Econ 424/Amath 462 Hypothesis Testing in the CER Model

Eric Zivot

July 23, 2013

Hypothesis Testing

1. Specify hypothesis to be tested

 H_0 : null hypothesis versus. H_1 : alternative hypothesis

2. Specify significance level of test

level = $\Pr(\text{Reject } H_0 | H_0 \text{ is true})$

- 3. Construct test statistic, T, from observed data
- 4. Use test statistic T to evaluate data evidence regarding H_0 |T| is big \Rightarrow evidence against H_0 |T| is small \Rightarrow evidence in favor of H_0

Decide to reject H_0 at specified significance level if value of T falls in the rejection region

```
T \in rejection region \Rightarrow reject H_0
```

Usually the rejection region of T is determined by a critical value, cv, such that

 $|T| > cv \Rightarrow \text{reject } H_0$ $|T| \le cv \Rightarrow \text{ do not reject } H_0$

Decision Making and Hypothesis Tests

	Reality	
Decision	H_0 is true	H_0 is false
Reject H ₀	Type I error	No error
Do not reject H_0	No error	Type II error

Significance Level of Test

level = $Pr(Type \ I \ error)$ $Pr(Reject \ H_0|H_0 \ is \ true)$

Goal: Constuct test to have a specified small significance level

level = 5% or level = 1%

Power of Test

1 - Pr(Type II error)= Pr(Reject $H_0|H_0$ is false)

Goal: Construct test to have high power

Problem: Impossible to simultaneously have level \approx 0 and power \approx 1. As level \rightarrow 0 power also \rightarrow 0.

Hypothesis Testing in CER Model

$$\begin{aligned} r_{it} &= \mu_i + \epsilon_{it} \quad t = 1, \cdots, T; \quad i = 1, \cdots N \\ \epsilon_{it} &\sim \text{iid } N(0, \sigma_i^2) \\ \text{cov}(\epsilon_{it}, \ \epsilon_{jt}) &= \sigma_{ij}, \ \text{cor}(\epsilon_{it}, \ \epsilon_{jt}) = \rho_{ij} \\ \text{cov}(\epsilon_{it}, \ \epsilon_{js}) &= 0 \quad t \neq s, \text{ for all } i, j \end{aligned}$$

• Test for specific value

$$H_0: \mu_i = \mu_i^0 \text{ vs. } H_1: \mu_i \neq \mu_i^0$$
$$H_0: \sigma_i = \sigma_i^0 \text{ vs. } H_1: \sigma_i \neq \sigma_i^0$$
$$H_0: \rho_{ij} = \rho_{ij}^0 \text{ vs. } H_1: \rho_{ij} \neq \rho_{ij}^0$$

• Test for sign

$$H_0: \mu_i = 0$$
 vs. $H_1: \mu_i > 0$ or $\mu_i < 0$
 $H_0: \rho_{ij} = 0$ vs. $H_1: \rho_{ij} > 0$ or $\rho_{ij} < 0$

• Test for normal distribution

$$H_0: r_{it} \sim {\sf iid} \ N(\mu_i, \sigma_i^2) \ H_1: r_{it} \sim {\sf not normal}$$

• Test for no autocorrelation

$$H_0: \rho_j = \operatorname{corr}(r_{it}, r_{i,t-j}) = 0, \ j > 1$$
$$H_1: \rho_j = \operatorname{corr}(r_{it}, r_{i,t-j}) \neq 0 \text{ for some } j$$

• Test of constant parameters

 $H_0: \mu_i, \sigma_i \text{ and } \rho_{ij} \text{ are constant over entire sample}$ $H_1: \mu_i \sigma_i \text{ or } \rho_{ij} \text{ changes in some sub-sample}$

Definition: Chi-square random variable and distribution

Let Z_1, \ldots, Z_q be iid N(0, 1) random variables. Define

$$X = Z_1^2 + \dots + Z_q^2$$

Then

$$X \sim \chi^2(q)$$

q = degrees of freedom (d.f.)

Properties of $\chi^2(q)$ distribution

$$X > 0$$

 $E[X] = q$
 $\chi^2(q) \rightarrow \text{normal as } q \rightarrow \infty$

R functions

rchisq(): simulate data
dchisq(): compute density
pchisq(): compute CDF
qchisq(): compute quantiles

Definition: Student's t random variable and distribution with q degrees of freedom

$$Z \sim N(0, 1), \ X \sim \chi^2(q)$$

 $Z \text{ and } X \text{ are independent}$
 $T = \frac{Z}{\sqrt{X/q}} \sim t_q$
 $q = \text{degrees of freedom (d.f.)}$

Properties of t_q distribution:

$$\begin{split} E[T] &= 0\\ \mathsf{skew}(T) &= 0\\ \mathsf{kurt}(T) &= \frac{3q-6}{q-4}, \ q > 4\\ T &\to N(0,1) \text{ as } q \to \infty \ (q \ge 60) \end{split}$$

R functions

rt(): simulate data
dt(): compute density
pt(): compute CDF
qt(): compute quantiles

Test for Specific Coefficient Value

$$H_0: \mu_i = \mu_i^0$$
 vs. $H_1: \mu_i \neq \mu_i^0$

1. Test statistic

$$t_{\mu_i = \mu_i^0} = \frac{\hat{\mu}_i - \mu_i^0}{\widehat{\mathsf{SE}}(\hat{\mu}_i)}$$

Intuition:

• If
$$t_{\mu_i=\mu_i^0} \approx 0$$
 then $\hat{\mu}_i \approx \mu_i^0$, and $H_0: \mu_i = \mu_i^0$ should not be rejected

• If $|t_{\mu_i=\mu_i^0}| > 2$, say, then $\hat{\mu}_i$ is more than 2 values of $\widehat{SE}(\hat{\mu}_i)$ away from μ_i^0 . This is very unlikely if $\mu_i = \mu_i^0$, so $H_0 : \mu_i = \mu_i^0$ should be rejected.

Distribution of t-statistic under H_0

Under the assumptions of the CER model, and $H_0: \mu_i = \mu_i^0$

$$t_{\mu_i = \mu_i^0} = \frac{\hat{\mu}_i - \mu_i^0}{\widehat{\mathsf{SE}}(\hat{\mu}_i)} \sim t_{T-1}$$

Г

where

$$\hat{\mu}_{i} = \frac{1}{T} \sum_{t=1}^{T} r_{it}, \ \widehat{\mathsf{SE}}(\hat{\mu}_{i}) = \frac{\hat{\sigma}_{i}}{\sqrt{T}}, \ \hat{\sigma}_{i} = \sqrt{\frac{1}{T-1} \sum_{t=1}^{T} (r_{it} - \hat{\mu}_{i})^{2}}$$
$$t_{T-1} = \text{Student's t distribution with}$$
$$T-1 \text{ degrees of freedom (d.f.)}$$

Remarks:

- t_{T-1} is bell-shaped and symmetric about zero (like normal) but with fatter tails than normal
- d.f. = sample size number of estimated parameters. In CER model there is one estimated parameter, μ_i , so df = T 1
- For $T \ge 60$, $t_{T-1} \simeq N(0, 1)$. Therefore, for $T \ge 60$

$$t_{\mu_i=\mu_i^0} = \frac{\hat{\mu}_i - \mu_i^0}{\widehat{\mathsf{SE}}(\hat{\mu}_i)} \simeq N(0, 1)$$

2. Set significance level and determine critical value

$$\mathsf{Pr}(\mathsf{Type}\;\mathsf{I}\;\mathsf{error})=5\%$$

Test has two-sided alternative so critical value, $cv_{.025}$, is determined using

$$\Pr(|t_{T-1}| > cv_{.025}) = 0.05 \Rightarrow cv_{.025} = -q_{.025}^{t_{T-1}} = q_{.975}^{t_{T-1}}$$

where $q_{.975}^{t_{T-1}} = 97.5\%$ quantile of Student-t distribution with T-1 degrees of freedom.

3. Decision rule:

reject
$$H_0: \mu_i = \mu_i^0$$
 in favor of $H_1: \mu \neq \mu_i^0$ if
 $|t_{\mu_i = \mu_i^0}| > cv_{.975}$

Useful Rule of Thumb:

If $T\geq$ 60 then $cv_{.975}\approx$ 2 and the decision rule is

Reject
$$H_0: \mu_i = \mu_i^0$$
 at 5% level if $|t_{\mu_i = \mu_i^0}| > 2$

4. P-Value of two-sided test

 $\begin{aligned} \text{significance level at which test is just rejected} \\ &= \Pr(|t_{T-1}| > t_{\mu_i = \mu_i^0}) \\ = \Pr(t_{T-1} < -t_{\mu_i = \mu_i^0}) + \Pr(t_{T-1} > t_{\mu_i = \mu_i^0}) \\ &= 2 \cdot \Pr(t_{T-1} > |t_{\mu_i = \mu_i^0}|) \\ &= 2 \times (1 - \Pr(t_{T-1} \le |t_{\mu_i = \mu_i^0}|)) \end{aligned}$

Decision rule based on P-Value

Reject
$$H_0: \mu_i = \mu_i^0$$
 at 5% level if P-Value $\,< 5\%$

For $T \ge 60$

$$\mathsf{P}\text{-value} = 2 \times \mathsf{Pr}(z > |t_{\mu_i = \mu_i^0}|), \ z \sim N(0, 1)$$

Tests based on CLT

Let $\hat{\theta}$ denote an estimator for θ . In many cases the CLT justifies the asymptotic normal distribution

$$\hat{\theta} \sim N(\theta, \mathsf{se}(\hat{\theta})^2)$$

Consider testing

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$

Result: Under H_0 ,

$$t_{\theta=\theta_0} = \frac{\hat{\theta} - \theta^0}{\widehat{\mathsf{se}}(\hat{\theta})} \sim N(0, 1)$$

for large sample sizes.

Example: In the CER model, for large enough T the CLT gives

$$\hat{\sigma}_i \sim N(\sigma_i, SE(\hat{\sigma}_i)^2)$$

 $SE(\hat{\sigma}_i) = \frac{\sigma_i}{\sqrt{2T}}$

 $\quad \text{and} \quad$

$$\hat{\rho}_{ij} \sim N(\rho_{ij}, SE(\hat{\rho}_{ij})^2)$$
$$SE(\hat{\rho}_{ij}) = \frac{\sqrt{1 - \rho_{ij}^2}}{\sqrt{T}}$$

Rule-of-thumb Decision Rule

Let Pr(Type | error) = 5%. Then reject

$$H_0: \theta = \theta_0 \text{ vs. } H_1: \theta \neq \theta_0$$

at 5% level if

$$|t_{\theta=\theta_0}| = \left|\frac{\hat{\theta} - \theta^0}{\widehat{\mathsf{se}}(\hat{\theta})}\right| > 2$$

Relationship Between Hypothesis Tests and Confidence Intervals

$$\begin{array}{l} H_{0}: \mu_{i} = \mu_{i}^{0} \text{ vs. } H_{1}: \mu_{i} \neq \mu_{i}^{0} \\ \text{level} = 5\% \\ cv_{.975} = q_{.975}^{t_{T-1}} \approx 2 \text{ for } T > 60 \\ t_{\mu_{i}} = \mu_{i}^{0} = \frac{\hat{\mu}_{i} - \mu_{i}^{0}}{\widehat{\mathsf{SE}}(\hat{\mu}_{i})} \\ \end{array}$$
Reject at 5% level if $|t_{\mu_{i}} = \mu_{i}^{0}| > 2$

Approximate 95% confidence interval for μ_i

$$\hat{\mu}_i = \pm 2 \cdot \widehat{\mathsf{SE}}(\hat{\mu}_i)$$

= $[\hat{\mu}_i - 2 \cdot \widehat{\mathsf{SE}}(\hat{\mu}_i), \ \hat{\mu}_i + 2 \cdot \widehat{\mathsf{SE}}(\hat{\mu}_i)]$

Decision: Reject H_0 : $\mu_i = \mu_i^0$ at 5% level if μ_i^0 does not lie in 95% confidence interval.

Test for Sign

$$H_0: \mu_i = 0$$
 vs. $H_1: \mu_i > 0$

1. Test statistic

$$t_{\mu_i=0} = \frac{\hat{\mu}_i}{\widehat{\mathsf{SE}}(\hat{\mu}_i)}$$

Intuition:

- If $t_{\mu_i = \mu_i^0} \approx 0$ then $\hat{\mu}_i \approx 0$, and $H_0 : \mu_i = 0$ should not be rejected
- If $t_{\mu_i = \mu_i^0} >> 0$, then this is very unlikely if $\mu_i = 0$, so $H_0 : \mu_i = 0$ vs. $H_1 : \mu_i > 0$ should be rejected.

2. Set significance level and determine critical value

 $Pr(Type \ I \ error) = 5\%$

One-sided critical value cv is determined using

$$\Pr(t_{T-1} > cv_{.05}) = 0.05 \\ \Rightarrow cv_{.05} = q_{.95}^{t_{T-1}}$$

where $q_{.95}^{t_{T-1}} = 95\%$ quantile of Student-t distribution with T - 1 degrees of freedom.

3. Decision rule:

Reject
$$H_0: \mu_i = 0$$
 vs. $H_1: \mu_i > 0$ at 5% level if $t_{\mu_i=0} > q_{.95}^{t_{T-1}}$

Useful Rule of Thumb:

If
$$T \ge 60$$
 then $q_{.95}^{t_{T-1}} \approx q_{.95}^z = 1.645$ and the decision rule is
Reject $H_0: \mu_i = 0$ vs. $H_1: \mu_i > 0$ at 5% level if
 $t_{\mu_i=0} > 1.645$

4. P-Value of test

significance level at which test is just rejected $= \Pr(t_{T-1} > t_{\mu_i=0})$ $= \Pr(Z > t_{\mu_i=0}) \text{ for } T \ge 60$ **Test for Normal Distribution**

 $H_0: r_t \sim \text{iid } N(\mu, \sigma^2)$ $H_1: r_t \sim \text{ not normal}$

1. Test statistic (Jarque-Bera statistic)

$$\mathsf{JB} = \frac{T}{6} \left(\widehat{\mathsf{skew}}^2 + \frac{(\widehat{\mathsf{kurt}} - 3)^2}{4} \right)$$

See R package tseries function jarque.bera.test

Intuition

- If $r_t \sim \text{iid } N(\mu, \sigma^2)$ then $\widehat{\text{skew}}(r_t) \approx 0$ and $\widehat{\text{kurt}}(r_t) \approx 3$ so that $\text{JB} \approx 0$.
- If r_t is not normally distributed then $\widehat{skew}(r_t) \neq 0$ and/or $\widehat{kurt}(r_t) \neq 3$ so that JB >> 0

Distribution of JB under H_0

If $H_0: r_t \sim \text{iid } N(\mu, \sigma^2)$ is true then

$$\mathsf{JB}\sim\chi^2(2)$$

where $\chi^2(2)$ denotes a chi-square distribution with 2 degrees of freedom (d.f.).

2. Set significance level and determine critical value

 $Pr(Type \ I \ error) = 5\%$

Critical value cv is determined using

$$\mathsf{Pr}(\chi^2(2) > cv) = 0.05$$

 $\Rightarrow cv = q_{.95}^{\chi^2(2)} pprox 6$

where $q_{.95}^{\chi^2(2)} \approx 6 \approx 95\%$ quantile of chi-square distribution with 2 degrees of freedom.

3. Decision rule:

Reject
$$H_0$$
: $r_t \sim \text{iid } N(\mu, \sigma^2)$
at 5% level if JB > 6

4. P-Value of test

significance level at which test is just rejected $= \Pr(\chi^2(2) > \mathsf{JB})$

Test for No Autocorrelation

Recall, the jth lag autocorrelation for r_t is

$$egin{aligned}
ho_j &= \mathsf{cor}(r_t, r_{t-j}) \ &= rac{\mathsf{cov}(r_t, r_{t-j})}{\mathsf{var}(r_t)} \end{aligned}$$

Hypotheses to be tested

$$H_0: \rho_j = 0$$
, for all $j = 1, \dots, q$
 $H_1: \rho_j \neq 0$ for some j

1. Estimate ρ_j using sample autocorrelation

$$\hat{\rho}_{j} = \frac{\frac{1}{T-1} \sum_{t=j+1}^{T} (r_{t} - \hat{\mu}) (r_{t-j} - \hat{\mu})}{\frac{1}{T-1} \sum_{t=1}^{T} (r_{t} - \hat{\mu})^{2}}$$

Result: Under $H_0: \rho_j = 0$ for all $j = 1, \ldots, q$, if T is large then

$$\hat{
ho}_j \sim N\left(0, rac{1}{T}
ight)$$
 for all $j \geq 1$
 $\mathsf{SE}(\hat{
ho}_j) = rac{1}{\sqrt{T}}$

2. Test Statistic

$$t_{\rho_{j=0}} = \frac{\hat{\rho}_{j}}{\mathsf{SE}(\hat{\rho}_{j})} = \frac{\hat{\rho}_{j}}{1/\sqrt{T}} = \sqrt{T}\hat{\rho}_{j}$$

and 95% confidence interval

$$\hat{
ho}_j \pm 2 \cdot rac{1}{\sqrt{T}}$$

3. Decision rule

Reject
$$H_0: \rho_j = 0$$
 at 5% level
if $|t_{\rho_{j=0}}| = \left|\sqrt{T}\hat{\rho}_j\right| > 2$

That is, reject if

$$\hat{\rho}_j > rac{2}{\sqrt{T}} ext{ or } \hat{\rho}_j < rac{-2}{\sqrt{T}}$$

Remark:

The dotted lines on the sample ACF are at the points $\pm 2 \cdot \frac{1}{\sqrt{T}}$

Diagnostics for Constant Parameters

 $H_0: \mu_i$ is constant over time vs. $H_1: \mu_i$ changes over time $H_0: \sigma_i$ is constant over time vs. $H_1: \sigma_i$ changes over time $H_0: \rho_{ij}$ is constant over time vs. $H_1: \rho_{ij}$ changes over time Remarks

- Formal test statistics are available but require advanced statistics
 - See R package strucchange
- Informal graphical diagnostics: Rolling estimates of μ_i , σ_i and ρ_{ij}

Rolling Means

Idea: compute estimate of μ_i over rolling windows of length n < T

$$\hat{\mu}_{it}(n) = \frac{1}{n} \sum_{j=0}^{n-1} r_{it-j}$$
$$= \frac{1}{n} (r_{it} + r_{it-1} + \dots + r_{it-n+1})$$

R function (package zoo)

rollapply

If H_0 : μ_i is constant is true, then $\hat{\mu}_{it}(n)$ should stay fairly constant over different windows.

If H_0 : μ_i is constant is false, then $\hat{\mu}_{it}(n)$ should fluctuate across different windows

Rolling Variances and Standard Deviations

Idea: Compute estimates of σ_i^2 and σ_i over rolling windows of length n < T

$$\hat{\sigma}_{it}^{2}(n) = \frac{1}{n-1} \sum_{j=0}^{n-1} (r_{it-j} - \hat{\mu}_{it}(n))^{2}$$
$$\hat{\sigma}_{it}(n) = \sqrt{\hat{\sigma}_{it}^{2}(n)}$$

If H_0 : σ_i is constant is true, then $\hat{\sigma}_{it}(n)$ should stay fairly constant over different windows.

If H_0 : σ_i is constant is false, then $\hat{\sigma}_{it}(n)$ should fluctuate across different windows

Rolling Covariances and Correlations

Idea: Compute estimates of σ_{jk} and ρ_{jk} over rolling windows of length n < T

$$\hat{\sigma}_{jk,t}(n) = \frac{1}{n-1} \sum_{i=0}^{n-1} (r_{jt-i} - \hat{\mu}_j(n)) (r_{kt-i} - \hat{\mu}_k(n))$$
$$\hat{\rho}_{jk,t}(n) = \frac{\hat{\sigma}_{jk,t}(n)}{\hat{\sigma}_{jt}(n)\hat{\sigma}_{kt}(n)}$$

If $H_0 : \rho_{jk}$ is constant is true, then $\hat{\rho}_{jk,t}(n)$ should stay fairly constant over different windows.

If $H_0: \rho_{jk}$ is constant is false, then $\hat{\rho}_{jk,t}(n)$ should fluctuate across different windows