned}
$$

R function

$$
t(A)
$$

Excel function

$$
\begin{gathered}
\text { TRANSPOSE(matrix) } \\
<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{gathered}
$$

Symmetric Matrix

A square matrix \mathbf{A} is symmetric if

$$
\mathbf{A}=\mathbf{A}^{\prime}
$$

Example

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \quad \mathbf{A}^{\prime}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Remark: Covariance and correlation matrices are symmetric

Basic Matrix Operations

Addition and Subtraction (element-by-element)

$$
\begin{aligned}
{\left[\begin{array}{ll}
4 & 9 \\
2 & 1
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right] } & =\left[\begin{array}{ll}
4+2 & 9+0 \\
2+0 & 1+7
\end{array}\right] \\
& =\left[\begin{array}{ll}
6 & 9 \\
2 & 8
\end{array}\right] \\
{\left[\begin{array}{ll}
4 & 9 \\
2 & 1
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right] } & =\left[\begin{array}{cc}
4-2 & 9-0 \\
2-0 & 1-7
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 9 \\
2 & -6
\end{array}\right]
\end{aligned}
$$

Scalar Multiplication (element-by-element)

$$
\begin{aligned}
c & =2=\text { scalar } \\
A & =\left[\begin{array}{cc}
3 & -1 \\
0 & 5
\end{array}\right] \\
2 \cdot A & =\left[\begin{array}{cc}
2 \cdot 3 & 2 \cdot(-1) \\
2 \cdot 0 & 2 \cdot 5
\end{array}\right]=\left[\begin{array}{cc}
6 & -2 \\
0 & 10
\end{array}\right]
\end{aligned}
$$

Matrix Multiplication (not element-by-element)

$$
\underset{(3 \times 2)}{\mathbf{A}}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right], \underset{(2 \times 3)}{\mathbf{B}}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]
$$

Note: A and B are comformable matrices: \# of columns in $A=\#$ of rows in B

$$
\begin{aligned}
& \underset{(3 \times 2)}{\mathbf{A}} \cdot \underset{(2 \times 3)}{\mathbf{B}} \\
& =\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} & a_{11} b_{13}+a_{12} b_{23} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22} & a_{21} b_{13}+a_{22} b_{23} \\
a_{31} b_{11}+a_{32} b_{21} & a_{31} b_{12}+a_{32} b_{22} & a_{31} b_{13}+a_{32} b_{23}
\end{array}\right]
\end{aligned}
$$

Remark: In general,

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

Example

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \\
\mathbf{A} \cdot \mathbf{B} & =\left[\begin{array}{cc}
5+14 & 6+16 \\
15+28 & 18+32
\end{array}\right]=\left[\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right]
\end{aligned}
$$

R operator

$$
A \% * \% B
$$

Excel function

$$
\begin{gathered}
\text { MMULT(matrix1, matrix2) } \\
<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{gathered}
$$

Identity Matrix

The n - dimensional identity matrix has all diagonal elements equal to 1 , and all off diagonal elements equal to 0 .

Example

$$
\mathbf{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Remark: The identity matrix plays the roll of " 1 " in matrix algebra

$$
\begin{aligned}
\mathbf{I}_{2} \cdot \mathbf{A} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11}+0 & a_{12}+0 \\
0+a_{21} & 0+a_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
& =\mathbf{A}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{I}_{2} & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\mathbf{A}
\end{aligned}
$$

R function

$$
\operatorname{diag}(n)
$$

creates n - dimensional identity matrix

Matrix Inverse

Let $\underset{(n \times n)}{\mathbf{A}}=$ square matrix. $\mathbf{A}^{-1}=$ "inverse of \mathbf{A}^{\prime} satisfies

$$
\begin{aligned}
& \mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n} \\
& \mathbf{A A}^{-1}=\mathbf{I}_{n}
\end{aligned}
$$

Remark: \mathbf{A}^{-1} is similar to the inverse of a number:

$$
\begin{aligned}
a & =2, a^{-1}=\frac{1}{2} \\
a \cdot a^{-1} & =2 \cdot \frac{1}{2}=1 \\
a^{-1} \cdot a & =\frac{1}{2} \cdot 2=1
\end{aligned}
$$

R function

solve(A)

Excel function

$$
\begin{gathered}
\text { MINVERSE(matrix) } \\
<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{gathered}
$$

Representing Systems of Linear Equations Using Matrix Algebra

Consider the system of two linear equations

$$
\begin{array}{r}
x+y=1 \\
2 x-y=1
\end{array}
$$

The equations represent two straight lines which intersect at the point

$$
x=\frac{2}{3}, y=\frac{1}{3}
$$

Matrix algebra representation:

$$
\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

or

$$
\mathbf{A} \cdot \mathbf{z}=\mathbf{b}
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], \mathbf{z}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We can solve for z by multiplying both sides by \mathbf{A}^{-1}

$$
\begin{aligned}
\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{z} & =\mathbf{A}^{-1} \cdot \mathbf{b} \\
& \Longrightarrow \mathbf{I} \cdot \mathbf{z}=\mathbf{A}^{-1} \cdot \mathbf{b} \\
& \Longrightarrow \mathbf{z}=\mathbf{A}^{-1} \cdot \mathbf{b}
\end{aligned}
$$

or

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Remark: As long as we can determine the elements in \mathbf{A}^{-1}, we can solve for the values of x and y in the vector \mathbf{z}. Since the system of linear equations has a solution as long as the two lines intersect, we can determine the elements in \mathbf{A}^{-1} provided the two lines are not parallel.

There are general numerical algorithms for finding the elements of A^{-1} and programs like Excel and R have these algorithms available. However, if \mathbf{A} is a (2×2) matrix then there is a simple formula for \mathbf{A}^{-1}. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

where

$$
\operatorname{det}(\mathbf{A})=a_{11} a_{22}-a_{21} a_{12} \neq 0
$$

Let's apply the above rule to find the inverse of \mathbf{A} in our example:

$$
\mathbf{A}^{-1}=\frac{1}{-1-2}\left[\begin{array}{cc}
-1 & -1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{-1}{3}
\end{array}\right]
$$

Notice that

$$
\mathbf{A}^{-1} \mathbf{A}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{-1}{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Our solution for z is then

$$
\begin{aligned}
\mathbf{z} & =\mathbf{A}^{-1} \mathbf{b} \\
& =\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{-1}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

so that $x=\frac{2}{3}$ and $y=\frac{1}{3}$.

In general, if we have n linear equations in n unknown variables we may write the system of equations as

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & =\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

which we may then express in matrix form as

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

or

$$
\underset{(n \times n)}{\mathbf{A}} \cdot \underset{(n \times 1)}{\mathbf{x}}=\underset{(n \times 1)}{\mathbf{b}}
$$

The solution to the system of equations is given by

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

where $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and \mathbf{I} is the $(n \times n)$ identity matrix. If the number of equations is greater than two, then we generally use numerical algorithms to find the elements in \mathbf{A}^{-1}.

Representing Summation Using Matrix Notation

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n} \\
& \underset{(n \times 1)}{\mathbf{x}}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \underset{(n \times 1)}{\mathbf{1}}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{x}^{\prime} \mathbf{1} & =\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \\
& =x_{1}+x_{2}+\cdots+x_{n}=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Equivalently

$$
\begin{aligned}
\mathbf{1}^{\prime} \mathbf{x} & =\left(\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =x_{1}+x_{2}+\cdots+x_{n}=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Sum of Squares

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i}^{2} & =x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \\
\mathbf{x}^{\prime} \mathbf{x} & =\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Sums of cross products

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} y_{i} & =x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \\
\mathbf{x}^{\prime} \mathbf{y} & =\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \\
& =x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i} \\
& =\mathbf{y}^{\prime} \mathbf{x}
\end{aligned}
$$

R function

$$
\begin{aligned}
& t(x) \% * \% y, t(y) \% * \% x \\
& \operatorname{crossprod}(x, y)
\end{aligned}
$$

Excel function

$$
\begin{gathered}
\text { MMULT(TRANSPOSE }(\mathrm{x}), \mathrm{y}) \\
\text { MMULT(TRANSPOSE }(\mathrm{y}), \mathrm{x}) \\
<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{gathered}
$$

Portfolio Math with Matrix Algebra

Three Risky Asset Example

Let R_{i} denote the return on asset $i=A, B, C$ and assume that R_{A}, R_{B} and R_{C} are jointly normally distributed with means, variances and covariances:

$$
\mu_{i}=E\left[R_{i}\right], \sigma_{i}^{2}=\operatorname{var}\left(R_{i}\right), \operatorname{cov}\left(R_{i}, R_{j}\right)=\sigma_{i j}
$$

Portfolio " x "

$$
\begin{gathered}
x_{i}=\text { share of wealth in asset } i \\
x_{A}+x_{B}+x_{C}=1
\end{gathered}
$$

Portfolio return

$$
R_{p, x}=x_{A} R_{A}+x_{B} R_{B}+x_{C} R_{C}
$$

Portfolio expected return

$$
\mu_{p, x}=E\left[R_{p, x}\right]=x_{A} \mu_{A}+x_{B} \mu_{B}+x_{C} \mu_{C}
$$

Portfolio variance

$$
\begin{aligned}
\sigma_{p, x}^{2} & =\operatorname{var}\left(R_{p, x}\right)=x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+x_{C}^{2} \sigma_{C}^{2} \\
& +2 x_{A} x_{B} \sigma_{A B}+2 x_{A} x_{C} \sigma_{A C}+2 x_{B} x_{C} \sigma_{B C}
\end{aligned}
$$

Portfolio distribution

$$
R_{p, x} \sim N\left(\mu_{p, x}, \sigma_{p, x}^{2}\right)
$$

Matrix Algebra Representation

$$
\begin{aligned}
\mathbf{R} & =\left(\begin{array}{l}
R_{A} \\
R_{B} \\
R_{C}
\end{array}\right), \mu=\left(\begin{array}{c}
\mu_{A} \\
\mu_{B} \\
\mu_{C}
\end{array}\right), \mathbf{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
\mathbf{x} & =\left(\begin{array}{l}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sigma_{A}^{2} & \sigma_{A B} & \sigma_{A C} \\
\sigma_{A B} & \sigma_{B}^{2} & \sigma_{B C} \\
\sigma_{A C} & \sigma_{B C} & \sigma_{C}^{2}
\end{array}\right)
\end{aligned}
$$

Portfolio weights sum to 1

$$
\begin{aligned}
\mathbf{x}^{\prime} \mathbf{1} & =\left(\begin{array}{lll}
x_{A} & x_{B} & x_{C}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =x_{A}+x_{B}+x_{C}=1
\end{aligned}
$$

Digression on Covariance Matrix

Using matrix algebra, the variance-covariance matrix of the $N \times 1$ return vector \mathbf{R} is defined as

$$
\underset{N \times N}{\operatorname{var}(\mathbf{R})}=\operatorname{cov}(\mathbf{R})=E\left[(\mathbf{R}-\mu)(\mathbf{R}-\mu)^{\prime}\right]=\mathbf{\Sigma}
$$

Because \mathbf{R} has N elements, $\boldsymbol{\Sigma}$ is the $N \times N$ matrix

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \cdots & \sigma_{n}^{2}
\end{array}\right)
$$

For the case $N=2$, we have

$$
\begin{aligned}
& E\left[\left(\mathbf{R}_{2 \times 1}-\mu\right)\left(\mathbf{R}_{1 \times 2}-\mu\right)^{\prime}\right]=E\left[\binom{R_{1}-\mu_{1}}{R_{2}-\mu_{2}} \cdot\left(R_{1}-\mu_{1}, R_{2}-\mu_{2}\right)\right] \\
& \quad=E\left[\left(\begin{array}{ll}
\left(R_{1}-\mu_{1}\right)^{2} & \left(R_{1}-\mu_{1}\right)\left(R_{2}-\mu_{2}\right) \\
\left(R_{2}-\mu_{2}\right)\left(R_{1}-\mu_{1}\right) & \left(R_{2}-\mu_{2}\right)^{2}
\end{array}\right)\right] \\
& \quad=\left(\begin{array}{ll}
E\left[\left(R_{1}-\mu_{1}\right)^{2}\right] & E\left[\left(R_{1}-\mu_{1}\right)\left(R_{2}-\mu_{2}\right)\right] \\
E\left[\left(R_{2}-\mu_{2}\right)\left(R_{1}-\mu_{1}\right)\right] & E\left[\left(R_{2}-\mu_{2}\right)^{2}\right]
\end{array}\right) \\
& \quad=\left(\begin{array}{ll}
\operatorname{var}\left(R_{1}\right) & \operatorname{cov}\left(R_{1}, R_{2}\right) \\
\operatorname{cov}\left(R_{2}, R_{1}\right) & \operatorname{var}\left(R_{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right)=\boldsymbol{\Sigma}
\end{aligned}
$$

Portfolio return

$$
\begin{aligned}
R_{p, x} & =\mathbf{x}^{\prime} \mathbf{R}=\left(\begin{array}{lll}
x_{A} & x_{B} & x_{C}
\end{array}\right)\left(\begin{array}{l}
R_{A} \\
R_{B} \\
R_{C}
\end{array}\right) \\
& =x_{A} R_{A}+x_{B} R_{B}+x_{C} R_{C} \\
& =\mathbf{R}^{\prime} \mathbf{x}
\end{aligned}
$$

Portfolio expected return

$$
\begin{aligned}
\mu_{p, x} & =\mathbf{x}^{\prime} \mu=\left(\begin{array}{lll}
x_{A} & x_{B} & x_{X}
\end{array}\right)\left(\begin{array}{l}
\mu_{A} \\
\mu_{B} \\
\mu_{C}
\end{array}\right) \\
& =x_{A} \mu_{A}+x_{B} \mu_{B}+x_{C} \mu_{C} \\
& =\mu^{\prime} \mathbf{x}
\end{aligned}
$$

Excel formula

MMULT(transpose(xvec), muvec)
 $$
<\text { ctrl }>-<\text { shift }>-<\text { enter }>
$$

R formula

$$
\begin{aligned}
& \text { crossprod }(x, m u) \\
& t(x) \% * \% m u
\end{aligned}
$$

Portfolio variance

$$
\begin{aligned}
\sigma_{p, x}^{2} & =\operatorname{var}\left(\mathbf{x}^{\prime} \mathbf{R}\right)=E\left[\left(\mathbf{x}^{\prime} \mathbf{R}-\mathbf{x}^{\prime} \mu\right)^{2}\right]=E\left[\left(\mathbf{x}^{\prime}(\mathbf{R}-\mu)\right)^{2}\right] \\
& =E\left[\mathbf{x}^{\prime}(\mathbf{R}-\mu) \mathbf{x}^{\prime}(\mathbf{R}-\mu)\right]=E\left[\mathbf{x}^{\prime}(\mathbf{R}-\mu)(\mathbf{R}-\mu)^{\prime} \mathbf{x}\right]= \\
& =\mathbf{x}^{\prime} E\left[(\mathbf{R}-\mu)(\mathbf{R}-\mu)^{\prime}\right] \mathbf{x}=\mathbf{x}^{\prime} \mathbf{\Sigma} \mathbf{x} \\
& =\left(\begin{array}{ccc}
x_{A} & x_{B} & x_{C}
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{A}^{2} & \sigma_{A B} & \sigma_{A C} \\
\sigma_{A B} & \sigma_{B}^{2} & \sigma_{B C} \\
\sigma_{A C} & \sigma_{B C} & \sigma_{C}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right) \\
& =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+x_{C}^{2} \sigma_{C}^{2} \\
& +2 x_{A} x_{B} \sigma_{A B}+2 x_{A} x_{C} \sigma_{A C}+2 x_{B} x_{C} \sigma_{B C}
\end{aligned}
$$

Excel formulas

$$
\begin{aligned}
& \text { MMULT (TRANSPOSE(xvec) ,MMULT(sigma, xvec)) } \\
& \text { MMULT(MMULT(TRANSPOSE(xvec), sigma), xvec) } \\
& \quad<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{aligned}
$$

Note: $\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}=\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma}\right) \mathbf{x}=\mathbf{x}^{\prime}(\boldsymbol{\Sigma} \mathbf{x})$

R formulas

$$
t(x) \% * \% \text { sigma } \% * \% x
$$

Portfolio distribution

$$
R_{p, x} \sim N\left(\mu_{p, x}, \sigma_{p, x}^{2}\right)
$$

Covariance Between 2 Portfolio Returns

2 portfolios

$$
\begin{aligned}
& \mathbf{x}=\left(\begin{array}{l}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right), \mathbf{y}=\left(\begin{array}{l}
y_{A} \\
y_{B} \\
y_{C}
\end{array}\right) \\
& \mathbf{x}^{\prime} \mathbf{1}=1, \mathbf{y}^{\prime} \mathbf{1}=1
\end{aligned}
$$

Portfolio returns

$$
\begin{aligned}
& R_{p, x}=\mathbf{x}^{\prime} \mathbf{R} \\
& R_{p, y}=\mathbf{y}^{\prime} \mathbf{R}
\end{aligned}
$$

Covariance

$$
\begin{aligned}
\operatorname{cov}\left(R_{p, x}, R_{p, y}\right) & =\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{y} \\
& =\mathbf{y}^{\prime} \boldsymbol{\Sigma} \mathbf{x}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\operatorname{cov}\left(R_{p, x}, R_{p, y}\right) & =\operatorname{cov}\left(\mathbf{x}^{\prime} \mathbf{R}, \mathbf{y}^{\prime} \mathbf{R}\right) \\
& \left.\left.=E\left[\left(\mathbf{x}^{\prime} \mathbf{R}-\mathbf{x}^{\prime} \mu\right]\right)\left(\mathbf{y}^{\prime} \mathbf{R}-\mathbf{y}^{\prime} \mu\right]\right)\right] \\
& =E\left[\mathbf{x}^{\prime}(\mathbf{R}-\mu) \mathbf{y}^{\prime}(\mathbf{R}-\mu)\right] \\
& =E\left[\mathbf{x}^{\prime}(\mathbf{R}-\mu)(\mathbf{R}-\mu)^{\prime} \mathbf{y}\right] \\
& =\mathbf{x}^{\prime} E\left[(\mathbf{R}-\mu)(\mathbf{R}-\mu)^{\prime}\right] \mathbf{y} \\
& =\mathbf{x}^{\prime} \mathbf{\Sigma} \mathbf{y}
\end{aligned}
$$

Excel formula

MMULT(TRANSPOSE (xvec) , MMULT (sigma, yvec))
 MMULT(TRANSPOSE(yvec), MMULT (sigma, xvec))
 <ctrl>-<shift>-<enter>

R formula

$$
t(x) \% * \% \text { sigma } \% * \% y
$$

Bivariate Normal Distribution

Let X and Y be distributed bivariate normal. The joint pdf is given by

$$
\begin{gathered}
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X Y}^{2}}} \times \\
\exp \left\{-\frac{1}{2\left(1-\rho_{X Y}^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-\frac{2 \rho_{X Y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right]\right\}
\end{gathered}
$$

where $E[X]=\mu_{X}, E[Y]=\mu_{Y}, \operatorname{sd}(X)=\sigma_{X}, \operatorname{sd}(Y)=\sigma_{Y}$, and $\rho_{X Y}=$ $\operatorname{cor}(X, Y)$.

Define

$$
\mathbf{X}=\binom{X}{Y}, \mathbf{x}=\binom{x}{y}, \mu=\binom{\mu_{X}}{\mu_{Y}}, \mathbf{\Sigma}=\left(\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X Y} \\
\sigma_{X Y} & \sigma_{Y}^{2}
\end{array}\right)
$$

Then the bivariate normal distribution can be compactly expressed as

$$
f(\mathbf{x})=\frac{1}{2 \pi \operatorname{det}(\mathbf{\Sigma})^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}
$$

where

$$
\begin{aligned}
\operatorname{det}(\Sigma) & =\sigma_{X}^{2} \sigma_{Y}^{2}-\sigma_{X Y}^{2}=\sigma_{X}^{2} \sigma_{Y}^{2}-\sigma_{X}^{2} \sigma_{Y}^{2} \rho_{X Y}^{2} \\
& =\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho_{X Y}^{2}\right)
\end{aligned}
$$

We use the shorthand notation

$$
\mathbf{X} \sim N(\mu, \boldsymbol{\Sigma})
$$

Derivatives of Simple Matrix Functions

Result: Let \mathbf{A} be an $n \times n$ symmetric matrix, and let \mathbf{x} and \mathbf{y} be an $n \times 1$ vectors. Then

$$
\begin{gathered}
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{y}=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \mathbf{x}^{\prime} \mathbf{y} \\
\vdots \\
\frac{\partial}{\partial x_{n}} \mathbf{x}^{\prime} \mathbf{y}
\end{array}\right)=\mathbf{y}, \\
\frac{\partial}{\partial \mathbf{x}} \mathbf{A} \mathbf{x}=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}}(\mathbf{A x})^{\prime} \\
\vdots \\
\frac{\partial}{\partial x_{n}}(\mathbf{A} \mathbf{x})^{\prime}
\end{array}\right)=\mathbf{A}, \\
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \mathbf{x}^{\prime} \mathbf{A x} \\
\vdots \\
\frac{\partial}{\partial x_{n}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}
\end{array}\right)=2 \mathbf{A} \mathbf{x} .
\end{gathered}
$$

We will demonstrate these results with simple examples. Let

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), \mathbf{x}=\binom{x_{1}}{x_{2}}, \mathbf{y}=\binom{y_{1}}{y_{2}}
$$

For the first result we have

$$
\mathbf{x}^{\prime} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}
$$

Then

$$
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{y}=\binom{\frac{\partial}{\partial x_{1}} \mathbf{x}^{\prime} \mathbf{y}}{\frac{\partial}{\partial x_{2}} \mathbf{x}^{\prime} \mathbf{y}}=\binom{\frac{\partial}{\partial x_{1}}\left(x_{1} y_{1}+x_{2} y_{2}\right)}{\frac{\partial}{\partial x_{2}}\left(x_{1} y_{1}+x_{2} y_{2}\right)}=\binom{y_{1}}{y_{2}}=\mathbf{y}
$$

Next, consider the second result. Note that

$$
\mathbf{A} \mathbf{x}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a x_{1}+b x_{2}}{b x_{1}+c x_{2}}
$$

and

$$
(\mathbf{A} \mathbf{x})^{\prime}=\left(a x_{1}+b x_{2}, b x_{1}+c x_{2}\right)
$$

Then

$$
\frac{\partial}{\partial \mathbf{x}} \mathbf{A} \mathbf{x}=\binom{\frac{\partial}{\partial x_{1}}\left(a x_{1}+b x_{2}, b x_{1}+c x_{2}\right)}{\frac{\partial}{\partial x_{2}}\left(a x_{1}+b x_{2}, b x_{1}+c x_{2}\right)}=\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right)=\mathbf{A}
$$

Finally, consider the third result. We have

$$
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x_{1}}{x_{2}}=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
$$

Then

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x} & =\binom{\frac{\partial}{\partial x_{1}}\left(a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}\right)}{\frac{\partial}{\partial x_{2}}\left(a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}\right)}=\binom{2 a x_{1}+2 b x_{2}}{2 b x_{1}+2 c x_{2}} \\
& =2\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right)\binom{x_{1}}{x_{2}}=2 \mathbf{A} \mathbf{x}
\end{aligned}
$$

