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Estimating the Single Index Model

Sharpe’s Single (SI) model:
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Main parameters to estimate:   and 2



Plug-in Principle Estimators

Plug-in principle: Estimate model parameters using sample statistics
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Plug-in principle estimator for  =  −  :
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Least Squares Estimation of SI Model Parameters

Idea: SI model postulates a linear relationship between  and  with
intercept  and slope  :

 =  +  + 

Estimate  and  by finding the “best fitting line” to the scatterplot of data

• Problem: How to define the “best fitting line”?

• Least Squares solution: minimize the sum of squared residuals (errors)



Least Squares Algorithm

̂ = initial guess for 
̂ = initial guess for 
̂ = ̂ + ̂ = fitted line
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=  − (̂ + ̂) = residual

Determine the best fitting line by minimizing the Sum of Squared Residuals
(SSR)
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That is, the least squares estimates solve
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Note: Because SSR(̂ ̂) is a quadratic function in ̂ ̂ the first order
conditions for a minimum give two linear equations in two unknowns and so
there is an analytic solution to the minimization problem that we can find using
calculus.



Calculus Solution

The first order conditions for a minimum are
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These are two linear equations in two unknowns. Solving for ̂ and ̂ gives

̂ = ̂ − ̂̂

̂ =
̂
̂2

which are exactly the plug-in principle estimators!



Estimators for 2 and − 

Utilize plug-in principle
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Remarks

• ̂ typical magnitude of residual = standard error of regression (SER)

• Divide by  − 2 to get unbiased estimate of 2

•  − 2 = degrees of freedom = sample size - number of estimated para-
meters ( and )



Recall
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Least Squares Estimation Using R

R command

lm - linear model estimation

Syntax

lm.fit = lm(y~x,data=my.data.df)

my.data.df = data frame with columns named y and x

Note: y~x is formula notation in R. It translates as the linear model

 = + + 

For multiple regression, the notation y~x1+x2 implies

 = + 11 + 22 + 



Important method functions for lm objects

summary(): summarize model fit

plot(): plot results

residuals(): extract residuals

fitted(): extract fitted values

coef(): extract estimated coefficients

confint(): extract confidence intervals



Least Squares Estimates are Maximum Likelihood Estimates Under Nor-
mal Distribution Assumption
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Maximizing ln(|RR) with respect to  = (  
2
)

0 gives the least
squares estimates!



Statistical Properties of Least Squares Estimates

Assuming the SI model generates the observed data, the estimators
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are random variables.

Properties

• ̂ ̂ and ̂2 are unbiased estimators
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• Analytic standard errors are available for cSE(̂) and cSE(̂)
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These are routinely reported in standard regression ouput (e.g. by R
summary command)

— cSE(̂) and cSE(̂) are smaller the smaller is ̂
— cSE(̂) is smaller the larger is ̂2
— cSE(̂) and cSE(̂) → 0 as  gets large ⇒ ̂ and ̂ are consistent
estimators



• Standard errors for ̂2 ̂ or −square can be computed using the
bootstrap

• For  large enough, the central limit theorem (CLT) tells us that

̂ ∼ (
cSE(̂)2)

̂ ∼ (
cSE(̂)2)

• Approximate 95% confidence intervals

̂ ± 2 · cSE(̂)
̂ ± 2 · cSE(̂)



SI Model Using Matrix Algebra
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Recall the least squares normal equations
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Estimating SI Model Covariance Matrix

Recall, in the SI model
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Single Index Model and Portfolio Theory

Idea: Use estimated SI model covariance matrix instead of sample covariance
matrix in forming minimum variance portfolios:

min
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Hypothesis Testing in SI Model

Single Index Model and Assumptions
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Hypothesis Tests of Interest

• Tests on Coefficients ( and )

• Tests on Model Assumptions and Residuals

— Normality of returns and residuals

— No autocorrelation in returns and residuals



Hypotheses of Interest: Coefficients

• Basic significance test

0 :  = 0 vs. 1 :  6= 0

• Test for specific value

0 :  = 0 vs. 1 :  = 0

• Test of constant parameters

0 :  is constant over entire sample

1 :  changes in some sub-sample



Basic significance test

0 :  = 0 vs. 1 :  6= 0

Test statistics: t-statistics

=0 =
̂ − 0d(̂) =

̂d(̂)
Intuition:

• If |=0| ≈ 0 then ̂ ≈ 0 and 0 :  = 0 should not be rejected

• If |=0|  2, say, then ̂ more than 2 values of d(̂) away from 0

This is very unlikely if  = 0 so 0 :  = 0 should be rejected.



Distribution of test statistics under 0

Under the assumptions of the SI model, and 0 :  = 0

=0 =
̂d(̂) ∼ −2

where

−2 = Student t distribution with

 − 2 degrees of freedom (d.f.)



Remarks:

• −2 is bell-shaped and symmetric about zero (like normal)

• d.f. = sample size - number of estimated parameters. In SI model there
are two estimated parameters ( and )

• Degrees of freedom determines kurtosis (tail thickness)

d.f. =  − 2  10, (−2)  3

d.f. =  − 2  60 (−2) ≈ 3



• For  ≥ 60 −2 ∼ (0 1). Therefore, for  ≥ 60

=0 =
̂d(̂) ∼ (0 1)



Test for specific value

0 :  = 0 vs. 1 :  6= 0

Test statistics: t-statistics

=0 =
̂ − 0d(̂)

Intuition:

• If |=0| ≈ 0 then ̂ ≈ 0 and 0 :  = 0 should not be rejected

• If |=0|  2, say, then ̂ more than 2 values of d(̂) away from
0 This is very unlikely if  = 0 so 0 :  = 0 should be rejected.



Residual Diagnostics

• Time plots of actual values, fitted values and residuals

• Histogram of residuals ̂ =  −  − 

• SACF of residuals



Diagnostic for constant parameters: rolling Regression

Idea: Compute estimates of  and  from SI model over rolling windows of
length   

() = () + ()() + ()

If ̂() ̂() are roughly constant over the rolling windows then the hypoth-
esis that  and  are constant is supported by the data.


