Econ 424 Time Series Concepts

Eric Zivot

January 20 2015

Time Series Processes

Stochastic (Random) Process

$$\{\ldots, Y_1, Y_2, \ldots, Y_t, Y_{t+1}, \ldots\} = \{Y_t\}_{t=-\infty}^{\infty}$$

sequence of random variables indexed by time

Observed time series of length ${\boldsymbol{T}}$

$$\{Y_1 = y_1, Y_2 = y_2, \dots, Y_T = y_T\} = \{y_t\}_{t=1}^T$$

Stationary Processes

- Intuition: {Y_t} is stationary if all aspects of its behavior are unchanged by shifts in time
- A stochastic process {Y_t}[∞]_{t=1} is strictly stationary if, for any given finite integer r and for any set of subscripts t₁, t₂, ..., t_r the joint distribution of

$$(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_r})$$

depends only on $t_1 - t, t_2 - t, \ldots, t_r - t$ but not on t.

Remarks

- 1. For example, the distribution of (Y_1, Y_5) is the same as the distribution of (Y_{12}, Y_{16}) .
- 2. For a strictly stationary process, Y_t has the same mean, variance (moments) for all t.
- 3. Any function/transformation $g(\cdot)$ of a strictly stationary process, $\{g(Y_t)\}$ is also strictly stationary. E.g., if $\{Y_t\}$ is strictly then $\{Y_t^2\}$ is strictly stationary.

Covariance (Weakly) Stationary Processes $\{Y_t\}$:

- $E[Y_t] = \mu$ for all t
- $\operatorname{var}(Y_t) = \sigma^2$ for all t
- $\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j$ depends on j and not on t

Note 1: $cov(Y_t, Y_{t-j}) = \gamma_j$ is called the j-lag *autocovariance* and measures the direction of linear time dependence

Note 2: A stationary process is covariance stationary if $var(Y_t) < \infty$ and $cov(Y_t, Y_{t-j}) < \infty$

Autocorrelations

$$\mathsf{corr}(Y_t,Y_{t-j})=
ho_j=rac{\mathsf{cov}(Y_t,Y_{t-j})}{\sqrt{\mathsf{var}(Y_t)\mathsf{var}(Y_{t-j})}}=rac{\gamma_j}{\sigma^2}$$

Note 1: corr $(Y_t, Y_{t-j}) = \rho_j$ is called the j-lag *autocorrelation* and measures the direction and strength of linear time dependence

Note 2: By stationarity $var(Y_t) = var(Y_{t-j}) = \sigma^2$.

Autocorrelation Function (ACF): Plot of ρ_j against j

Example: Gaussian White Noise Process

$$Y_t \sim \text{iid } N(0, \sigma^2) \text{ or } Y_t \sim GWN(0, \sigma^2)$$
$$E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$$
$$Y_t \text{ independent of } Y_s \text{ for } t \neq s$$
$$\Rightarrow \text{cov}(Y_t, Y_{t-s}) = 0 \text{ for } t \neq s$$

Note: "iid" = "independent and identically distributed".

Here, $\{Y_t\}$ represents random draws from the same $N(0, \sigma^2)$ distribution

Example: Independent White Noise Process

$$Y_t \sim \text{iid } (0, \sigma^2) \text{ or } Y_t \sim IWN(0, \sigma^2)$$

 $E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$
 $Y_t \text{ independent of } Y_s \text{ for } t \neq s$

Here, $\{Y_t\}$ represents random draws from the same distribution. However, we don't specify exactly what the distribution is - only that it has mean zero and variance σ^2 . For example, Y_t could be iid Student's t with variance equal to σ^2 . This is like GWN but with fatter tails (i.e., more extreme observations).

Example: Weak White Noise Process

$$Y_t \sim WN(0, \sigma^2)$$

 $E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$
 $\operatorname{cov}(Y_t, Y_s) = 0 \text{ for } t \neq s$

Here, $\{Y_t\}$ represents an uncorrelated stochastic process with mean zero and variance σ^2 . Recall, the uncorrelated assumption does not imply independence. Hence, Y_t and Y_s can exhibit non-linear dependence (e.g. Y_t^2 can be correlated with Y_s^2)

Nonstationary Processes

Defn: A nonstationary stochastic process is a stochastic process that is not covariance stationary.

Note: A non-stationary process violates one or more of the properties of covariance stationarity.

Example: Deterministically trending process

$$Y_t = \beta_0 + \beta_1 t + \varepsilon_t, \ \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$$

 $E[Y_t] = \beta_0 + \beta_1 t \text{ depends on } t$

Note: A simple detrending transformation yield a stationary process:

$$X_t = Y_t - \beta_0 - \beta_1 t = \varepsilon_t$$

Example: Random Walk

$$Y_t = Y_{t-1} + \varepsilon_t, \ \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2), \ Y_0 \text{ is fixed}$$

= $Y_0 + \sum_{j=1}^t \varepsilon_j \Rightarrow \operatorname{var}(Y_t) = \sigma_{\varepsilon}^2 \times t \text{ depends on } t$

Note: A simple detrending transformation yield a stationary process:

$$\Delta Y_t = Y_t - Y_{t-1} = \varepsilon_t$$

Time Series Models

Defn: A time series model is a probability model to describe the behavior of a stochastic process $\{Y_t\}$.

Note: Typically, a time series model is a simple probability model that describes the time dependence in the stochastic process $\{Y_t\}$.

Moving Average (MA) Processes

Idea: Create a stochastic process that only exhibits one period linear time dependence

MA(1) Model

$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}, \quad -\infty < \theta < \infty$$

$$\varepsilon_t \sim iid \ N(\mathbf{0}, \sigma_{\varepsilon}^2) \text{ (i.e., } \varepsilon_t \sim GWN(\mathbf{0}, \sigma_{\varepsilon}^2)\text{)}$$

$$\theta \text{ determines the magnitude of time dependence}$$

Properties

$$E[Y_t] = \mu + E[\varepsilon_t] + \theta E[\varepsilon_{t-1}]$$
$$= \mu + \mathbf{0} + \mathbf{0} = \mu$$

$$\operatorname{var}(Y_t) = \sigma^2 = E[(Y_t - \mu)^2]$$

= $E[(\varepsilon_t + \theta \varepsilon_{t-1})^2]$
= $E[\varepsilon_t^2] + 2\theta E[\varepsilon_t \varepsilon_{t-1}] + \theta^2 E[\varepsilon_{t-1}^2]$
= $\sigma_{\varepsilon}^2 + 0 + \theta^2 \sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^2 (1 + \theta^2)$
$$\operatorname{cov}(Y_t, Y_{t-1}) = \gamma_1 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})]$$

= $E[\varepsilon_t \varepsilon_{t-1}] + \theta E[\varepsilon_t \varepsilon_{t-2}]$
+ $\theta E[\varepsilon_t^2] + \theta^2 E[\varepsilon_{t-1}\varepsilon_{t-2}]$
= $0 + 0 + \theta \sigma_{\varepsilon}^2 + 0 = \theta \sigma_{\varepsilon}^2$

Furthermore,

$$cov(Y_t, Y_{t-2}) = \gamma_2 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-2} + \theta \varepsilon_{t-3})]$$

= $E[\varepsilon_t \varepsilon_{t-2}] + \theta E[\varepsilon_t \varepsilon_{t-3}]$
+ $\theta E[\varepsilon_{t-1} \varepsilon_{t-2}] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-3}]$
= $0 + 0 + 0 + 0 = 0$

Similar calculation show that

$$\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j = 0 \text{ for } j > 1$$

Autocorrelations

$$\rho_{1} = \frac{\gamma_{1}}{\sigma^{2}} = \frac{\theta \sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2}(1+\theta^{2})} = \frac{\theta}{(1+\theta^{2})}$$
$$\rho_{j} = \frac{\gamma_{j}}{\sigma^{2}} = 0 \text{ for } j > 1$$

Note:

$$\rho_1 = 0 \text{ if } \theta = 0$$

 $\rho_1 > 0 \text{ if } \theta > 0$

 $\rho_1 < 0 \text{ if } \theta < 0$

Result: MA(1) is covariance stationary for any value of θ

Example: MA(1) model for overlapping returns

Let r_t denote the 1-month cc return and assume that

$$r_t \sim {\sf iid} \; N(\mu_r, \sigma_r^2)$$

Consider creating a monthly time series of 2-month cc returns using

$$r_t(2) = r_t + r_{t-1}$$

These 2-month returns observed monthly overlap by 1 month

$$r_t(2) = r_t + r_{t-1}$$

$$r_{t-1}(2) = r_{t-1} + r_{t-2}$$

$$r_{t-2}(2) = r_{t-2} + r_{t-3}$$

Claim: The stochastic process $\{r_t(2)\}$ follows a MA(1) process

Autoregressive (AR) Processes

Idea: Create a stochastic process that exhibits multi-period geometrically decaying linear time dependence

AR(1) Model (mean-adjusted form)

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t, \quad -1 < \phi < 1$$
$$\varepsilon_t \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$$

Result: AR(1) model is covariance stationary provided $-1 < \phi < 1$

Properties

$$E[Y_t] = \mu$$

$$\operatorname{var}(Y_t) = \sigma^2 = \sigma_{\varepsilon}^2 / (1 - \phi^2)$$

$$\operatorname{cov}(Y_t, Y_{t-1}) = \gamma_1 = \sigma^2 \phi$$

$$\operatorname{corr}(Y_t, Y_{t-1}) = \rho_1 = \gamma_1 / \sigma^2 = \phi$$

$$\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j = \sigma^2 \phi^j$$

$$\operatorname{corr}(Y_t, Y_{t-j}) = \rho_j = \gamma_j / \sigma^2 = \phi^j$$

Note: Since $|\phi| < 1$

$$\lim_{j\to\infty}\rho_j=\phi^j=\mathbf{0}$$

AR(1) Model (regression model form)

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t \Rightarrow$$
$$Y_t = \mu - \phi\mu + \phi Y_{t-1} + \varepsilon_t$$
$$= c + \phi Y_{t-1} + \varepsilon_t$$

where

$$c = (1 - \phi)\mu \Rightarrow \mu = \frac{c}{1 - \phi}$$

Remarks:

• Regression model form is convenient for estimation by linear regression

The AR(1) model and Economic and Financial Time Series

The AR(1) model is a good description for the following time series

- Interest rates on U.S. Treasury securities, dividend yields, unemployment
- Growth rate of macroeconomic variables
 - Real GDP, industrial production, productivity
 - Money, velocity, consumer prices
 - Real and nominal wages