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Estimating the Single Index Model

Sharpe’s Single (SI) model:

Rt =oa; +B;Rye +€4¢, t=1,...,T
eit ~ iid N(0,02;), Rare ~ iid N(ups, o)
cov(Rjpst,€55) = 0 for t, s
E[Ry] = pi = o + Bipps, var(Ry) = Bioy, + o2,
a; = Wi — Bilbpm
5, — cov(Rit, Rare) _ oim

var(Rst) o4

Main parameters to estimate: «;, ; and Ug,i



Plug-in Principle Estimators

Plug-in principle: Estimate model parameters using sample statistics

A O‘M
Bi = =5
OM
, T
Gine = ——= > _(Rit — i) (Rare — Boar)
T —1 i1

X 1 & X
551 = = >_ (Rt — fing)?
1 T
nN.oo— R,
127 Tt:Zl it

1 T
fnr==>_ R
=



Plug-in principle estimator for a; = u; — Bisps -
&y = [ti — Biltp
Plug-in principle estimator of €;; :

Eit = Ry — & — BiRpyn

Plug-in principle estimator for o7 ; = var(g;t) :
T
62, = — 3" &2
€9 —
I'—2=
1 T

= T2 <Rz't — Oy — BiRMt)z



Least Squares Estimation of S| Model Parameters

Idea: S| model postulates a linear relationship between R;; and Rj;; with
intercept «; and slope (3; :

Ry = oy + BiRpge + €5t

Estimate «; and (3; by finding the “best fitting line” to the scatterplot of data

e Problem: How to define the “best fitting line"?

e Least Squares solution: minimize the sum of squared residuals (errors)



Least Squares Algorithm

&; = initial guess for «;
BZ- — initial guess for j3;
Ry = &; + 5@RM1§ = fitted line
&y = Ry — Ry )
= Ry — (&; + B; Rps¢) = residual
Determine the best fitting line by minimizing the Sum of Squared Residuals
(SSR)

SSR(OzZ,BZ) = Z 5zt

— Z (Rz't — Q — Bz’RMt>2
t=1



That is, the least squares estimates solve

T
. ~ ) A ) 2
min SSR(&;, B;) = > (Rit — Qy — ﬁz‘RMt>

O"i)ﬁi t=1

Note: Because SSR(&i,Bi) is a quadratic function in &;, 3;, the first order
conditions for a minimum give two linear equations in two unknowns and so
there is an analytic solution to the minimization problem that we can find using

calculus.



Calculus Solution

The first order conditions for a minimum are

OSSR(6;, B; T o L
0= 3(A : - 2 > (Rit — & — BiRyt) = =2 ) &t
OSSR(4., f; T . L
0= (80 5i) _ 5 > (Rit — &; — BiRy) Ry = —2 ) Eit Ry
0B; —1 t=1

These are two linear equations in two unknowns. Solving for &; and (3; gives

PaS

O = fl; — Biflpg

which are exactly the plug-in principle estimators!
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Estimators for o

Utilize plug-in principle

; and R — square

Eit = Ry — & — Bi R

2

Oci

Oc,i

1 X,

= 5 2. Cit

I'—2/3

\/62, = SER

standard error of regression



Remarks
® 5. typical magnitude of residual = standard error of regression (SER)
e Divide by T" — 2 to get unbiased estimate of Jgi

e ' — 2 = degrees of freedom = sample size - number of estimated para-
meters («; and 5;)



Recall

= % of variability due to market

Estimate using plug-in principle




Least Squares Estimation Using R

R command
1m - linear model estimation

Syntax

Im.fit = 1m(y~“x,data=my.data.df)

my.data.df = data frame with columns named y and x

Note: y~x is formula notation in R. It translates as the linear model

y=a-+ Bz +¢

For multiple regression, the notation y~x1+x2 implies

Y=o+ B1r1 + PBrxo + €



Important method functions for Im objects

summary () :
plot():
residuals():
fitted():
coef ():

confint():

summarize model fit

plot results

extract residuals

extract fitted values

extract estimated coefficients

extract confidence intervals



Least Squares Estimates are Maximum Likelihood Estimates Under Nor-
mal Distribution Assumption

Riyy = o + BiRyg + €3, t=1,...,T
eit ~ iid N(0,02,), Ry ~ iid N(MM70]2\4)
Then

Rit|Rpre ~ N(oy + BB, Uazz')

F(Ritl Rary) = (2m02,;) 71 2 exp (2 > (Rit — aﬁﬁiRMtF)

€’L

In L(O|R, R ;) = TT In(27) — I In(ae ;)

202 Z(th a; + BiRyst)?

£,1 t=



Maximizing In L(0|R, R ) with respect to 6 = (¢, 5, agi ! gives the least
squares estimates!



Statistical Properties of Least Squares Estimates

Assuming the S| model generates the observed data, the estimators
5 B: and &2 .
&;, B; and 67 ;

are random variables.

Properties

® &, (3; and 6?77; are unbiased estimators

El&;] = o4

E[B] = B;

A2 1 2
E[Us,i. — O¢




e Analytic standard errors are available for SE(&;) and SE(5;)

- & 1 L

SE ~ — 6,7, . = 2 : R2
(aZ) T . 3]2\4 \thl Mt

SE(B;) = —=

These are routinely reported in standard regression ouput (e.g. by R
summary command)

- S/E(&Z) and S/\E(BZ) are smaller the smaller is 6, ;

— SE(;) is smaller the larger is 6]2\4

- S/\E(&z) and S/\E(BAZ) — 0 as T gets large = &; and [3; are consistent
estimators



e Standard errors for 6577;, Oc; or R—square can be computed using the

bootstrap

e For T large enough, the central limit theorem (CLT) tells us that
&; ~ N(aj, SE(4;)%)
Bi ~ N(B:, SE(5:)?)

e Approximate 95% confidence intervals

&; £+ 2 - SE(&;)
B; =2 - SE(5;)



S| Model Using Matrix Algebra

Ry = a; + B; Ry +e4¢, t=1,...,T

Stack over observationst =1,...,T
Rjj 1 R
: =qa;| ¢+ | +05; : +
Rt 1 Ryt
or

Ri:ai-l—l—ﬁi-RM—FEi:(l RM)(

= Xy; + ¢
X=(1 Rar )= ( 5
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Recall the least squares normal equations

OSSR(&y;, B; I .
0= a(A i) _ —2) (Rit — &; — BiRpst)
R t=1
OSSR(&;, 3; I .
0= (A 0Bi) _ > (Rit — &; — BiRare) Ry
85@' t=1

Using matrix algebra these equations are

( >Ry >:< T thleMt><<§zz->
S RyRyy S Ry S R%m Bi



Equivalently,
1'R; o 11 1'Ry, (sz'
R/R; |  \ 'Ry R)Ry Bi

X'R; = X'X%;

or

Solving for 4; gives the least squares estimates

5 = (X'X) T X'R,



Estimating SI Model Covariance Matrix

Recall, in the SI model

Y =0%,86 +D

2
b1 Oz 1
£ = : , D= 0
Bn 0)
Estimate X using plug-in principle
S =6%,86 +D
where
A B A 33,1
B=| : |.D=| o
Bn 0



Single Index Model and Portfolio Theory

|dea: Use estimated S| model covariance matrix instead of sample covariance

matrix in forming minimum variance portfolios:

mxin x'$x s.t. x'fi = pp.0 and x'1 =1

> =6%,86 +D

ft=sample means



Hypothesis Testing in SI Model

Single Index Model and Assumptions

Rit = a; + Bi Ryt + €4t
cov(Rpss,€i4) = 0, cov(ejt, €¢) =0, cov(eit, g54—5) =0
Ry ~ iid N(pag, o5y)
eit ~ id N (0,02 ;)

gy By M 012\4, agﬂ- are constant over time



Hypothesis Tests of Interest

e Tests on Coefficients (ay; and 3;)

e Tests on Model Assumptions and Residuals
— Normality of returns and residuals

— No autocorrelation in returns and residuals



Hypotheses of Interest: Coefficients

e Basic significance test

Holﬁi:OVS. Hliﬁi#O

e Test for specific value

Ho: B; = B} vs. Hy: B; = 3}

e Test of constant parameters

Hy : B; is constant over entire sample

Hq : B; changes in some sub-sample



Basic significance test

Holﬁz':OVS. leﬁi;éo
Test statistics: t-statistics

B; —0 B;

th = ———— = ——
P=0" SE(;)  SE(G:)

Intuition:
o If [t5._g| ~ O then B; =~ 0, and Hy : 8; = 0 should not be rejected

o If [tg.—o| > 2, say, then B; more than 2 values of SE(3;) away from 0.
This is very unlikely if 8; = 0, so Hg : 8; = 0 should be rejected.



Distribution of test statistics under Hj

Under the assumptions of the SI model, and Hgp : 5; = 0

Val

/\573
SE(B;)

tog—0 = ~tp_2

where

tT_» = Student t distribution with
T — 2 degrees of freedom (d.f.)



Remarks:

e t7_»5 is bell-shaped and symmetric about zero (like normal)

e d.f. = sample size - number of estimated parameters. In S| model there
are two estimated parameters («; and 3;)

e Degrees of freedom determines kurtosis (tail thickness)

df. =T —2 <10, kurt(tp_p) >> 3
df.=T —2> 60, kurt(tp_s) =~ 3



e For T"> 60, t;_o ~ N(0,1). Therefore, for T' > 60

Bi
= Sy Y



Test for specific value

Hg : B; = B0 vs. Hy : B; # Bio
Test statistics: t-statistics

0= Bz /8’1,0
"6=0 = SE(,)

Intuition:
o If |t5i=5io| ~ 0 then BZ ~ B;0, and Hq : B; = B;o should not be rejected

o If [tg._g,| > 2, say, then B; more than 2 values of SE(8;) away from
Bi0- This is very unlikely if 8; = B0, so Hg : 8; = B0 should be rejected.



Residual Diagnostics

e Time plots of actual values, fitted values and residuals

e Histogram of residuals ;3 = R;t — a; — Bi Ry

e SACF of residuals



Diagnostic for constant parameters: rolling Regression

ldea: Compute estimates of «; and 3; from S| model over rolling windows of
length n < T’

Rit(n) = a;(n) + Bi(n)Rppe(n) + €ir(n)

If &;(n), B;(n) are roughly constant over the rolling windows then the hypoth-
esis that «; and 3; are constant is supported by the data.



