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The first model of asset returns we consider is the very simple constant

expected return (CER) model. This model assumes that an asset’s return

over time is independent and identically normally distributed with a con-

stant (time invariant) mean and variance. The model allows for the returns

on different assets to be contemporaneously correlated but that the corre-

lations are constant over time. The CER model is widely used in finance.

For example, it is used in mean-variance portfolio analysis, the Capital As-

set Pricing model, and the Black-Scholes option pricing model. Although

this model is very simple, it provides important intuition about the statisti-

cal behavior of asset returns and prices and serves as a benchmark against

which more complicated models can be compared and evaluated. It allows us

to discuss and develop several important econometric topics such as Monte

Carlo simulation, estimation, bootstrapping, hypothesis testing, forecasting

and model evaluation.

1.1 CER Model Assumptions

Let  = ln(−1) denote the continuously compounded return on asset
 at time  We make the following assumptions regarding the probability

distribution of  for  = 1      assets over the time horizon  = 1     

Assumption 1

1
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(i) Covariance stationarity and ergodicity: {1     } = {}=1 is a
covariance stationary and ergodic stochastic process with [] = 

var() = 2 , cov( ) =  and cor( ) = 

(ii) Normality:  ∼ ( 
2
 ) for all  and 

(iii) No serial correlation: cov( ) = cor( ) = 0 for  6=  and

  = 1     

Assumption 1 states that in every time period asset returns are jointly

(multivariate) normally distributed, that the means and the variances of

all asset returns, and all of the pairwise contemporaneous covariances and

correlations between assets are constant over time. In addition, all of the

asset returns are serially uncorrelated

cor( ) = cov( ) = 0 for all  and  6= 

and the returns on all possible pairs of assets  and  are serially uncorrelated

cor( ) = cov( ) = 0 for all  6=  and  6= 

Clearly, these are very strong assumptions. However, they allow us to develop

a straightforward probabilistic model for asset returns as well as statistical

tools for estimating the parameters of the model, testing hypotheses about

the parameter values and assumptions.

1.1.1 Regression Model Representation

A convenient mathematical representation or model of asset returns can be

given based on Assumption 1. This is the CER regression model. For assets

 = 1      and time periods  = 1      the CER regression model is

 =  +  (1.1)

{}=1 ∼ GWN(0 2 )

cov( ) =

⎧⎨⎩ 

0

 = 

 6= 


The notation  ∼ GWN(0 2 ) stipulates that the stochastic process {}=1
is a Gaussian white noise process with [] = 0 and var() = 2  In
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addition, the random error term  is independent of  for all assets  6= 

and all time periods  6= .

Using the basic properties of expectation, variance and covariance, we

can derive the following properties of returns in the CER model:

[] = [ + ] =  + [] = 

var() = var( + ) = var() = 2 

cov( ) = cov( +   + ) = cov( ) = 

cov( ) = cov( +   + ) = cov( ) = 0  6= 

Given that covariances and variances of returns are constant over time im-

plies that the correlations between returns over time are also constant:

cor( ) =
cov( )p
var()var()

=



= 

cor( ) =
cov( )p
var()var()

=
0


= 0  6=   6= 

Finally, since {}=1 ∼ GWN(0 2 ) it follows that {}=1 ∼  ( 
2
 )

Hence, the CER regression model (1.1) for  is equivalent to the model

implied by Assumption 1.

1.1.2 Interpretation of the CER Regression Model

The CER model has a very simple form and is identical to the measurement

error model in the statistics literature.1 In words, the model states that each

asset return is equal to a constant  (the expected return) plus a normally

distributed random variable  with mean zero and constant variance. The

random variable  can be interpreted as representing the unexpected news

concerning the value of the asset that arrives between time − 1 and time 
To see this, (1.1) implies that

 =  −  =  −[]

1In the measurement error model,  represents the 
 measurement of some phys-

ical quantity  and  represents the random measurement error associated with the

measurement device. The value  represents the typical size of a measurement error.
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so that  is defined as the deviation of the random return from its expected

value. If the news between times  − 1 and  is good, then the realized

value of  is positive and the observed return is above its expected value 

If the news is bad, then  is negative and the observed return is less than

expected. The assumption[] = 0means that news, on average, is neutral;

neither good nor bad. The assumption that var() = 2 can be interpreted

as saying that volatility, or typical magnitude, of news arrival is constant

over time. The random news variable affecting asset ,  is allowed to be

contemporaneously correlated with the random news variable affecting asset

  to capture the idea that news about one asset may spill over and affect

another asset. For example, if asset  is Microsoft stock and asset  is Apple

Computer stock, then one interpretation of news in this context is general

news about the computer industry and technology. Good news should lead

to positive values of both  and  Hence these variables will be positively

correlated due to a positive reaction to a common news component. Finally,

the news on asset  at time  is unrelated to the news on asset  at time  for

all times  6=  For example, this means that the news for Apple in January

is not related to the news for Microsoft in February.

Sometimes it is convenient to re-express the CER model (1.1) as

 =  +  =  +  ·  (1.2)

{}=1 ∼ GWN(0 1)

In this form, the random news shock is the  standard normal random vari-

able  scaled by the “news” volatility  This form is particularly convenient

for value-at-risk calculations.

1.1.3 Time Aggregation and the CER Model

The CER model for continuously compounded returns has the following nice

aggregation property with respect to the interpretation of  as news. Sup-

pose that  represents months so that  is the continuously compounded

monthly return on asset . Now, instead of the monthly return, suppose we

are interested in the annual continuously compounded return  = (12).

Since multi-period continuously compounded returns are additive, (12) is

the sum of 12 monthly continuously compounded returns:

 = (12) =

11X
=0

− =  + −1 + · · ·+ −11
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Using the CER regression model (1.1) for the monthly return  we may

express the annual return (12) as

(12) =

11X
=0

( + ) = 12 ·  +
11X
=0

 =  + (12)

where  = 12 ·  is the annual expected return on asset  and (12) =P11

=0 − is the annual random news component. The annual expected

return,   is simply 12 times the monthly expected return, . The annual

random news component, (12) , is the accumulation of news over the year.

As a result, the variance of the annual news component,
¡

¢2
 is 12 time

the variance of the monthly news component:

var((12)) = var

Ã
11X
=0

−

!

=

11X
=0

var(−) since  is uncorrelated over time

=

11X
=0

2 since var() is constant over time

= 12 · 2 =
¡

¢2


It follows that the standard deviation of the annual news is equal to
√
12

times the standard deviation of monthly news:

SD((12)) =
√
12SD() =

√
12

This result is known as the square root of time rule. Similarly, due to the

additivity of covariances, the covariance between (12) and (12) is 12
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times the monthly covariance:

cov((12) (12)) = cov

Ã
11X
=0

−
11X
=0

−

!

=

11X
=0

cov(− −) since  and  are uncorrelated over time

=

11X
=0

 since cov( ) is constant over time

= 12 ·  = 

The above results imply that the correlation between the annual errors (12)

and (12) is the same as the correlation between the monthly errors  and

 :

cor((12) (12)) =
cov((12) (12))p
var((12)) · var((12))

=
12 · q
122 · 122

=



=  = cor( )

1.1.4 The Random Walk Model of Asset Prices

The CER model of asset returns (1.1) gives rise to the so-called random

walk (RW) model for the logarithm of asset prices. To see this, recall that

the continuously compounded return,  is defined from asset prices via

 = ln
³


−1

´
= ln() − ln(−1) Letting  = ln() and using the

representation of  in the CER model (1.1), we can express the log-price as:

 = −1 +  +  (1.3)

The representation in (1.3) is known as the RW model for log-prices.2 It is

a representation of the CER model in terms of log-prices.

2The model (1.3) is technically a random walk with drift  A pure random walk has

zero drift ( = 0).
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In the RW model (1.3),  represents the expected change in the log-

price (continuously compounded return) between months − 1 and  and 
represents the unexpected change in the log-price That is,

[∆] = [] = 

 = ∆ −[∆]

where ∆ = − −1 Further, in the RW model, the unexpected changes

in log-price,  are uncorrelated over time (cov( ) = 0 for  6= ) so

that future changes in log-price cannot be predicted from past changes in

the log-price.3

The RW model gives the following interpretation for the evolution of log

prices. Let 0 denote the initial log price of asset . The RW model says

that the log-price at time  = 1 is

1 = 0 +  + 1

where 1 is the value of random news that arrives between times 0 and 1

At time  = 0 the expected log-price at time  = 1 is

[1] = 0 +  +[1] = 0 + 

which is the initial price plus the expected return between times 0 and 1.

Similarly, by recursive substitution the log-price at time  = 2 is

2 = 1 +  + 2

= 0 +  +  + 1 + 2

= 0 + 2 ·  +
2X

=1



which is equal to the initial log-price, 0 plus the two period expected return,

2 · , plus the accumulated random news over the two periods,
P2

=1  By

repeated recursive substitution, the log price at time  =  is

 = 0 +  ·  +
X
=1



3The notion that future changes in asset prices cannot be predicted from past changes

in asset prices is often referred to as the weak form of the efficient markets hypothesis.
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At time  = 0 the expected log-price at time  =  is

[ ] = 0 +  · 

which is the initial price plus the expected growth in prices over  periods.

The actual price,   deviates from the expected price by the accumulated

random news:

 −[ ] =

X
=1



At time  = 0 the variance of the log-price at time  is

var( ) = var

Ã
X
=1



!
=  · 2

Hence, the RWmodel implies that the stochastic process of log-prices {} is
non-stationary because the variance of  increases with  Finally, because

 ∼  (0 2 ) it follows that (conditional on 0)  ∼ (0+ 
2
 )

The term random walk was originally used to describe the unpredictable

movements of a drunken sailor staggering down the street. The sailor starts

at an initial position, 0 outside the bar. The sailor generally moves in

the direction described by  but randomly deviates from this direction after

each step  by an amount equal to  After  steps the sailor ends up at

position  = 0+ ·+P

=1  The sailor is expected to be at location 

but where he actually ends up depends on the accumulation of the random

changes in direction
P

=1  Because var( ) = 2 the uncertainty about

where the sailor will be increases with each step.

The RW model for log-price implies the following model for price:

 =  = 0
·+


=1  = 0




=1 

where  = 0 + +
P

=1  The term  represents the expected ex-

ponential growth rate in prices between times 0 and time  and the term




=1  represents the unexpected exponential growth in prices. Here, con-

ditional on 0  is log-normally distributed because  = ln is normally

distributed.
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1.1.5 The CER Model in Matrix Notation

Define the  × 1 vectors  = (1     )
0, μ = (1     )

0 ε =
(1     )

0 and the  × symmetric covariance matrix

var(ε) = Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠ 

Then the CER model matrix notation is

r = μ+ ε (1.4)

ε ∼ (0Σ)

which implies that  ∼  (μΣ)

1.2 Monte Carlo Simulation of the CERModel

A simple technique that can be used to understand the probabilistic behavior

of a model involves using computer simulation methods to create pseudo data

from the model. The process of creating such pseudo data is called Monte

Carlo simulation.4 To illustrate the use of Monte Carlo simulation, consider

creating pseudo return data from the CER model (1.1) for a single asset.

The steps to create a Monte Carlo simulation from the CER model are:

1. Fix values for the CER model parameters  and .

2. Determine the number of simulated values,  to create.

3. Use a computer random number generator to simulate   values

of  from a (0 2) distribution. Denote these simulated values as

̃1     ̃ 

4. Create the simulated return data ̃ = + ̃ for  = 1     

4Monte Carlo refers to the famous city in Monaco where gambling is legal.
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Figure 1.1: Monthly continuously compounded returns on Microsoft. Source:

finance.yahoo.com.

To motivate plausible values for  and  in the simulation, Figure 1.1

shows the actual monthly continuously compounded return data on Microsoft

stock over the period July, 1992 through October, 2000. The parameter

 = [] in the CER model represents this central value, and  represents

the typical size of a deviation about . In Figure 1.1, the returns seem to

fluctuate up and down about a central value near 0.03, or 3%, and the typical

size of a return deviation about 0.03 is roughly 0.10, or 10%. In fact, the

sample average return is 2.8% and the sample standard deviation is 10.7%,

respectively.

To mimic the monthly return data on Microsoft in the Monte Carlo

simulation, the values  = 003 and  = 010 are used as the model’s

true parameters and  = 100 is the number of simulated values (sample

size) Let {̃1     ̃100} denote the 100 simulated values of the news variable
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 ∼ GWN(0 (010)2)The simulated returns are then computed using5

̃ = 003 + ̃  = 1     100 (1.5)

Example 1 Simulating observations from the CER model using R

To create and plot the simulated returns from (1.5) use

> mu = 0.03

> sd.e = 0.10

> nobs = 100

> set.seed(111)

> sim.e = rnorm(nobs, mean=0, sd=sd.e)

> sim.ret = mu + sim.e

> par(mfrow=c(1,2))

> ts.plot(sim.ret, main="",

+ xlab="months",ylab="return", lwd=2, col="blue")

> abline(h=mu)

> hist(sim.ret, main="", xlab="returns", col="slateblue1")

> par(mfrow=c(1,1))

The simulated returns {̃}100=1 are shown in Figure 1.2. The simulated return

data fluctuate randomly about  = 003 and the typical size of the fluctu-

ation is approximately equal to  = 010 The simulated return data look

somewhat like the actual monthly return data for Microsoft. The main dif-

ference is that the return volatility for Microsoft appears to have increased

in the latter part of the sample whereas the simulated data has constant

volatility over the entire sample. ¥
Monte Carlo simulation of a model can be used as a first pass “reality

check” of the model. If simulated data from the model do not look like the

data that the model is supposed to describe, then serious doubt is cast on the

model. However, if simulated data look reasonably close to the actual data

then the first step reality check is passed. Ideally, one should consider many

simulated samples from the model because it is possible for a given simulated

sample to look strange simply because of an unusual set of random numbers.

Example 2 Simulating log-prices from the RW model

5Alternatively, the returns can be simulated directly by simulating observations from

a normal distribution with mean 005 and standard deviation 010
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Figure 1.2: Simulated returns from the CER model  = 003 +   ∼
GWN(0 (010)2)

The RW model for log-price based on the CER model (1.5) is

 = 0 + 003 · +
X

=1

  ∼ GWN(0 (010)2)

A Monte Carlo simulation of this RW model with 0 = 1 can be created in

R using

> mu = 0.03

> sd.e = 0.10

> nobs = 100

> set.seed(111)

> sim.e = rnorm(nobs, mean=0, sd=sd.e)

> sim.p = 1 + mu*seq(nobs) + cumsum(sim.e)

> sim.P = exp(sim.p)

Figure 1.3 shows the simulated values. The top panel shows the simulated

log price, ̃ the expected price [] = 1 + 003 ·  and the accumulated
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Figure 1.3: Simulated values from the RW model  = 0+003 · +
P

=1 

 ∼ GWN(0 (010)2)

random news ̃ −[] =
P

=1 ̃. The bottom panel shows the simulated

price levels ̃ = ̃ Figure 1.4 shows the actual log prices and price levels for

Microsoft stock. Notice the similarity between the simulated random walk

data and the actual data. ¥

1.2.1 Simulating Returns on More than One Asset

Creating a Monte Carlo simulation of more than one return from the CER

model requires simulating observations from a multivariate normal distribu-

tion. This follows from the matrix representation of the CER model given

in (1.4). The steps required to create a multivariate Monte Carlo simulation

are:

1. Fix values for  × 1 mean vector μ and the  × covariance matrix

Σ.
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Figure 1.4: Monthly prices and log-prices on Microsoft stock. Source: fi-

nance.yahoo.com.

2. Determine the number of simulated values,  to create.

3. Use a computer random number generator to simulate   values of

the  × 1 random vector ε from the multivariate normal distribution
(0Σ). Denote these simulated vectors as ε̃1     ε̃ 

4. Create the  × 1 simulated return vector ̃ = μ+ ε̃ for  = 1     

To motivate the parameters for a multivariate simulation of the CER

model, consider the monthly continuously compounded returns for Microsoft,

Starbucks and the S & P 500 index over the ten-year period July, 1992

through October, 2000 illustrated in Figures 1.5 and 1.6. All returns seem

to fluctuate around a mean value near zero. The volatilities of Microsoft

and Starbucks are similar with typical magnitudes around 0.10, or 10%. The

volatility of the S&P 500 index is considerably smaller at about 0.05, or

5%. The pairwise scatterplots show that all returns appear to be positively

related. The pairs (MSFT, SP500) and (SBUX, SP500) appear to be the most

correlated, and the shape of the scatter indicates correlation values around

0.5. The pair (MSFT, SBUX) shows a weak positive correlation around 0.2.
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Figure 1.5: Monthly continuously compounded returns on Microsoft, Star-

bucks and the S&P 500 index. Source: finance.yahoo.com.

Let  = (  500)
0. Then, a plausible value for μ is μ = (0 0 0)0

and a plausible value for Σ is

Σ =

⎛⎜⎜⎜⎝
(010)2 (010)(010)(02) (010)(005)(05)

(010)(010)(02) (010)2 (010)(005)(05)

(010)(005)(05) (010)(005)(05) (005)2

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
00100 00020 00025

00020 00100 00025

00025 00025 00025

⎞⎟⎟⎟⎠ 

Example 3 Monte Carlo simulation of CER model for three assets

Simulating values from the multivariate CER model (1.4) requires simulating

multivariate normal random variables. In R, this can be done using the
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Figure 1.6: Scatterplot matrix of the monthly continuously compounded

returns on Microsoft, Starbucks and the S&P 500 index.

function rmvnorm() from the package mvtnorm. To create a Monte Carlo

simulation from the CERmodel calibrated to the month continuously returns

on Microsoft, Starbucks and the S&P 500 index use

> library(mvtnorm)

> mu = rep(0,3)

> sig.msft = 0.10

> sig.sbux = 0.10

> sig.sp500 = 0.05

> rho.msft.sbux = 0.2

> rho.msft.sp500 = 0.5

> rho.sbux.sp500 = 0.5

> sig.msft.sbux = rho.msft.sbux*sig.msft*sig.sbux

> sig.msft.sp500 = rho.msft.sp500*sig.msft*sig.sp500

> sig.sbux.sp500 = rho.sbux.sp500*sig.sbux*sig.sp500

> Sigma = matrix(c(sig.msft^2, sig.msft.sbux, sig.msft.sp500,

+ sig.msft.sbux, sig.sbux^2, sig.sbux.sp500,
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Figure 1.7: Monte Carlo simulation of monthly continuously compounded

returns on Microsoft, Starbuck and the S&P 500 index from the multivariate

CER model.

+ sig.msft.sp500, sig.sbux.sp500, sig.sp500^2),

+ nrow=3, ncol=3, byrow=TRUE)

> nobs = 100

> set.seed(123)

> returns.sim = rmvnorm(nobs, mean=mu, sigma=Sigma)

The simulated returns are shown in Figure 1.7. They look fairly similar to

the actual returns given in Figure 1.5. ¥

1.3 Estimating the Parameters of the CER

Model

The CER model of asset returns gives us a simple framework for interpreting

the time series behavior of asset returns and prices. At the beginning of every

month ,  is a random variable representing the continuously compounded
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Figure 1.8: Scatterplot matrix of the simulated returns on Microsoft, Star-

bucks and the S&P 500 index.

return to be realized at the end of the month. The CER model states that

 ∼  ( 
2
 ). Our best guess for the return at the end of the month

is [] = , our measure of uncertainty about our best guess is captured

by SD() =  and our measures of the direction and strength of linear

association between  and  are  = cov( ) and  = cor( )

respectively. The CER model assumes that the economic environment is

constant over time so that the normal distribution characterizing monthly

returns is the same every month.

Our life would be very easy if we knew the exact values of  
2
   and

 the parameters of the CER model. In actuality, however, we do not know

these values with certainty. Therefore, a key task in financial econometrics

is estimating these values from a history of observed return data.

Suppose we observe monthly continuously compounded returns on  dif-

ferent assets over the horizon  = 1      It is assumed that the observed

returns are realizations of the stochastic process {1}=1 , where  is de-
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scribed by the CER model (1.1). Under these assumptions, we can use the

observed returns to estimate the unknown parameters of the CER model.

However, before we describe the estimation of the CER model, it is necessary

to review some fundamental concepts in the statistical theory of estimation.

1.3.1 Estimators and Estimates

Let  denote some characteristic of the CER model (1.1) we are interested

in estimating. For example, if we are interested in the expected return, then

 = ; if we are interested in the variance of returns, then  = 2 ; if we are

interested in the correlation between two returns then  =  The goal is to

estimate  based on a sample of size  of the observed data.

Definition 4 Let {1     } denote a collection of  random returns from
the CER model (1.1), and let  denote some characteristic of the model. An

estimator of  denoted ̂ is a rule or algorithm for estimating  as a function

of the random returns {1     } Here, ̂ is a random variable.

Definition 5 Let {1     } denote an observed sample of size  from the
CER model (1.1), and let  denote some characteristic of the model. An

estimate of  denoted ̂ is simply the value of the estimator for  based on

the observed sample. Here, ̂ is a number.

Example 6 The sample average as an estimator and an estimate

Let {1     } be described by the CER model (1.1), and suppose we are
interested in estimating  =  = []. The sample average ̂ =

1


P

=1 
is an algorithm for computing an estimate of the expected return  Before

the sample is observed, ̂ is a simple linear function of the random variables

{1     } and so is itself a random variable. After the sample is observed,
the sample average can be evaluated using the observed data which produces

the estimate. For example, suppose  = 5 and the realized values of the

returns are 1 = 01 2 = 005 3 = 0025 4 = −01 5 = −005 Then the
estimate of  using the sample average is

̂ =
1

5
(01 + 005 + 0025 +−01 +−005) = 0005

¥
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The example above illustrates the distinction between an estimator and

an estimate of a parameter . However, typically in the statistics literature

we use the same symbol, ̂, to denote both an estimator and an estimate.

When ̂ is treated as a function of the random returns it denotes an estimator

and is a random variable. When ̂ is evaluated using the observed data it

denotes an estimate and is simply a number The context in which we discuss

̂ will determine how to interpret it

1.3.2 Properties of Estimators

Consider ̂ as a random variable. In general, the pdf of ̂ (̂) depends

on the pdf’s of the random variables {1     } The exact form of (̂)

may be very complicated. Sometimes we can use analytical calculations to

determine the exact form of (̂) In general, the exact form of (̂) is often

too difficult to derive exactly. When (̂) is too difficult to compute we

can often approximate (̂) using either Monte Carlo simulation techniques

or the Central Limit Theorem (CLT). In Monte Carlo simulation, we use

the computer the simulate many different realizations of the random returns

{1     } and on each simulated sample we evaluate the estimator ̂
The Monte Carlo approximation of (̂) is the empirical distribution ̂ over

the different simulated samples. For a given sample size  Monte Carlo

simulation gives a very accurate approximation to (̂) if the number of

simulated samples is very large. The CLT approximation of (̂) is a normal

distribution approximation that becomes more accurate as the sample size 

gets very large. An advantage of the CLT approximation is that it is often

easy to compute. The disadvantage is that the accuracy of the approximation

depends on the estimate ̂ and sample size 

For analysis purposes, we often focus on certain characteristics of (̂)

like its expected value (center), variance and standard deviation (spread

about expected value) The expected value of an estimator is related to the

concept of estimator bias, and the variance/standard deviation of an estima-

tor is related to the concept of estimator precision. Different realizations of

the random variables {1     } will produce different values of ̂ Some
values of ̂ will be bigger than  and some will be smaller. Intuitively, a good

estimator of  is one that is on average correct (unbiased) and never gets too

far away from  (small variance). That is, a good estimator will have small

bias and high precision.
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Bias

Bias concerns the location or center of (̂) in relation to  If (̂) is centered

away from  then we say ̂ is a biased estimator of . If (̂) is centered at

 then we say that ̂ is an unbiased estimator of . Formally, we have the

following definitions:

Definition 7 The estimation error is the difference between the estimator

and the parameter being estimated:

error(̂ ) = ̂ − 

Definition 8 The bias of an estimator ̂ of  is the expected estimation

error:

bias(̂ ) = [error(̂ )] = [̂]− 

Definition 9 An estimator ̂ of  is unbiased if bias(̂ ) = 0; i.e., if [̂] =

 or [error(̂ )] = 0

Unbiasedness is a desirable property of an estimator. It means that the es-

timator produces the correct answer “on average”, where “on average” means

over many hypothetical realizations of the random variables {1     }. It
is important to keep in mind that an unbiased estimator for  may not be

very close to  for a particular sample, and that a biased estimator may be

actually be quite close to . For example, consider two estimators of  ̂1
and ̂2 The pdfs of ̂1 and ̂2 are illustrated in Figure 1.9. ̂1 is an unbiased

estimator of  with a large variance, and ̂2 is a biased estimator of  with a

small variance. Consider first, the pdf of ̂1. The center of the distribution is

at the true value  = 0 [̂1] = 0 but the distribution is very widely spread

out about  = 0 That is, var(̂1) is large. On average (over many hypothet-

ical samples) the value of ̂1 will be close to  but in any given sample the

value of ̂1 can be quite a bit above or below  Hence, unbiasedness by itself

does not guarantee a good estimator of  Now consider the pdf for ̂2 The

center of the pdf is slightly higher than  = 0 i.e., bias(̂2 )  0 but the

spread of the distribution is small. Although the value of ̂2 is not equal to

0 on average we might prefer the estimator ̂2 over ̂1 because it is generally

closer to  = 0 on average than ̂1
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Figure 1.9: Distributions of competiting estimators for  = 0 ̂1 is unbiased

but has high variance, and ̂2 is biased but has low variance.

Precision

An estimate is, hopefully, our best guess of the true (but unknown) value of

. Our guess most certainly will be wrong, but we hope it will not be too

far off. A precise estimate is one in which the variability of the estimation

error is small. The variability of the estimation error is captured by themean

squared error.

Definition 10 The mean squared error of an estimator ̂ of  is given by

mse(̂ ) = [(̂ − )2] = [error(̂ )2]

The mean squared error measures the expected squared deviation of ̂ from

 If this expected deviation is small, then we know that ̂ will almost always

be close to  Alternatively, if the mean squared is large then it is possible

to see samples for which ̂ is quite far from  A useful decomposition of

mse(̂ ) is

mse(̂ ) = [(̂ −[̂])2] +
³
[̂]− 

´2
= var(̂) + bias(̂ )2
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The derivation of this result is straightforward and is given in the appendix.

The result states that for any estimator ̂ of  mse(̂ ) can be split into

a variance component, var(̂) and a bias component, bias(̂ )2 Clearly,

mse(̂ ) will be small only if both components are small. If an estimator is

unbiased then mse(̂ ) = var(̂) = [(̂ − )2] is just the squared deviation

of ̂ about  Hence, an unbiased estimator ̂ of  is good, if it has a small

variance.

The mse(̂ ) and var(̂) are based on squared deviations and so are not

in the same units of measurement as  Measures of precision that are in the

same units as  are the root mean square error

rmse(̂ ) =

q
mse(̂ )

and the standard error

se(̂) =

q
var(̂)

1.3.3 Asymptotic Properties of Estimators

Estimator bias and precision are finite sample properties. That is, they

are properties that hold for a fixed sample size  Very often we are also

interested in properties of estimators when the sample size  gets very large.

For example, analytic calculations may show that the bias and mse of an

estimator ̂ depend on  in a decreasing way. That is, as  gets very large

the bias and mse approach zero. So for a very large sample, ̂ is effectively

unbiased with high precision. In this case we say that ̂ is a consistent

estimator of  In addition, for large samples the CLT says that (̂) can

often be well approximated by a normal distribution. In this case, we say

that ̂ is asymptotically normally distributed. The word “asymptotic” means

“in an infinitely large sample” or “as the sample size  goes to infinity”. Of

course, in the real world we don’t have an infinitely large sample and so the

asymptic results are only approximations. How good these approximation are

for a given sample size  depends on the context. Monte Carlo simulations

can often be used to evaluate asymptotic approximations in a given context.

Consistency

Let ̂ be an estimator of  based on the random returns {1     }
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Definition 11 ̂ is consistent for  (converges in probability to ) if for any

  0

lim
→∞

Pr(|̂ − |  ) = 0

Intuitively, consistency says that as we get enough data then ̂ will eventually

equal  In other words, if we have enough data then we know the truth.

Statistical theorems known as Laws of Large Numbers are used to deter-

mine if an estimator is consistent or not. In general, we have the following

result: an estimator ̂ is consistent for  if

• bias(̂ ) = 0 as  →∞

• se
³
̂
´
= 0 as  →∞

That is, if (̂) collapses to  as  →∞ then ̂ is consistent for 6

Asymptotic Normality

Let ̂ be an estimator of  based on the random returns {1     }

Definition 12 An estimator ̂ is asymptotically normally distributed if

̂ ∼ ( se(̂)2) (1.6)

for large enough 

Asymptotic normality means that (̂) is well approximated by a normal

distribution with mean  and variance se(̂)2 The justification for asymptotic

normality comes from the famous Central Limit Theorem.7

6Equivalently, ̂ is consistent if mse(̂ )→ 0 as  →∞
7There are actually many versions of the CLT with different assumptions. In its sim-

plist form, the CLT says that the sample average of a collection of iid random variables

1     with [] =  and () = 2 is asymptotically normal with mean  and

variance 2
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1.3.4 Estimators for the Parameters of the CERModel

To estimate the CER model parameters  
2
   and  we can use the

plug-in principle from statistics:

Plug-in-Principle: Estimate model parameters using corresponding sample

statistics.

For the CER model, the plug-in principle estimates for the CER model

parameters  
2
   and  are the following sample descriptive statistics:

̂ =
1



X
=1

 = ̄ (1.7)

̂2 =
1

 − 1
X
=1

( − ̂)
2 (1.8)

̂ =

q
̂2  (1.9)

̂ =
1

 − 1
X
=1

( − ̂)( − ̂) (1.10)

̂ =
̂

̂̂
 (1.11)

The plug-in principle is appropriate because the the CER model parameters

 
2
   and  are characteristics of the underlying distribution of returns

that are naturally estimated using sample statistics.

Example 13 Estimating the CER model parameters for Microsoft, Star-

bucks and the S&P 500 index.

To illustrate typical estimates of the CER model parameters, we use data on

 = 100 monthly continuously compounded returns for Microsoft, Starbucks

and the S & P 500 index over the period July 1992 through October 2000 in

the matrix object returns.mat. These data are illustrated in Figures 1.5 and

1.6. The estimates of  using (1.7) can be computed using the R functions

apply() and mean()

> muhat.vals = apply(returns.mat,2,mean)

> muhat.vals

sbux msft sp500

0.02777 0.02756 0.01253
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giving ̂ = 002777 ̂ = 002756 and ̂500 = 001253 The expected

return estimates for Microsoft and Starbucks are very similar at about 2.8%

per month, whereas the S&P 500 expected return estimate is smaller at only

1.25% per month. The estimates of the parameters 2   using (1.8) and

(1.9) can be computed using apply(), var() and sd()

> sigma2hat.vals = apply(returns.mat,2,var)

> sigma2hat.vals

sbux msft sp500

0.018459 0.011411 0.001432

> sigmahat.vals = apply(returns.mat,2,sd)

> sigmahat.vals

sbux msft sp500

0.13586 0.10682 0.03785

giving

̂2 = 00185 ̂ = 01359

̂2 = 00114 ̂ = 01068

̂2500 = 00014 ̂500 = 00379

Starbucks has the most variable monthly returns, and the S&P 500 index

has the smallest. The scatterplots of the returns are illustrated in Figure 1.6.

All returns appear to be positively related. The pairs (MSFT, SP500) and

(SBUX, SP500) appear to be the most correlated. The estimates of  and

 using (1.10) and (1.11) can be computed using the functions var() and

cor()

> cov.mat

sbux msft sp500

sbux 0.018459 0.004031 0.002158

msft 0.004031 0.011411 0.002244

sp500 0.002158 0.002244 0.001432

> cor.mat = cor(returns.z)

> cor.mat

sbux msft sp500

sbux 1.0000 0.2777 0.4198

msft 0.2777 1.0000 0.5551

sp500 0.4198 0.5551 1.0000
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Notice when var() and cor() are given a matrix of returns they return the

estimated variance matrix and the estimated correlation matrix, respectively.

To extract the unique pairwise values use

> covhat.vals = cov.mat[lower.tri(cov.mat)]

> rhohat.vals = cor.mat[lower.tri(cor.mat)]

> names(covhat.vals) <- names(rhohat.vals) <-

+ c("sbux,msft","sbux,sp500","msft,sp500")

> covhat.vals

sbux,msft sbux,sp500 msft,sp500

0.004031 0.002158 0.002244

> rhohat.vals

sbux,msft sbux,sp500 msft,sp500

0.2777 0.4198 0.5551

The pairwise covariances and correlations are

̂ = 00040 ̂500 = 00022 ̂500 = 00022

̂ = 02777 ̂500 = 05551 ̂500 = 04198

These estimates confirm the visual results from the scatterplot matrix in

Figure 1.6.

1.4 Statistical Properties of the CER Model

Estimates

To determine the statistical properties of plug-in principle estimators ̂ ̂
2
  ̂ ̂

and ̂ in the CERmodel, we treat them as functions of the stochastic process

{1}=1 where  is assumed to be generated by the CER model (1.1) for
 = 1      . We first consider the statistical properties of ̂ because the

derivations are the most straightforward. We then summarize the properties

of the remaining estimators.

1.4.1 Statistical Properties of ̂

Consider the estimator ̂ given by (1.7) The following sub-sections give

derivations of the statistical properties of ̂ .
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Bias

To determine bias(̂ ) we must first compute [̂] = [−1
P

=1 ] Us-

ing results about the expectation of a linear combination of random variables,

it follows that

[̂] = 

"
1



X
=1



#

= 

"
1



X
=1

( + )

#
(since  =  + )

=
1



X
=1

 +
1



X
=1

[] (by the linearity of [·])

=
1



X
=1

 (since [] = 0  = 1      )

=
1


 ·  = 

Hence, the mean of (̂) is equal to  We have just proved that ̂ an

unbiased estimator for  in the CER model.

Precision

Because bias(̂ ) = 0 the precision of ̂ is determined by var(̂) =

var(−1
P

=1 ) Using the results about the variance of a linear combi-
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nation of uncorrelated random variables, we have

var(̂) = var

Ã
1



X
=1



!

= var

Ã
1



X
=1

( + )

!
(since  =  + )

= var

Ã
1



X
=1



!
(since  is a constant)

=
1

 2

X
=1

var() (since  is independent over time)

=
1

 2

X
=1

2 (since var() = 2   = 1      )

=
1

 2
2 =

2



Hence,

var(̂) =
2

 (1.12)

Notice var(̂) = var() and so is much smaller than var() Also, as

the sample size gets larger and larger, var(̂) gets smaller and smaller.

Using (1.12), the standard deviation of ̂ is

SD(̂) =
p
var(̂) =

√

 (1.13)

The standard deviation of ̂ is often called the standard error of ̂ and is

denoted se(̂) :

se(̂) = SD(̂) =
√

 (1.14)

The value of se(̂) is in the same units as ̂ and measures the precision of ̂
as an estimate. If se(̂) is small relative to ̂ then ̂ is a relatively precise

of  because (̂) will be tightly concentrated around ; if se(̂) is large

relative to  then ̂ is a relatively imprecise estimate of  because (̂)

will be spread out about  Figure 1.10 illustrates these relationships.
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Figure 1.10: Pdfs for ̂ with small and large values of SE(̂) True value of

 = 0

Unfortunately, se(̂) is not a practically useful measure of the precision

of ̂ because it depends on the unknown value of  To get a practically

useful measure of precision for ̂ we compute the estimated standard error

bse(̂) =pcvar(̂) = b√


(1.15)

which is just (1.14) with the unknown value of  replaced by the estimateb given by (1.9) .
Example 14 bse(̂) values for Microsoft, Starbucks and the S&P 500 index
For the Microsoft, Starbucks and S&P 500 estimates of ̂ the values of bse(̂)
using (1.15) are computed using the R commands

> nobs = nrow(returns.mat)

> se.muhat = sigmahat.vals/sqrt(nobs)

> se.muhat

sbux msft sp500

0.013586 0.010682 0.003785
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giving

bse(̂) = 01359√
100

= 001359

bse(̂) =
01068√
100

= 001068

bse(̂500) = 00379√
100

= 000379

Clearly, the mean return  is estimated more precisely for the S&P 500 index

than it is for Microsoft and Starbucks. This occurs because ̂500 is much

smaller than ̂ and ̂ It is useful to compare the magnitude of bse(̂)
to the value of ̂ to evaluate if ̂ is a precise estimate:

̂bse(̂)
=
002756

001068
= 2580

̂bse(̂) = 002777

001359
= 2043

̂500bse(̂500) = 001253

000378
= 3315

Here we see that ̂ and ̂ are over two times their estimated standard

error values, and ̂500 is more than three times its estimated standard error

value. ¥

The Sampling Distribution and Consistency

In the CER model,  ∼  ( 
2
 ) and since ̂ is an average of these

normal random variables, it is also normally distributed. The mean of ̂ is 

and its variance is
2

 Therefore, we can express the probability distribution

of ̂ as

̂ ∼ 

µ


2


¶
 (1.16)

The distribution for ̂ is centered at the true value  and the spread about

the average depends on the magnitude of 2  the variability of  and the

sample size,  . For a fixed sample size,  , the uncertainty in ̂ is larger

for larger values of 2  Notice that the variance of ̂ is inversely related to

the sample size  Given 2  var(̂) is smaller for larger sample sizes than
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Figure 1.11: (0 1 ) sampling distributions for ̂ for  = 1 10 and 50

for smaller sample sizes. This makes sense since we expect to have a more

precise estimator when we have more data. If the sample size is very large (as

 →∞) then var(̂) will be approximately zero and the normal distribution
of ̂ given by (1.16) will be essentially a spike at  In other words, if the

sample size is very large then we essentially know the true value of  Hence,

we have established that ̂ is a consistent estimator of  as the sample size

goes to infinity

The distribution of ̂, with  = 0 and 2 = 1 for various sample sizes is

illustrated in figure 1.11. Notice how fast the distribution collapses at  = 0

as  increases.

1.4.2 Confidence intervals for 

The precision of ̂ is best communicated by computing a confidence interval

for the unknown value of  A confidence interval is an interval estimate of 
such that we can put an explicit probability statement about the likelihood

that the interval covers 

The construction of an exact confidence interval for  is based on the
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following statistical result (see the appendix for details).

Result: Let {}=1 denote a stochastic process generated from the CER
model (1.1). Define the -ratio as

 =
̂ − bse(̂)  (1.17)

Then  ∼ −1 where −1 denotes a Student’s  random variable with  − 1
degrees of freedom.

The Student’s  distribution with   0 degrees of freedom is a symmetric

distribution centered at zero, like the standard normal. The tail-thickness

(kurtosis) of the distribution is determined by the degrees of freedom para-

meter  For values of  close to zero, the tails of the Student’s  distribution

are much fatter than the tails of the standard normal distribution. As  gets

large, the Student’s  distribution approaches the standard normal distribu-

tion.

For  ∈ (0 1) we compute a (1 − ) · 100% confidence interval for 
using (1.17) and the 1− 2 quantile (critical value) −1(1− 2) to give

Pr

µ
−−1(1− 2) ≤ ̂ − bse(̂) ≤ −1(1− 2)

¶
= 1− 

which can be rearranged as

Pr (̂ − −1(1− 2) · bse(̂) ≤  ≤ ̂ + −1(1− 2) · bse(̂)) = 1− 

Hence, the interval

[̂ − −1(1− 2) · bse(̂) ̂ + −1(1− 2) · bse(̂)] (1.18)

= ̂ ± −1(1− 2) · bse(̂)
covers the true unknown value of  with probability 1− 

For example, suppose we want to compute a 95% confidence interval for

 In this case  = 005 and 1−  = 095 Suppose further that  − 1 = 60
(five years of monthly return data) so that −1(1 − 2) = 60(0975) = 2

Then the 95% confidence for  is given by

̂ ± 2 · bse(̂) (1.19)
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The above formula for a 95% confidence interval is often used as a rule of

thumb for computing an approximate 95% confidence interval for moderate

sample sizes. It is easy to remember and does not require the computation

of the quantile −1(1 − 2) from the Student’s  distribution. It is also

an approximate 95% confidence interval that is based the asymptotic nor-

mality of ̂ Recall, for a normal distribution with mean  and variance 2

approximately 95% of the probability lies between ± 2
The coverage probability associated with the confidence interval for  is

based on the fact that the estimator ̂ is a random variable. Since confidence

interval is constructed as ̂±−1(1−2)· bse(̂) it is also a random variable.
An intuitive way to think about the coverage probability associated with the

confidence is to think about the game of horse shoes. The horse shoe is the

confidence interval and the parameter  is the post at which the horse shoe

is tossed. Think of playing game 100 times (i.e, simulate 100 samples of the

CER model). If the thrower is 95% accurate (if the coverage probability is

0.95) then 95 of the 100 tosses should ring the post (95 of the constructed

confidence intervals should contain the true value ).

Example 15 95% confidence intervals for  for Microsoft, Starbucks and

the S & P 500 index.

Consider computing 95% confidence intervals for  using (1.18) based on

the estimated results for the Microsoft, Starbucks and S&P 500 data. The

degrees of freedom for the Student’s  distribution is  − 1 = 99 The 97.5%
quantile, 99(0975) can be computed using the R function qt()

> qt(0.975, df=99)

[1] 1.984

Notice that this quantile is very close to 2 Then the exact 95% confidence

intervals are given by

 : 002756± 1984 · 001068 = [00064 00488]
 : 002777± 1984 · 001359 = [00008 00547]
500 : 001253± 1984 · 000379 = [00050 00200]

With probability 0.95, the above intervals will contain the true mean values

assuming the CER model is valid. The 95% confidence intervals for MSFT

and SBUX are fairly wide. The widths are almost 5%, with lower limits
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near 0% and upper limits near 5%. This means that with probability 0.95,

the true monthly expected return is somewhere between 0% and 5%. The

economic implications of a 0% expected return and a 5% expected return are

vastly different. In contrast, the 95% confidence interval for SP500 is about

half the width of the MSFT or SBUX confidence interval. The lower limit is

near 0.5% and the upper limit is near 2%. This clearly shows that the mean

return for SP500 is estimated much more precisely than the mean return for

MSFT or SBUX.

1.4.3 Interpreting [̂] se(̂) and Confidence Intervals

Using Monte Carlo Simulation

The exact meaning of unbiasedness, [̂] =  the interpretation of se(̂)

as a measure of precision, and the interpretation of the coverage probability

of a confidence interval can be a bit hard to grasp at first. Strictly speaking,

[̂] =  means that over an infinite number of repeated samples of {}=1
the average of the ̂ values computed over the infinite samples is equal to

the true value  The value of se(̂) represents the standard deviation of

these ̂ values. And the 95% confidence intervals for  will actually contain

 in 95% of the samples We can think of these hypothetical samples as

different Monte Carlo simulations of the CER model. In this way we can

approximate the computations involved in evaluating [̂] se(̂) and the

coverage probability of a confidence interval using a large, but finite, number

of Monte Carlo simulations.

To illustrate, consider the CER model

 = 005 +   = 1     100 (1.20)

 ∼ (0 (010)2)

Using Monte Carlo simulation, we can simulate  = 1000 samples of

size  = 100 from (1.20) giving the sample realizations {̃}100=1 for  =

1     1000 The first 10 of these simulated samples are illustrated in Figure

1.12. Notice that there is considerable variation in the simulated samples,

but that all of the simulated samples fluctuate about the true mean value

of  = 005 and have a typical deviation from the mean of about 010 For

each of the 1000 simulated samples the estimate ̂ is formed giving 1000

mean estimates {̂1     ̂1000} A histogram of these 1000 mean values is

illustrated in Figure 1.13. The histogram of the estimated means, ̂ can
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Figure 1.12: Ten simulated samples of size  = 100 from the CER model

 = 005 +   ∼ (0 (010)2)

be thought of as an estimate of the underlying pdf, (̂) of the estimator ̂

which we know from (1.16) is a normal pdf centered at [̂] =  = 005 with

se(̂) =
010√
100
= 001. This normal curve is superimposed on the histogram

in Figure 1.13. Notice that the center of the histogram is very close to the

true mean value  = 005 That is, on average over the 1000 Monte Carlo

samples the value of ̂ is about 0.05. In some samples, the estimate is too big

and in some samples the estimate is too small but on average the estimate is

correct. In fact, the average value of {̂1     ̂1000} from the 1000 simulated
samples is

̂ =
1

1000

1000X
=1

̂ = 004969

which is very close to the true value 005. If the number of simulated samples

is allowed to go to infinity then the sample average ̂ will be exactly equal
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to  = 005 :

lim
→∞

1



X
=1

̂ = [̂] =  = 005

The typical size of the spread about the center of the histogram represents

se(̂) and gives an indication of the precision of ̂ The value of se(̂) may

be approximated by computing the sample standard deviation of the 1000

̂ values:

̂̂ =

vuut 1

999

1000X
=1

(̂ − 004969)2 = 001041

Notice that this value is very close to se(̂) =
010√
100
= 001. If the number of

simulated sample goes to infinity then

lim
→∞

vuut 1

 − 1
X
=1

(̂ − ̂)2 = se(̂) = 010

The coverage probability of the 95% confidence interval for  can also be

illustrated using Monte Carlo simulation. For each simulation  the interval

̂ ± 100(0975) × bse(̂ ) is computed. The coverage probability is approxi-
mated by the fraction of intervals that contain (cover) the true  = 005

For the 1000 simulated samples, this fraction turns out to be 0.931. As the

number of simulations goes to infinity, the Monte Carlo coverage probability

will be equal to 0.95.

Example 16 Monte Carlo simulation using R

The R code to perform the Monte Carlo simulation presented in this section

is

> mu = 0.05

> sd = 0.10

> n.obs = 100

> n.sim = 1000

> set.seed(111)

> sim.means = rep(0,n.sim)

> mu.lower = rep(0,n.sim)

> mu.upper = rep(0,n.sim)
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Figure 1.13: Distribution of  computed from 1000 Monte Carlo simulations

from the CER model (1.20).

> qt.975 = qt(0.975, nobs-1)

> for (sim in 1:n.sim) {

+ sim.ret = rnorm(n.obs,mean=mu,sd=sd)

+ sim.means[sim] = mean(sim.ret)

+ se.muhat = sd(sim.ret)/sqrt(n.obs)

+ mu.lower[sim] = sim.means[sim]-qt.975*se.muhat

+ mu.upper[sim] = sim.means[sim]+qt.975*se.muhat

+ }

> mean(sim.means)

[1] 0.04969

> sd(sim.means)

[1] 0.01041

> in.interval = mu >= mu.lower & mu <= mu.upper

> sum(in.interval)/n.sim

[1] 0.931

¥
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1.4.4 Evaluating Consistency of ̂ using Monte Carlo

Simulation

Monte Carlo simulations can also be used to illustrate the asymptotic prop-

erty that ̂ is a consistent estimator of 

To be completed.

1.4.5 Statistical properties of the estimators of 2   
and 

To determine the statistical properties of ̂2  ̂ ̂ and ̂ we need to treat

them as a functions of the random variables {}=1 We could straightfor-
wardly derive the statistical properties of ̂ Unfortunately, the correspond-

ing derivations for ̂2  ̂ ̂ and ̂ are much messier and in many cases we

do not have simple exact results. Hence, we only state the results and give

references for the exact derivations.

Bias

Assuming that returns are generated by the CER model (1.1), the sample

variances and covariances are unbiased estimators,

[̂2 ] = 2 

[̂] = 

but the sample standard deviations and correlations are biased estimators,

[̂] 6= 

[̂] 6= 

The biases in ̂ and ̂ are very small and decreasing in  such that

bias(̂ ) = bias(̂ ) = 0 as  → ∞. The proofs of these results

are beyond the scope of this book and may be found, for example, in Gold-

berger (19xx). However, the results can be easily verified using Monte Carlo

methods.

Precision

The derivations of the variances of ̂2  ̂ ̂ and ̂ are complicated, and

the exact results are extremely messy and hard to work with. However, there
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are simple approximate formulas for the variances of ̂2  ̂ and ̂ based on

the CLT that are valid if the sample size,  is reasonably large.8 These large

sample approximate formulas are given by

se(̂2 ) ≈
√
22√

=

2p
2

 (1.21)

se(̂) ≈ √
2

 (1.22)

se() ≈
(1− 2)√


 (1.23)

where “≈” denotes approximately equal. The approximations are such that
the approximation error goes to zero as the sample size  gets very large.

As with the formula for the standard error of the sample mean, the formulas

for se(̂2 ) and se(̂) depend on 2  Larger values of 
2
 imply less precise

estimates of ̂2 and ̂ The formula for se() however, does not depend on

2 but rather depends on 2 and is smaller the closer 
2
 is to unity. Intu-

itively, this makes sense because as 2 approaches one the linear dependence

between  and  becomes almost perfect and this will be easily recogniz-

able in the data (scatterplot will almost follow a straight line). Additionally,

the formulas for the standard errors above are inversely related to the square

root of the sample size. Interestingly, se(̂) goes to zero the fastest and

se(̂2 ) goes to zero the slowest. Hence, for a fixed sample size, these formulas

suggest that  is generally estimated more precisely than 
2
 and  and 

is estimated generally more precisely than 2 

The above formulas (1.21) - (1.23) are not practically useful, however,

because they depend on the unknown quantities 2   and  Practically

useful formulas replace 2   and  by the estimates ̂
2
  ̂ and ̂ and give

8The large sample approximate formula for the variance of ̂ is too messy to work

with so we omit it here. In practice, we can use the bootstrap to provide an estimated

standard error for ̂ 
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rise to the estimated standard errors:

bse(̂2 ) ≈ ̂2p
2

 (1.24)

bse(̂) ≈ ̂√
2

 (1.25)

bse() ≈ (1− ̂2)√


 (1.26)

Example 17 Computing bse(̂2 ) bse(̂) and bse(̂) for Microsoft, Starbucks
and the S & P 500.

For the Microsoft, Starbucks and S&P 500 return data, the values of bse(̂2 )bse(̂) are computed using
> se.sigma2hat = sigma2hat.vals/sqrt(nobs/2)

> se.sigmahat = sigmahat.vals/sqrt(2*nobs)

> se.sigma2hat

sbux msft sp500

0.0026105 0.0016138 0.0002026

> se.sigmahat

sbux msft sp500

0.009607 0.007554 0.002676

which gives

bse(̂2) = (01359)
2p

1002
= 000261 bse(̂) = 01359√

2 · 100 = 000961

bse(̂2) =
(01068)

2p
1002

= 000161 bse(̂) =
01068√
2 · 100 = 000755

bse(̂2500) = (00379)
2p

1002
= 000020 bse(̂500) = 00379√

2 · 100 = 000268

Notice that ̂500 is estimated much more precisely than ̂ and ̂

Also notice that  is estimated more precisely than  The values of bse(̂)
relative to ̂ are much smaller than the values of bse(̂) to ̂
The values of bse(̂) are computed using
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> se.rhohat

sbux,msft sbux,sp500 msft,sp500

0.09229 0.08238 0.06919

which gives

bse(̂) =
1− (02777)2√

100
= 009229

bse(̂500) = 1− (04198)2√
100

= 008238

bse(̂500) =
1− (05551)2√

100
= 006919

These standard errors are moderate in size (relative to ̂) Notice that

500 has the smallest estimated standard error because ̂2500 is

closest to one.

Sampling distributions

The exact distributions of ̂2  ̂ and ̂ are difficult to derive.
9 However,

approximate normal distributions of the form (1.6) based on the CLT are

readily available:

̂2 ∼ 

µ
2 

44


¶


̂ ∼ 

µ


2
2

¶


̂ ∼ 

Ã


(1− ̂2)
2



!

These appoximate normal distributions can be used to compute approximate

confidence intervals for 2   and 

9For example, the exact sampling distribution of ( − 1)̂2 2 is chi-square with  − 1
degrees of freedom.
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Approximate Confidence Intervals for 2   and 

Approximate 95% confidence intervals for 2   and  are given by

̂2 ± 2 · bse(̂2 ) = ̂2 ± 2 ·
̂2p
2



̂ ± 2 · bse(̂) = ̂ ± 2 · ̂√
2

̂ ± 2 · bse(̂) = ̂ ± 2 ·
(1− ̂2)√



Example 18 95% confidence intervals for 2   and  for Microsoft, Star-

bucks and the S&P 500.

For the Microsoft, Starbucks and S&P 500 return data the approximate 95%

confidence intervals for 2 are

 : 001141± 2 · (000161) = [000818 001464]
 : 001846± 2 · (000261) = [001324 002368]
500 : 000143± 2 · (000020) = [000103 000184]

The approximate 95% confidence intervals for  are

 : 01068± 2 · (0007554) = [009172 01219]
 : 01359± 2 · (0009607) = [011665 01551]
500 : 00379± 2 · (0002676) = [003249 00432]

The approximate 95% confidence intervals for  are

  : 02777± 2 · (009229) = [009314 04623]
 500 : 05551± 2 · (006919) = [041674 06935]
500 : 04198± 2 · (008238) = [025499 05845]

Evaluating the Statistical Properties of ̂2 and ̂ by Monte Carlo

simulation

We can evaluate the statistical properties of ̂2 and ̂ by Monte Carlo sim-

ulation in the same way that we evaluated the statistical properties of ̂.
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Figure 1.14: Histograms of ̂2 and ̂ computed from  = 1000 Monte Carlo

samples from CER model.

Consider first the variability estimates ̂2 and ̂ We use the simulation

model (1.20) and  = 1000 simulated samples of size  = 50 to compute the

estimates {¡̂2¢1      ¡̂2¢1000} and {̂1     ̂1000} The histograms of these
values are displayed in figure 1.14. The histogram for the ̂2 values is bell-

shaped and slightly right skewed but is centered very close to 0010 = 2 The

histogram for the ̂ values is more symmetric and is centered near 010 = 

The average values of 2 and  from the 1000 simulations are

1

1000

1000X
=1

̂2 = 0009952

1

1000

1000X
=1

̂ = 009928

The sample standard deviation values of the Monte Carlo estimates of 2

and  give approximations to SD(̂2) and SD(̂)
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1.4.6 Evaluating the Statistical Properties of ̂ and

̂ by Monte Carlo simulation

To be completed

1.4.7 Estimating Value-at-Risk in the CER Model

To be completed

1.5 Further Reading

To be completed

1.6 Appendix

1.6.1 Proofs of Some Technical Results

Result: mse(̂ ) = [(̂ −[̂])2] +
³
[̂]− 

´2
= var(̂) + bias(̂ )2

Proof. Recall, mse(̂ ) = [(̂ − )2] Write

̂ −  = ̂ −[̂] + [̂]− 

Then

(̂ − )2 =
³
̂ −[̂]

´2
+ 2

³
̂ −[̂]

´³
[̂]− 

´
+
³
[̂]− 

´2


Taking expectations of both sides gives

mse(̂ ) = 
h³

̂ −[̂]
´i2

+

∙³
[̂]− 

´2¸
= var(̂) + bias(̂ )2
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1.6.2 The Chi-Square distribution with  degrees of

freedom

Let 1 2      be independent standard normal random variables. That

is,

 ∼  (0 1)  = 1     

Define a new random variable  such that

 = 21 + 22 + · · ·2 =
X
=1

2 

Then  is a chi-square random variable with  degrees of freedom. Such a

random variable is often denoted 2 and we use the notation  ∼ 2  The

pdf of  is illustrated in Figure xxx for various values of  Notice that 

is only allowed to take non-negative values. The pdf is highly right skewed

for small values of  and becomes symmetric as  gets large. The mean of

the distribution is

[] = [21 ] +[22 ] + · · ·[2 ] = 

since [2 ] = var() = 1

1.6.3 Student’s t distribution with  degrees of free-

dom

Let  be a standard normal random variable,  ∼ (0 1) and let  be

a chi-square random variable with  degrees of freedom,  ∼ 2  Assume

that  and  are independent. Define a new random variable  such that

 =
p




Then  is a Student’s t random variable with  degrees of freedom and we

use the notation  ∼  to indicate that  is distributed Student’s-t. Figure

xxx shows the pdf of  for various values of the degrees of freedom  Notice

that the pdf is symmetric about zero and has a bell shape like the normal.

The tail thickness of the pdf is determined by the degrees of freedom. For

small values of  , the tails are quite spread out and are thicker than the

tails of the normal. As  gets large the tails shrink and become close to the
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normal. In fact, as  → ∞ the pdf of the Student’s t converges to the pdf

of the normal.

The Student’s-t distribution is used heavily in statistical inference and

critical values from the distribution are often needed. Let  () denote the

critical value such that

Pr(   ()) = 

For example, if  = 10 and  = 0025 then 10(0025) = 2228; if  = 100

then 60(0025) = 200 Since the Student’s-t distribution is symmetric about

zero, we have that

Pr(− () ≤  ≤  ()) = 1− 2

For example, if  = 60 and  = 2 then 60(0025) = 2 and

Pr(−60(0025) ≤  ≤ 60(0025)) = Pr(−2 ≤  ≤ 2) = 1− 2(0025) = 095





Bibliography

[1] Campbell, Lo and MacKinley (1998). The Econometrics of Financial

Markets, Princeton University Press, Princeton, NJ.

49


