Econ 424 Descriptive Statistics for Financial Time Series

Eric Zivot

January 26, 2015

Covariance Stationarity

$$\{\ldots, X_1, \ldots, X_T, \ldots\} = \{X_t\}$$

is a covariance stationary stochastic process, and each X_t is identically distributed with unknown pdf f(x).

Recall,

$$E[X_t] = \mu \text{ indep of } t$$

$$\operatorname{var}(X_t) = \sigma^2 \text{ indep of } t$$

$$\operatorname{cov}(X_t, X_{t-j}) = \gamma_j \text{ indep of } t$$

$$\operatorname{cor}(X_t, X_{t-j}) = \rho_j \text{ indep of } t$$

Observed Sample:

$$\{X_1 = x_1, \dots, X_T = x_T\} = \{x_t\}_{t=1}^T$$

are observations generated by the stochastic process

Descriptive Statistics

Data summaries (statistics) to describe certain features of the data, to learn about the unknown pdf, f(x), and to capture the observed dependencies in the data

Time Plots

Line plot of time series data with time/dates on horizontal axis

- Visualization of data uncover trends, assess stationarity and time dependence
- Spot unusual behavior
- Plotting multiple time series can reveal commonality across series

Histograms

Goal: Describe the shape of the distribution of the data $\{x_t\}_{t=1}^T$ Hisogram Construction:

1. Order data from smallest to largest values

2. Divide range into N equally spaced bins

 $[-|-|-|\cdots|-|-]$

- 3. Count number of observations in each bin
- 4. Create bar chart (optionally normalize area to equal 1)

R Functions

Function	Description	
hist()	compute histogram	
<pre>density()</pre>	compute smoothed histogram	

Note: The density() function computes a smoothed (kernel density) estimate of the unknown pdf at the point x using the formula

$$\hat{f}(x) = \frac{1}{Tb} \sum_{t=1}^{T} k\left(\frac{x - x_t}{b}\right)$$
$$k(\cdot) = \text{kernel function}$$
$$b = \text{ bandwidth (smoothing) parameter}$$

where $k(\cdot)$ is a pdf symmetric about zero (typically the standard normal distribution). See Ruppert Chapter 4 for details.

Empirical Quantiles/Percentiles

Percentiles:

For $\alpha \in [0, 1]$, the $100 \times \alpha^{th}$ percentile (empirical quantile) of a sample of data is the data value \hat{q}_{α} such that $\alpha \cdot 100\%$ of the data are less than \hat{q}_{α} .

Quartiles

 $\hat{q}_{.25} = \text{ first quartile}$ $\hat{q}_{.50} = \text{second quartile (median)}$ $\hat{q}_{.75} = \text{third quartile}$ $\hat{q}_{.75} - \hat{q}_{.25} = \text{interquartile range (IQR)}$

Function	Description
sort()	sort elements of data vector
min()	compute minimum value of data vector
max()	compute maximum value of data vector
<pre>range()</pre>	compute min and max of a data vector
quantile()	compute empirical quantiles
<pre>median()</pre>	compute median
IQR()	compute inter-quartile range
<pre>summary()</pre>	compute summary statistics

Historical Value-at-Risk

Let $\{R_t\}_{t=1}^T$ denote a sample of T simple monthly returns on an investment, and let W_0 be the initial value of an investment. For $\alpha \in (0, 1)$, the historical VaR $_{\alpha}$ is

$$W_0 \times \hat{q}^R_\alpha$$
$$\hat{q}^R_\alpha = \text{empirical } \alpha \cdot 100\% \text{ quantile of } \{R_t\}_{t=1}^T$$

Note: For continuously compounded returns $\{r_t\}_{t=1}^T$ use

$$W_0 \times (\exp(\hat{q}^r_{\alpha}) - 1)$$

 $\hat{q}^r_{\alpha} = \text{empirical } \alpha \cdot 100\% \text{ quantile of } \{r_t\}_{t=1}^T$

Sample Statistics

Plug-In Principle: Estimate population quantities using sample statistics

Sample Average (Mean)

$$\frac{1}{T}\sum_{t=1}^{T} x_t = \bar{x} = \hat{\mu}_x$$

Sample Variance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^2 = s_x^2 = \hat{\sigma}_x^2$$

Sample Standard Deviation

$$\sqrt{s_x^2} = s_x = \hat{\sigma}_x$$

Sample Skewness

$$\frac{1}{T-1}\sum_{t=1}^{T}(x_t-\bar{x})^3/s_x^3=\widehat{skew}$$

Sample Kurtosis

$$\frac{1}{T-1}\sum_{t=1}^{T}(x_t-\bar{x})^4/s_x^4 = \widehat{kurt}$$

Sample Excess Kurtosis

$$\widehat{kurt}$$
 – 3

R Functions

Function	Package	Description
<pre>mean()</pre>	base	compute sample mean
<pre>colMeans()</pre>	base	compute column means of matrix
var()	stats	compute sample variance
sd()	stats	compute sample standard deviation
<pre>skewness()</pre>	PerformanceAnalytics	compute sample skewness
kurtosis()	PerformanceAnalytics	compute sample excess kurtosis

Note: Use the R function apply(), to apply functions over rows or columns of a matrix or data.frame

Empirical Cumulative Distribution Function

Recall, the CDF of a random variable X is

$$F_X(x) = \Pr(X \le x)$$

The empirical CDF of a random sample is

$$\hat{F}_X(x) = \frac{1}{n} (\#x_i \le x)$$
$$= \frac{\text{number of } x_i \text{ values } \le x}{\text{sample size}}$$

How to compute and plot $\hat{F}_X(x)$ for a sample $\{x_1, \ldots, x_n\}$

- Sort data from smallest to largest values: $\{x_{(1)}, \ldots, x_{(n)}\}$ and compute $\hat{F}_X(x)$ at these points
- Plot $\hat{F}_X(x)$ against sorted data $\{x_{(1)}, \ldots, x_{(n)}\}$
- Use the R function ecdf()

Note: $x_{(1)}, \ldots, x_{(n)}$ are called the *order statistics*. In particular, $x_{(1)} = \min(x_1, \ldots, x_n)$ and $x_{(n)} = \max(x_1, \ldots, x_n)$.

Quantile-Quantile (QQ) Plots

A QQ plot is useful for comparing your data with the quantiles of a distribution (usually the normal distribution) that you think is appropriate for your data. You interpret the QQ plot in the following way:

- If the points fall close to a straight line, your conjectured distribution is appropriate
- If the points do not fall close to a straight line, your conjectured distribution is not appropriate and you should consider a different distribution

Function	Package	Description
qqnorm()	stats	QQ-plot against normal distribution
qqline()	stats	draw straight line on QQ-plot
qqPlot()	car	QQ-plot against specified distribution

Outliers

- Extremely large or small values are called "outliers"
- Outliers can greatly influence the values of common descriptive statistics. In particular, the sample mean, variance, standard deviation, skewness and kurtosis
- Percentile measures are more robust to outliers: outliers do not greatly influence these measures (e.g. median instead of mean; IQR instead of SD)

IQR (interquartile range) - outlier robust measure of spread

$$IQR = q_{.75} - q_{.25}$$

Moderate Outlier

$$egin{aligned} \hat{q}_{.75} + 1.5 \cdot IQR &< x < \hat{q}_{.75} + 3 \cdot IQR \ \hat{q}_{.25} - 3 \cdot IQR &< x < \hat{q}_{.25} - 1.5 \cdot IQR \end{aligned}$$

Extreme Outlier

$$\begin{aligned} x &> \hat{q}_{.75} + \mathbf{3} \cdot IQR \\ x &< \hat{q}_{.25} - \mathbf{3} \cdot IQR \end{aligned}$$

Boxplots

A box plot displays the locations of the basic features of the distribution of one-dimensional data—the median, the upper and lower quartiles, outer fences that indicate the extent of your data beyond the quartiles, and outliers, if any.

Function	Package	Description
<pre>boxplot()</pre>	graphics	box plots for multiple series
<pre>chart.Boxplot()</pre>	PerformanceAnalytics	box plots for asset returns

Bivariate Descriptive Statistics

$$\{\dots, (X_1, Y_1), (X_2, Y_2), \dots (X_T, Y_T), \dots\} = \{(X_t, Y_t)\}$$

covariance stationary bivariate stochastic process with realized values
$$\{(x_1, y_1), (x_2, y_2), \dots (x_T, y_T)\} = \{(x_t, y_t)\}_{t=1}^T$$

Scatterplot

XY plot of bivariate data R functions: plot(), pairs() Sample Covariance

$$\frac{1}{T-1}\sum_{t=1}^T (x_t - \bar{x})(y_t - \bar{y}) = s_{xy} = \hat{\sigma}_{xy}$$

Sample Correlation

$$\frac{s_{xy}}{s_x s_y} = r_{xy} = \hat{\rho}_{xy}$$

Function	Package	Description
var()	stats	compute sample variance-covariance matrix
cov()	stats	compute sample variance-covariance matrix
cor()	stats	compute sample correlation matrix

Time Series Descriptive Statistics

Sample Autocovariance

$$\hat{\gamma}_j = \frac{1}{T-1} \sum_{t=j+1}^T (x_t - \bar{x})(x_{t-j} - \bar{x}), \ j = 1, 2, \dots$$

Sample Autocorrelation

$$\hat{\rho}_j = \frac{\hat{\gamma}_j}{\hat{\sigma}^2}, \ j = 1, 2, \dots$$

Sample Autocorrelation Function (SACF)

Plot $\hat{\rho}_j$ against j

Function	Package	Description
acf()	stats	compute and plot
	Stats	sample autocorrelations
chart.ACF()	PerformanceAnalytics	plot sample autocorrelations
<pre>chart.ACFplus()</pre>	PerformanceAnalytics	plot sample autocorrelations