Econ 424/CFRM 462
 Portfolio Theory with Matrix Algebra

Eric Zivot

Aug 7, 2014

Portfolio Math with Matrix Algebra

Three Risky Asset Example

Let $R_{i}(i=A, B, C)$ denote the return on asset i and assume that R_{i} follows CER model:

$$
\begin{aligned}
R_{i} & \sim \text { iid } N\left(\mu_{i}, \sigma_{i}^{2}\right) \\
\operatorname{cov}\left(R_{i}, R_{j}\right) & =\sigma_{i j}
\end{aligned}
$$

Portfolio "x"

$$
\begin{gathered}
x_{i}=\text { share of wealth in asset } i \\
x_{A}+x_{B}+x_{C}=1
\end{gathered}
$$

Portfolio return

$$
R_{p, x}=x_{A} R_{A}+x_{B} R_{B}+x_{C} R_{C}
$$

Stock i	μ_{i}	σ_{i}	Pair (i, j)	$\sigma_{i j}$
A (Microsoft)	0.0427	0.1000	(A,B)	0.0018
B (Nordstrom)	0.0015	0.1044	(A,C)	0.0011
C (Starbucks)	0.0285	0.1411	(B,C)	0.0026

Table 1: Three asset example data.

In matrix algebra, we have

$$
\begin{aligned}
\mu & =\left(\begin{array}{l}
\mu_{A} \\
\mu_{B} \\
\mu_{C}
\end{array}\right)=\left(\begin{array}{l}
0.0427 \\
0.0015 \\
0.0285
\end{array}\right) \\
\boldsymbol{\Sigma} & =\left(\begin{array}{ccc}
\sigma_{A}^{2} & \sigma_{A B} & \sigma_{A C} \\
\sigma_{A B} & \sigma_{B}^{2} & \sigma_{B C} \\
\sigma_{A C} & \sigma_{B C} & \sigma_{C}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
(0.1000)^{2} & 0.0018 & 0.0011 \\
0.0018 & (0.1044)^{2} & 0.0026 \\
0.0011 & 0.0026 & (0.1411)^{2}
\end{array}\right)
\end{aligned}
$$

Matrix Algebra Representation

$$
\begin{aligned}
\mathbf{R} & =\left(\begin{array}{l}
R_{A} \\
R_{B} \\
R_{C}
\end{array}\right), \mu=\left(\begin{array}{c}
\mu_{A} \\
\mu_{B} \\
\mu_{C}
\end{array}\right), \mathbf{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
\mathbf{x} & =\left(\begin{array}{c}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sigma_{A}^{2} & \sigma_{A B} & \sigma_{A C} \\
\sigma_{A B} & \sigma_{B}^{2} & \sigma_{B C} \\
\sigma_{A C} & \sigma_{B C} & \sigma_{C}^{2}
\end{array}\right)
\end{aligned}
$$

Portfolio weights sum to 1

$$
\begin{aligned}
\mathbf{x}^{\prime} \mathbf{1} & =\left(\begin{array}{lll}
x_{A} & x_{B} & x_{C}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =x_{1}+x_{2}+x_{3}=1
\end{aligned}
$$

Portfolio return

$$
\begin{aligned}
R_{p, x} & =\mathbf{x}^{\prime} \mathbf{R}=\left(\begin{array}{lll}
x_{A} & x_{B} & x_{C}
\end{array}\right)\left(\begin{array}{l}
R_{A} \\
R_{B} \\
R_{C}
\end{array}\right) \\
& =x_{A} R_{A}+x_{B} R_{B}+x_{C} R_{C}
\end{aligned}
$$

Portfolio expected return

$$
\begin{aligned}
\mu_{p, x} & =\mathbf{x}^{\prime} \mu=\left(\begin{array}{lll}
x_{A} & x_{B} & x_{X}
\end{array}\right)\left(\begin{array}{l}
\mu_{A} \\
\mu_{B} \\
\mu_{C}
\end{array}\right) \\
& =x_{A} \mu_{A}+x_{B} \mu_{B}+x_{C} \mu_{C}
\end{aligned}
$$

R formula

$$
\begin{aligned}
& \mathrm{t}(\mathrm{x} . \mathrm{vec}) \% * \% \mathrm{mu} . \mathrm{vec} \\
& \text { crossprod(x.vec, mu.vec) }
\end{aligned}
$$

Excel formula

$$
\begin{gathered}
\text { MMULT(transpose(xvec), muvec) } \\
\text { <ctrl>-<shift>-<enter> }
\end{gathered}
$$

Portfolio variance

$$
\begin{aligned}
\sigma_{p, x}^{2} & =\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x} \\
& =\left(\begin{array}{lll}
x_{A} & x_{B} & x_{C}
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{A}^{2} & \sigma_{A B} & \sigma_{A C} \\
\sigma_{A B} & \sigma_{B}^{2} & \sigma_{B C} \\
\sigma_{A C} & \sigma_{B C} & \sigma_{C}^{2}
\end{array}\right)\left(\begin{array}{l}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right) \\
& =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+x_{C}^{2} \sigma_{C}^{2} \\
& +2 x_{A} x_{B} \sigma_{A B}+2 x_{A} x_{C} \sigma_{A C}+2 x_{B} x_{C} \sigma_{B C}
\end{aligned}
$$

Portfolio distribution

$$
R_{p, x} \sim N\left(\mu_{p, x}, \sigma_{p, x}^{2}\right)
$$

R formulas

$$
\text { t(x.vec) \% } \% \text { \%sigma.mat\% } \% \% \text { x.vec }
$$

Excel formulas

$$
\begin{aligned}
& \text { MMULT(TRANSPOSE(xvec), MMULT(sigma, xvec)) } \\
& \text { MMULT(MMULT(TRANSPOSE(xvec), sigma), xvec) } \\
& \quad<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{aligned}
$$

Covariance Between 2 Portfolio Returns

2 portfolios

$$
\begin{aligned}
& \mathbf{x}=\left(\begin{array}{l}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right), \mathbf{y}=\left(\begin{array}{l}
y_{A} \\
y_{B} \\
y_{C}
\end{array}\right) \\
& \mathbf{x}^{\prime} \mathbf{1}=1, \mathbf{y}^{\prime} \mathbf{1}=1
\end{aligned}
$$

Portfolio returns

$$
\begin{aligned}
& R_{p, x}=\mathbf{x}^{\prime} \mathbf{R} \\
& R_{p, y}=\mathbf{y}^{\prime} \mathbf{R}
\end{aligned}
$$

Covariance

$$
\begin{aligned}
\operatorname{cov}\left(R_{p, x}, R_{p, y}\right) & =\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{y} \\
& =\mathbf{y}^{\prime} \boldsymbol{\Sigma} \mathbf{x}
\end{aligned}
$$

R formula

$$
\text { t(x.vec) } \% * \% \text { sigma.mat\% } \% \% y . v e c
$$

Excel formula

$$
\begin{aligned}
& \text { MMULT(TRANSPOSE(xvec), MMULT(sigma, yvec)) } \\
& \text { MMULT(TRANSPOSE(yvec), MMULT(sigma, xvec)) } \\
& \quad<\text { ctrl }>-<\text { shift }>-<\text { enter }>
\end{aligned}
$$

Derivatives of Simple Matrix Functions

Let \mathbf{A} be an $n \times n$ symmetric matrix, and let \mathbf{x} and \mathbf{y} be an $n \times 1$ vectors. Then

$$
\begin{align*}
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{y} & =\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \mathbf{x}^{\prime} \mathbf{y} \\
\vdots \\
n \times 1 \\
\frac{\partial}{\partial x_{n}} \mathbf{x}^{\prime} \mathbf{y}
\end{array}\right)=\mathbf{y}, \tag{1}\\
\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x} & =\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \mathbf{x}^{\prime} \mathbf{A x} \\
\vdots \\
\frac{\partial}{\partial x_{n}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}
\end{array}\right)=2 \mathbf{A x} . \tag{2}
\end{align*}
$$

Computing Global Minimum Variance Portfolio

Problem: Find the portfolio $\mathbf{m}=\left(m_{A}, m_{B}, m_{C}\right)^{\prime}$ that solves

$$
\min _{m_{A}, m_{B}, m_{C}} \sigma_{p, m}^{2}=\mathbf{m}^{\prime} \Sigma \mathbf{m} \text { s.t. } \mathbf{m}^{\prime} \mathbf{1}=1
$$

1. Analytic solution using matrix algebra
2. Numerical Solution in Excel Using the Solver (see 3firmExample.xls)

Analytic solution using matrix algebra

The Lagrangian is

$$
L(\mathbf{m}, \lambda)=\mathbf{m}_{1 \times 3}^{\prime} \boldsymbol{\Sigma} \mathbf{m + 3} \mathbf{m + 1}+\lambda\left(\mathbf{m}_{1+3}^{\prime} \mathbf{1}-1\right)
$$

First order conditions (use matrix derivative results)

$$
\begin{aligned}
& \underset{(3 \times 1)}{\mathbf{0}}=\frac{\partial L(\mathbf{m}, \lambda)}{\partial \mathbf{m}}=\frac{\partial \mathbf{m}^{\prime} \mathbf{\Sigma} \mathbf{m}}{\partial \mathbf{m}}+\frac{\partial}{\partial \mathbf{m}} \lambda\left(\mathbf{m}^{\prime} \mathbf{1}-1\right)=2 \cdot \Sigma \mathbf{m}+\lambda \mathbf{1} \\
& \underset{(1 \times 1)}{0}=\frac{\partial L(\mathbf{m}, \lambda)}{\partial \lambda}=\frac{\partial \mathbf{m}^{\prime} \mathbf{\Sigma} \mathbf{m}}{\partial \lambda}+\frac{\partial}{\partial \lambda} \lambda\left(\mathbf{m}^{\prime} \mathbf{1}-1\right)=\mathbf{m}^{\prime} \mathbf{1}-1
\end{aligned}
$$

Write FOCs in matrix form

The FOCs are the linear system

$$
\mathbf{A}_{m} \mathbf{z}_{m}=\mathbf{b}
$$

where

$$
\mathbf{A}_{m}=\left(\begin{array}{cc}
2 \boldsymbol{\Sigma} & \mathbf{1} \\
\mathbf{1}^{\prime} & 0
\end{array}\right), \mathbf{z}_{m}=\binom{\mathbf{m}}{\lambda} \text { and } \mathbf{b}=\binom{\mathbf{0}}{1}
$$

The solution for \mathbf{z}_{m} is

$$
\mathbf{z}_{m}=\mathbf{A}_{m}^{-1} \mathbf{b}
$$

The first three elements of \mathbf{z}_{m} are the portfolio weights $\mathbf{m}=\left(m_{A}, m_{B}, m_{C}\right)^{\prime}$ for the global minimum variance portfolio with expected return $\mu_{p, m}=\mathbf{m}^{\prime} \mu$ and variance $\sigma_{p, m}^{2}=\mathbf{m}^{\prime} \Sigma \mathbf{m}$.

Alternative Derivation of Global Minimum Variance Portfolio

The first order conditions from the optimization problem can be expressed in matrix notation as

$$
\begin{aligned}
& \underset{(3 \times 1)}{\mathbf{0}}=\frac{\partial L(\mathbf{m}, \lambda)}{\partial \mathbf{m}}=2 \cdot \Sigma \mathbf{m}+\lambda \cdot \mathbf{1} \\
& \underset{(1 \times 1)}{0}=\frac{\partial L(\mathbf{m}, \lambda)}{\partial \lambda}=\mathbf{m}^{\prime} \mathbf{1}-1 . \quad \Rightarrow m^{\prime} \mathcal{1}=1
\end{aligned}
$$

Using first equation, solve for \mathbf{m} :

$$
\begin{aligned}
\mathrm{m}= & -\frac{1}{2} \cdot \lambda \Sigma^{-1} 1 . \\
\mathcal{L \cdot \{} \underset{\sim}{m}+\lambda \cdot 1=0 & \Rightarrow 2 \cdot \sum \cdot m=-\lambda \cdot 1 \\
& \Rightarrow \sum_{\sim} \cdot m=-\frac{\lambda}{2} \cdot 1 \\
& \Rightarrow m_{\sim}=-\frac{\Lambda}{2} \cdot \sum^{\prime \cdot} \cdot \frac{1}{\sim}
\end{aligned}
$$

Next, multiply both sides by $\mathbf{1}^{\prime}$ and use second equation to solve for λ :

$$
\begin{aligned}
1 & =1^{\prime} \mathbf{m}=-\frac{1}{2} \cdot \lambda \mathbf{1}^{\prime} \Sigma^{-1} \mathbf{1} \\
& \Rightarrow \lambda=-2 \cdot \frac{1}{1^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}}
\end{aligned}
$$

Finally, substitute the value for λ in the equation for \mathbf{m} :

$$
\begin{aligned}
\mathbf{m} & =-\frac{1}{2}(-2) \frac{1}{1^{\prime} \Sigma^{-1} 1} \Sigma^{-1} 1 \\
& =\frac{\Sigma^{-1} 1}{1^{\prime} \Sigma^{-1} 1}
\end{aligned}
$$

Efficient Portfolios of Risky Assets: Markowitz Algorithm

Problem 1: find portfolio \mathbf{x} that has the highest expected return for a given level of risk as measured by portfolio variance

$$
\begin{aligned}
\max _{x_{A}, x_{B}, x_{C}} \mu_{p, x} & =\mathbf{x}^{\prime} \mu \text { s.t } \\
\sigma_{p, x}^{2} & =\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}=\sigma_{p}^{0}=\text { target risk } \\
\mathbf{x}^{\prime} \mathbf{1} & =1
\end{aligned}
$$

Problem 2: find portfolio \mathbf{x} that has the smallest risk, measured by portfolio variance, that achieves a target expected return.

$$
\begin{aligned}
\min _{x_{A}, x_{B}, x_{C}} \sigma_{p, x}^{2} & =\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x} \text { s.t. } \\
\mu_{p, x} & =\mathbf{x}^{\prime} \mu=\mu_{p}^{0}=\text { target return } \\
\mathbf{x}^{\prime} \mathbf{1} & =1
\end{aligned}
$$

Remark: Problem 2 is usually solved in practice by varying the target return between a given range.

Solving for Efficient Portfolios:

1. Analytic solution using matrix algebra
2. Numerical solution in Excel using the solver

Analytic solution using matrix algebra

The Lagrangian function associated with Problem 2 is

$$
L\left(x, \lambda_{1}, \lambda_{2}\right)=\mathbf{x}^{\prime} \Sigma \mathbf{x}+\lambda_{1}\left(\mathbf{x}^{\prime} \mu-\mu_{p, 0}\right)+\lambda_{2}\left(\mathbf{x}^{\prime} \mathbf{1}-1\right)
$$

The FOCs are

$$
\begin{aligned}
\underset{(3 \times 1)}{0} & =\frac{\partial L\left(\mathbf{x}, \lambda_{1}, \lambda_{2}\right)}{\partial \mathbf{x}}=2 \Sigma \mathbf{x}+\lambda_{1} \mu+\lambda_{2} \mathbf{1} \\
\underset{(1 \times 1)}{0} & =\frac{\partial L\left(\mathbf{x}, \lambda_{1}, \lambda_{2}\right)}{\partial \lambda_{1}}=\mathbf{x}^{\prime} \mu-\mu_{p, 0} \\
\underset{(1 \times 1)}{0} & =\frac{\partial L\left(\mathbf{x}, \lambda_{1}, \lambda_{2}\right)}{\partial \lambda_{2}}=\mathbf{x}^{\prime} \mathbf{1}-1
\end{aligned}
$$

These FOCs consist of five linear equations in five unknowns
$\left(x_{A}, x_{B}, x_{C}, \lambda_{1}, \lambda_{2}\right)$.

We can represent the FOCs in matrix notation as

$$
\left(\begin{array}{ccc}
2 \boldsymbol{\Sigma} & \mu & \mathbf{1} \\
\mu^{\prime} & 0 & 0 \\
\mathbf{1}^{\prime} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{x} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{0} \\
\mu_{p, 0} \\
1
\end{array}\right)
$$

or

$$
\mathbf{A}_{x} \mathbf{z}_{x}=\mathbf{b}_{0}
$$

where

$$
\mathbf{A}_{x}=\left(\begin{array}{ccc}
2 \boldsymbol{\Sigma} & \mu & \mathbf{1} \\
\mu^{\prime} & 0 & 0 \\
\mathbf{1}^{\prime} & 0 & 0
\end{array}\right), \mathbf{z}_{x}=\left(\begin{array}{c}
\mathbf{x} \\
\lambda_{\mathbf{1}} \\
\lambda_{2}
\end{array}\right) \text { and } \mathbf{b}_{0}=\left(\begin{array}{c}
\mathbf{0} \\
\mu_{p, 0} \\
1
\end{array}\right)
$$

The solution for \mathbf{z}_{x} is then

$$
\mathbf{z}_{x}=\mathbf{A}_{x}^{-1} \mathbf{b}_{0}
$$

The first three elements of \mathbf{z}_{x} are the portfolio weights $\mathbf{x}=\left(x_{A}, x_{B}, x_{C}\right)^{\prime}$ for the efficient portfolio with expected return $\mu_{p, x}=\mu_{p, 0}$.

Example: Find efficient portfolios with the same expected return as MSFT and SBUX

For MSFT, we solve

$$
\begin{aligned}
\min _{x_{A}, x_{B}, x_{C}} \sigma_{p, x}^{2} & =\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x} \text { s.t. } \\
\mu_{p, x} & =\mathbf{x}^{\prime} \mu=\mu_{M S F T}=0.0427 \\
\mathbf{x}^{\prime} \mathbf{1} & =1
\end{aligned}
$$

For SBUX, we solve

$$
\begin{aligned}
\min _{y_{A}, y_{B}, y_{C}} \sigma_{p, x}^{2} & =\mathbf{y}^{\prime} \boldsymbol{\Sigma} \mathbf{y} \text { s.t. } \\
\mu_{p, y} & =\mathbf{y}^{\prime} \mu=\mu_{S B U X}=0.0285 \\
\mathbf{y}^{\prime} \mathbf{1} & =1
\end{aligned}
$$

Example continued

Using the matrix algebra formulas (see R code in Powerpoint slides) we get

$$
\mathbf{x}=\left(\begin{array}{l}
x_{m s f t} \\
x_{n o r d} \\
x_{\text {sbux }}
\end{array}\right)=\left(\begin{array}{c}
0.8275 \\
-0.0908 \\
0.2633
\end{array}\right), \mathbf{y}=\left(\begin{array}{c}
y_{m s f t} \\
y_{n o r d} \\
y_{s b u x}
\end{array}\right)=\left(\begin{array}{l}
0.5194 \\
0.2732 \\
0.2075
\end{array}\right)
$$

Also,

$$
\begin{aligned}
\mu_{p, x} & =\mathbf{x}^{\prime} \mu=0.0427, \mu_{p, y}=\mathbf{y}^{\prime} \mu=0.0285 \\
\sigma_{p, x} & =\left(\mathbf{x}^{\prime} \Sigma \mathbf{x}\right)^{1 / 2}=0.09166, \sigma_{p, y}=\left(\mathbf{y}^{\prime} \Sigma \mathbf{y}\right)^{1 / 2}=0.07355 \\
\sigma_{x y} & =\mathbf{x}^{\prime} \Sigma \mathbf{y}=0.005914, \rho_{x y}=\sigma_{x y} /\left(\sigma_{p, x} \sigma_{p, y}\right)=0.8772
\end{aligned}
$$

Computing the Portfolio Frontier

Result: The portfolio frontier can be represented as convex combinations of any two frontier portfolios. Let \mathbf{x} be a frontier portfolio that solves

$$
\begin{aligned}
\min _{\mathbf{X}} \sigma_{p, x}^{2} & =\mathbf{x}^{\prime} \mathbf{\Sigma} \mathbf{x} \quad \text { st. } \\
\mu_{p, x} & =\mathbf{x}^{\prime} \mu=\mu_{p}^{0} \\
\mathbf{x}^{\prime} \mathbf{1} & =1
\end{aligned}
$$

Let $\mathbf{y} \neq \mathbf{x}$ be another frontier portfolio that solves

$$
\begin{aligned}
\min _{\mathbf{y}} \sigma_{p, y}^{2} & =\mathbf{y}^{\prime} \boldsymbol{\Sigma} \mathbf{y} \text { s.t. } \\
\mu_{p, y} & =\mathbf{y}^{\prime} \mu=\mu_{p}^{1} \neq \mu_{p}^{0} \\
\mathbf{y}^{\prime} \mathbf{1} & =1
\end{aligned}
$$

$$
\begin{aligned}
& \text { = convey } \\
& \text { comhinutm } \\
& \text { for a and }
\end{aligned}
$$

Let α be any constant. Then the portfolio

$$
\mathbf{z}=\alpha \cdot \mathbf{x}+(1-\alpha) \cdot \mathbf{y}
$$

is a frontier portfolio. Furthermore

$$
\begin{aligned}
\mu_{p, z} & =\mathbf{z}^{\prime} \mu=\alpha \cdot \mu_{p, x}+(1-\alpha) \mu_{p, y} \\
\sigma_{p, z}^{2} & =\mathbf{z}^{\prime} \Sigma \mathbf{z} \\
& =\alpha^{2} \sigma_{p, x}^{2}+(1-\alpha)^{2} \sigma_{p, y}^{2}+2 \alpha(1-\alpha) \sigma_{x, y} \\
\sigma_{x, y} & =\operatorname{cov}\left(R_{p, x}, R_{p, y}\right)=\mathbf{x}^{\prime} \Sigma \mathbf{y}
\end{aligned}
$$

Example: 3 asset case

$$
\begin{aligned}
\mathbf{z} & =\alpha \cdot \mathbf{x}+(1-\alpha) \cdot \mathbf{y} \\
& =\alpha \cdot\left(\begin{array}{c}
x_{A} \\
x_{B} \\
x_{C}
\end{array}\right)+(1-\alpha)\left(\begin{array}{c}
y_{A} \\
y_{B} \\
y_{C}
\end{array}\right) \\
& =\left(\begin{array}{c}
\alpha x_{A}+(1-\alpha) y_{A} \\
\alpha x_{B}+(1-\alpha) y_{B} \\
\alpha x_{C}+(1-\alpha) y_{C}
\end{array}\right)=\left(\begin{array}{l}
z_{A} \\
z_{B} \\
z_{C}
\end{array}\right)
\end{aligned}
$$

Example: Compute efficient portfolio as convex combination of efficient portfolio with same mean as MSFT and efficient portfolio with same mean as SBUX.

Let \mathbf{x} denote the efficient portfolio with the same mean as MSFT, \mathbf{y} denote the efficient portfolio with the same mean as SBUX, and let $\alpha=0.5$. Then

$$
\begin{aligned}
\mathbf{z} & =\alpha \cdot \mathbf{x}+(1-\alpha) \cdot \mathbf{y} \\
& =0.5 \cdot\left(\begin{array}{c}
0.82745 \\
-0.09075 \\
0.26329
\end{array}\right)+0.5 \cdot\left(\begin{array}{c}
0.5194 \\
0.2732 \\
0.2075
\end{array}\right) \\
& =\left(\begin{array}{c}
(0.5)(0.82745) \\
(0.5)(-0.09075) \\
(0.5)(0.26329)
\end{array}\right)+\left(\begin{array}{c}
(0.5)(0.5194) \\
(0.5)(0.2732) \\
(0.5)(0.2075)
\end{array}\right)=\left(\begin{array}{l}
0.6734 \\
0.0912 \\
0.2354
\end{array}\right)=\left(\begin{array}{l}
z_{A} \\
z_{B} \\
z_{C}
\end{array}\right) .
\end{aligned}
$$

Example continued

The mean of this portfolio can be computed using:

$$
\begin{aligned}
& \mu_{p, z}=\mathbf{z}^{\prime} \mu=(0.6734,0.0912,0.2354)^{\prime}\left(\begin{array}{l}
0.0427 \\
0.0015 \\
0.0285
\end{array}\right)=0.0356 \\
& \mu_{p, z}=\alpha \cdot \mu_{p, x}+(1-\alpha) \mu_{p, y}=0.5(0.0427)+(0.5)(0.0285)=0.0356
\end{aligned}
$$

The variance can be computed using

$$
\begin{aligned}
\sigma_{p, z}^{2} & =\mathbf{z}^{\prime} \Sigma \mathbf{z}=0.00641 \\
\sigma_{p, z}^{2} & =\alpha^{2} \sigma_{p, x}^{2}+(1-\alpha)^{2} \sigma_{p, y}^{2}+2 \alpha(1-\alpha) \sigma_{x y} \\
& =(0.5)^{2}(0.09166)^{2}+(0.5)^{2}(0.07355)^{2}+2(0.5)(0.5)(0.005914)=0.00641
\end{aligned}
$$

Example: Find efficient portfolio with expected return 0.05 from two efficient portfolios

Use

$$
0.05=\mu_{p, z}=\alpha \cdot \mu_{p, x}+(1-\alpha) \mu_{p, y}
$$

to solve for α :

$$
\alpha=\frac{0.05-\mu_{p, y}}{\mu_{p, x}-\mu_{p, y}}=\frac{0.05-0.0285}{0.0427-0.0285}=1.514
$$

Then, solve for portfolio weights using

$$
\begin{aligned}
\mathbf{z} & =\alpha \cdot \mathbf{x}+(1-\alpha) \cdot \mathbf{y} \\
& =1.514\left(\begin{array}{c}
0.8275 \\
-0.0908 \\
0.2633
\end{array}\right)-0.514\left(\begin{array}{c}
0.5194 \\
0.2732 \\
0.2075
\end{array}\right)=\left(\begin{array}{c}
0.9858 \\
-0.2778 \\
0.2920
\end{array}\right)
\end{aligned}
$$

Strategy for Plotting Portfolio Frontier

1. Set global minimum variance portfolio $=$ first frontier portfolio

$$
\min _{\mathbf{m}} \sigma_{p, m}^{2}=\mathbf{m}^{\prime} \boldsymbol{\Sigma} \mathbf{m} \text { s.t. } \mathbf{m}^{\prime} \mathbf{1}=1
$$

and compute $\mu_{p, m}=\mathbf{m}^{\prime} \mu$
2. Find asset i that has highest expected return. Set target return to $\mu^{0}=$ $\max (\mu)$ and solve

3. Create grid of α values, initially between 1 and -1 , and compute

$$
\begin{aligned}
\mathbf{z} & =\alpha \cdot \mathbf{m}+(1-\alpha) \cdot \mathbf{x} \\
\mu_{p, z} & =\alpha \cdot \mu_{p, m}+(1-\alpha) \mu_{p, x} \\
\sigma_{p, z}^{2} & =\alpha^{2} \sigma_{p, m}^{2}+(1-\alpha)^{2} \sigma_{p, x}^{2}+2 \alpha(1-\alpha) \sigma_{m, x} \\
\sigma_{m, x} & =\mathbf{m}^{\prime} \mathbf{\Sigma} \mathbf{x}
\end{aligned}
$$

4. Plot $\mu_{p, z}$ against $\sigma_{p, z}$. Expand or contract the grid of α values if necessary to improve the plot

Finding the Tangency Portfolio

The tangency portfolio \mathbf{t} is the portfolio of risky assets that maximizes Sharpe's slope:

$$
\max _{\mathbf{t}} \text { Sharpe's ratio }=\frac{\mu_{p, t}-r_{f}}{\sigma_{p, t}}
$$

subject to

$$
\mathbf{t}^{\prime} \mathbf{1}=1
$$

In matrix notation,

$$
\text { Sharpe's ratio }=\frac{\mathbf{t}^{\prime} \mu-r_{f}}{\left(\mathbf{t}^{\prime} \Sigma \mathbf{t}\right)^{1 / 2}}
$$

Solving for Efficient Portfolios:

1. Analytic solution using matrix algebra
2. Numerical solution in Excel using the solver

Analytic solution using matrix algebra

The Lagrangian for this problem is

$$
L(\mathbf{t}, \lambda)=\left(\mathbf{t}^{\prime} \mu-r_{f}\right)\left(\mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right)^{-\frac{1}{2}}+\lambda\left(\mathbf{t}^{\prime} \mathbf{1}-1\right)
$$

Using the chain rule, the first order conditions are

$$
\begin{aligned}
& \underset{(3 \times 1)}{\mathbf{0}}=\frac{\partial L(\mathbf{t}, \lambda)}{\partial \mathbf{t}}=\mu\left(\mathbf{t}^{\prime} \Sigma \mathbf{t}\right)^{-\frac{1}{2}}-\left(\mathbf{t}^{\prime} \mu-r_{f}\right)\left(\mathbf{t}^{\prime} \Sigma \mathbf{t}\right)^{-3 / 2} \Sigma \mathbf{t}+\lambda \mathbf{1} \\
& \underset{(1 \times 1)}{0}=\frac{\partial L(\mathbf{t}, \lambda)}{\partial \lambda}=\mathbf{t}^{\prime} \mathbf{1}-1=0
\end{aligned}
$$

After much tedious algebra, it can be shown that the solution for \mathbf{t} is

$$
\mathbf{t}=\frac{\boldsymbol{\Sigma}^{-1}\left(\mu-r_{f} \cdot \mathbf{1}\right)}{\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu-r_{f} \cdot \mathbf{1}\right)}
$$

Remarks:

$$
\mu_{\text {gmin }}=r_{f}
$$

- If the risk free rate, r_{f}, is less than the expected return on the global minimum variance portfolio, $\mu_{g \text { min }}$, then the tangency portfolio has a positive Sharpe slope
- If the risk free rate, r_{f}, is equal to the expected return on the global minimum variance portfolio, $\mu_{g \text { min }}$, then the tangency portfolio is not defined

- If the risk free rate, r_{f}, is greater than the expected return on the global minimum variance portfolio, $\mu_{g \mathrm{~min}}$, then the tangency portfolio has a negative Sharpe slope.

Mutual Fund Separation Theorem Again

Efficient Portfolios of T-bills and Risky assets are combinations of two portfolios (mutual funds)

- T-bills
- Tangency portfolio

Efficient Portfolios

Remark: The weights x_{t} and x_{f} are determined by an investor's risk preferences

- Risk averse investors hold mostly T-Bills $\left(x_{t} \approx 0\right)$
- Risk tolerant investors hold mostly tangency portfolio ($x_{t} \approx 1$)
- If Sharpe's slope for the tangency portfolio is negative then the efficient portfolio involve shorting the tangency portfolio

Example: Find efficient portfolio with target risk (SD) equal to 0.02

Solve

$$
\begin{aligned}
0.02 & =\sigma_{p}^{e}=x_{t} \sigma_{p, t}=x_{t}(0.1116) \\
& \Rightarrow x_{t}=\frac{0.02}{0.1116}=0.1792 \\
x_{f} & =1-x_{t}=0.8208
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \mu_{p}^{e}=r_{f}+x_{t}\left(\mu_{p, t}-r_{f}\right)=0.005+(0.1116)(0.05189-0.005)=0.0134 \\
& \sigma_{p}^{e}=x_{t} \sigma_{p, t}=(0.1792)(0.1116)=0.02
\end{aligned}
$$

Example: Find efficient portfolio with target ER equal to 0.07

Solve

$$
\begin{aligned}
0.07 & =\mu_{p}^{e}=r_{f}+x_{t}\left(\mu_{p, t}-r_{f}\right) \\
& \Rightarrow x_{t}=\frac{0.07-r_{f}}{\mu_{p, t}-r_{f}}=\frac{0.07-0.005}{0.05189-0.005}=1.386
\end{aligned}
$$

Also,

Portfolio Value-at-Risk

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ denote a vector of asset share for a portfolio. Portfolio risk is measured by $\operatorname{var}\left(R_{p, x}\right)=\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}$. Alternatively, portfolio risk can be measured using Value-at-Risk:

$$
\begin{aligned}
\mathrm{VaR}_{\alpha} & =W_{0} q_{\alpha}^{R} \\
W_{0} & =\text { initial investment } \\
q_{\alpha}^{R} & =100 \cdot \alpha \% \text { Simple return quantile } \\
\alpha & =\text { loss probability }
\end{aligned}
$$

If returns are normally distributed then

$$
\begin{aligned}
q_{\alpha} & =\mu_{p, x}+\sigma_{p, x} q_{\alpha}^{Z} \\
\mu_{p, x} & =\mathbf{x}^{\prime} \mu \\
\sigma_{p, x} & =\left(\mathbf{x}^{\prime} \Sigma \mathbf{x}\right)^{1 / 2} \\
q_{\alpha}^{Z} & =100 \cdot \alpha \% \text { quantile from } N(0,1)
\end{aligned}
$$

Example: Using VaR to evaluate an efficient portfolio

Invest in 3 risky assets (Microsoft, Starbucks, Nordstrom) and T-bills. Assume $r_{f}=0.005$

1. Determine efficient portfolio that has same expected return as Starbucks
2. Compare VaR. 05 for Starbucks and efficient portfolio based on $\$ 100,000$ investment

Solution for 1.

$$
\begin{aligned}
\mu_{\mathrm{SBUX}} & =0.0285 \\
\mu_{p}^{e} & =r_{f}+x_{t}\left(\mu_{p, t}-r_{f}\right) \\
r_{f} & =0.005 \\
\mu_{p, t} & =\mathbf{t}^{\prime} \mu=.05186, \sigma_{p, t}=0.111
\end{aligned}
$$

Solve

$$
\begin{aligned}
0.0285 & =0.005+x_{t}(0.05186-0.005) \\
x_{t} & =\frac{0.0285-.005}{0.05186-.005}=0.501 \\
x_{f} & =1-0.501=0.499
\end{aligned}
$$

Note:

$$
\begin{aligned}
\mu_{p}^{e} & =0.005+0.501 \cdot(0.05186-0.005)=0.0285 \\
\sigma_{p}^{e} & =x_{t} \sigma_{p, t}=(0.501)(0.111)=0.057
\end{aligned}
$$

Solution for 2.

$$
\begin{aligned}
q_{.05}^{\mathrm{SBUX}} & =\mu_{\mathrm{SBUX}}+\sigma_{\mathrm{SBUX}} \cdot(-1.645) \\
& =0.0285+(0.141) \cdot(-1.645) \\
& =-0.203 \\
q_{.05}^{e} & =\mu_{p}^{e}+\sigma_{p}^{e} \cdot(-1.645) \\
& =.0285+(.057) \cdot(-1.645) \\
& -0.063
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{VaR}_{.05}^{S B U X} & =\$ 100,000 \cdot q^{\mathrm{SBUX}} \\
& =\$ 100,000 \cdot(-0.203)=-\$ 20,300 \\
\operatorname{VaR}_{.05}^{e} & =\$ 100,000 \cdot q^{e} \\
& =\$ 100,000 \cdot(-0.063)=-\$ 6,300
\end{aligned}
$$

