
Chapter 1

Review of Random Variables

Updated: January 16, 2015

This chapter reviews basic probability concepts that are necessary for the

modeling and statistical analysis of financial data.

1.1 Random Variables

We start with the basic definition of a random variable:

Definition 1 A Random variable  is a variable that can take on a given

set of values, called the sample space and denoted , where the likeli-

hood of the values in  is determined by ’s probability distribution

function (pdf).

Example 2 Future price of Microsoft stock

Consider the price of Microsoft stock next month. Since the price of Microsoft

stock next month is not known with certainty today, we can consider it a

random variable. The price next month must be positive and realistically

it can’t get too large. Therefore the sample space is the set of positive real

numbers bounded above by some large number:  = { :  ∈ [0 ]
  0}. It is an open question as to what is the best characterization of the
probability distribution of stock prices. The log-normal distribution is one

possibility.1 ¥
1If  is a positive random variable such that ln is normally distributed then  has a

log-normal distribution.

1



2 CHAPTER 1 REVIEW OF RANDOM VARIABLES

Example 3 Return on Microsoft stock

Consider a one-month investment in Microsoft stock. That is, we buy one

share of Microsoft stock at the end of month  − 1 (e.g., end of February)
and plan to sell it at the end of month  (e.g., end of March). The return

over month  on this investment,  = (−−1)−1 is a random variable
because we do not know what the price will be at the end of the month.

In contrast to prices, returns can be positive or negative and are bounded

from below by -100%. We can express the sample space as 
= { :  ∈

[−1 ]   0} The normal distribution is often a good approximation to
the distribution of simple monthly returns, and is a better approximation to

the distribution of continuously compounded monthly returns. ¥

Example 4 Up-down indicator variable

As a final example, consider a variable  defined to be equal to one if the

monthly price change on Microsoft stock, −−1 is positive, and is equal to
zero if the price change is zero or negative. Here, the sample space is the set

 = {0 1} If it is equally likely that the monthly price change is positive
or negative (including zero) then the probability that  = 1 or  = 0 is 05

This is an example of a bernoulli random variable. ¥
The next sub-sections define discrete and continuous random variables.

1.1.1 Discrete Random Variables

Consider a random variable generically denoted  and its set of possible

values or sample space denoted  

Definition 5 A discrete random variable  is one that can take on a finite

number of  different values  = {1 2     } or, at most, a countably
infinite number of different values  = {1 2    }

Definition 6 The pdf of a discrete random variable, denoted () is a func-

tion such that () = Pr( = ) The pdf must satisfy (i) () ≥ 0 for all
 ∈  ; (ii) () = 0 for all  ∈ ; and (iii)

P
∈ () = 1

Example 7 Annual return on Microsoft stock
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State of Economy  = Sample Space () = Pr( = )

Depression -0.30 0.05

Recession 0.0 0.20

Normal 0.10 0.50

Mild Boom 0.20 0.20

Major Boom 0.50 0.05

Table 1.1: Probability distribution for the annual return on Microsoft

Let  denote the annual return on Microsoft stock over the next year. We

might hypothesize that the annual return will be influenced by the general

state of the economy. Consider five possible states of the economy: depres-

sion, recession, normal, mild boom and major boom. A stock analyst might

forecast different values of the return for each possible state. Hence,  is

a discrete random variable that can take on five different values. Table 1.1

describes such a probability distribution of the return and a graphical repre-

sentation of the probability distribution is presented in Figure 1.1.

¥

The Bernoulli Distribution

Let  = 1 if the price next month of Microsoft stock goes up and  = 0 if

the price goes down (assuming it cannot stay the same). Then  is clearly

a discrete random variable with sample space  = {0 1} If the probability
of the stock price going up or down is the same then (0) = (1) = 12 and

(0) + (1) = 1

The probability distribution described above can be given an exact math-

ematical representation known as the Bernoulli distribution. Consider two

mutually exclusive events generically called “success” and “failure”. For ex-

ample, a success could be a stock price going up or a coin landing heads and a

failure could be a stock price going down or a coin landing tails. The process

creating the success or failure is called a Bernoulli trial. In general, let = 1

if success occurs and let  = 0 if failure occurs. Let Pr( = 1) =  where

0    1, denote the probability of success. Then Pr( = 0) = 1− is the
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Figure 1.1: Discrete distribution for Microsoft stock.

probability of failure. A mathematical model describing this distribution is

() = Pr( = ) = (1− )1−  = 0 1 (1.1)

When  = 0 (0) = 0(1 − )1−0 = 1 −  and when  = 1 (1) = 1(1 −
)1−1 = 

The Binomial Distribution

Consider a sequence of independent Bernoulli trials with success probability

 generating a sequence of 0− 1 variables indicating failures and successes.
A binomial random variable  counts the number of successes in  Bernoulli

trials, and is denoted  ∼ ( ). The sample space is  = {0 1     }
and

Pr( = ) =

µ




¶
(1− )−
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The term
¡




¢
is the binomial coefficient, and counts the number of ways 

objects can be chosen from  distinct objects. It is defined byµ




¶
=

!

(− )!!

where ! is the factorial of , or (− 1) · · · 2 · 1

Example 8 Binomial tree model for stock prices

To be completed.

1.1.2 Continuous Random Variables

Definition 9 A continuous random variable X is one that can take on any

real value. That is,  = { :  ∈ R}

Definition 10 The probability density function (pdf) of a continuous ran-

dom variable  is a nonnegative function  defined on the real line, such

that for any interval 

Pr( ∈ ) =

Z


()

That is, Pr( ∈ ) is the “area under the probability curve over the interval

” The pdf () must satisfy (i) () ≥ 0; and (ii) R∞−∞ () = 1

A typical “bell-shaped” pdf is displayed in Figure 1.2 and the area under

the curve between −2 and 1 represents Pr(−2 ≤   1). For a continuous

random variable, () 6= Pr( = ) but rather gives the height of the

probability curve at  In fact, Pr( = ) = 0 for all values of  That is,

probabilities are not defined over single points. They are only defined over

intervals. As a result, for a continuous random variable  we have

Pr( ≤  ≤ ) = Pr(   ≤ ) = Pr(    ) = Pr( ≤   )
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Figure 1.2: Pr(−2 ≤  ≤ 1) is represented by the area under the probability
curve.

The Uniform Distribution on an Interval

Let  denote the annual return on Microsoft stock and let  and  be two

real numbers such that   . Suppose that the annual return on Microsoft

stock can take on any value between  and . That is, the sample space is

restricted to the interval  = { ∈ R :  ≤  ≤ } Further suppose that
the probability that  will belong to any subinterval of  is proportional to

the length of the interval. In this case, we say that  is uniformly distributed

on the interval [ ] The pdf of  has a very simple mathematical form:

() =

⎧⎨⎩ 1
−

0

for  ≤  ≤ 

otherwise,

and is presented graphically in Figure 1.3. Notice that the area under the

curve over the interval [ ] (area of rectangle) integrates to one:Z 



1

− 
 =

1

− 

Z 



 =
1

− 
[]



 =
1

− 
[− ] = 1
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Figure 1.3: Uniform distribution over the interval [0,1]. That is,  ∼ (0 1).

Example 11 Uniform distribution on [−1 1]

Let  = −1 and  = 1 so that − = 2. Consider computing the probability
that the return will be between -50% and 50%.We solve

Pr(−50%    50%) =

Z 05

−05

1

2
 =

1

2
[]

05

−05 =
1

2
[05− (−05)] = 1

2


Next, consider computing the probability that the return will fall in the

interval [0 ] where  is some small number less than  = 1 :

Pr(0 ≤  ≤ ) =
1

2

Z 

0

 =
1

2
[]0 =

1

2


As  → 0 Pr(0 ≤  ≤ )→ Pr( = 0) Using the above result we see that

lim
→0

Pr(0 ≤  ≤ ) = Pr( = 0) = lim
→0

1

2
 = 0

Hence, probabilities are defined on intervals but not at distinct points. ¥
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The Standard Normal Distribution

The normal or Gaussian distribution is perhaps the most famous and most

useful continuous distribution in all of statistics. The shape of the normal

distribution is the familiar “bell curve”. As we shall see, it can be used to de-

scribe the probabilistic behavior of stock returns although other distributions

may be more appropriate.

If a random variable  follows a standard normal distribution then we

often write ∼ (0 1) as short-hand notation. This distribution is centered

at zero and has inflection points at ±12 The pdf of a normal random variable
is given by

() =
1√
2
· − 1

2
2 −∞ ≤  ≤ ∞ (1.2)

It can be shown via the change of variables formula in calculus that the area

under the standard normal curve is one:Z ∞

−∞

1√
2
· −1

2
2 = 1

The standard normal distribution is illustrated in Figure 1.4. Notice that

the distribution is symmetric about zero; i.e., the distribution has exactly

the same form to the left and right of zero.

The normal distribution has the annoying feature that the area under the

normal curve cannot be evaluated analytically. That is

Pr( ≤  ≤ ) =

Z 



1√
2
· − 1

2
2

does not have a closed form solution. The above integral must be computed

by numerical approximation. Areas under the normal curve, in one form or

another, are given in tables in almost every introductory statistics book and

standard statistical software can be used to find these areas. Some useful

approximate results are:

Pr(−1 ≤  ≤ 1) ≈ 067
Pr(−2 ≤  ≤ 2) ≈ 095
Pr(−3 ≤  ≤ 3) ≈ 099

2An inflection point is a point where a curve goes from concave up to concave down,

or vice versa.
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Figure 1.4: Standard normal density.

1.1.3 The Cumulative Distribution Function

Definition 12 The cumulative distribution function (cdf) of a random vari-

able  (discrete or continuous), denoted   is the probability that  ≤  :

() = Pr( ≤ ) −∞ ≤  ≤ ∞

¥

The cdf has the following properties:

(i) If 1  2 then (1) ≤ (2)

(ii) (−∞) = 0 and (∞) = 1

(iii) Pr(  ) = 1− ()

(iv) Pr(1   ≤ 2) = (2)− (1)
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(v)  0
() =



() = () if  is a continuous random variable and

 () is continuous and differentiable.

Example 13  () for a discrete random variable

The cdf for the discrete distribution of Microsoft from Table 1.1 is given by

() =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

005

025

075

095

1

  −03
−03 ≤   0

0 ≤   01

01 ≤   02

02 ≤   05

  05

and is illustrated in Figure 1.5. ¥
Example 14 () for a uniform random variable

The cdf for the uniform distribution over [ ] can be determined analytically:

() = Pr(  ) =

Z 

−∞
()

=
1

− 

Z 



 =
1

− 
[] =

− 

− 


We can determine the pdf of  directly from the cdf via

() =  0
() =




() =

1

− 


¥
Example 15  () for a standard normal random variable

The cdf of standard normal random variable  is used so often in statistics

that it is given its own special symbol:

Φ() = () =

Z 

−∞

1√
2

−
1
2
2 (1.3)

The cdf Φ(), however, does not have an analytic representation like the cdf

of the uniform distribution and so the integral in (1.3) must be approximated

using numerical techniques. A graphical representation of Φ() is given in

Figure 1.6. ¥
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Figure 1.5: CDF of Discrete Distribution for Microsoft Stock Return.

1.1.4 Quantiles of the Distribution of a Random Vari-

able

Consider a random variable  with continuous cdf () For 0 ≤  ≤ 1
the 100 · % quantile of the distribution for  is the value  that satisfies

() = Pr( ≤ ) = 

For example, the 5% quantile of  005 satisfies

(005) = Pr( ≤ 005) = 005

The median of the distribution is 50% quantile. That is, the median, 05

satisfies

(05) = Pr( ≤ 05) = 05

If  is invertible
3 then  may be determined analytically as

 = −1 () (1.4)

3The inverse of  () will exist if  is strictly increasing and is continuous.
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Figure 1.6: Standard normal cdf Φ()

where −1 denotes the inverse function of   Hence, the 5% quantile and

the median may be determined from

005 = −1 (05) 05 = −1 (5)

In inverse cdf −1 is sometimes called the quantile function.

Example 16 Quantiles from a uniform distribution

Let  ∼  [ ] where    Recall, the cdf of  is given by

() =
− 

− 
  ≤  ≤ 

which is continuous and strictly increasing. Given  ∈ [0 1] such that

() = , solving for  gives the inverse cdf:

 = −1 () = (− ) +  (1.5)
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Using (1.5), the 5% quantile and median, for example, are given by

005 = −1 (05) = 05(− ) +  = 05+ 95

05 = −1 (5) = 5(− ) +  = 5(+ )

If  = 0 and  = 1 then 005 = 005 and 05 = 05 ¥

Example 17 Quantiles from a standard normal distribution

Let  ∼ (0 1) The quantiles of the standard normal distribution are

determined by solving

 = Φ−1() (1.6)

where Φ−1 denotes the inverse of the cdf Φ This inverse function must be
approximated numerically and is available in most spreadsheets and statisti-

cal software. Using the numerical approximation to the inverse function, the

1%, 2.5%, 5%, 10% quantiles and median are given by

001 = Φ−1(01) = −233 0025 = Φ−1(025) = −196
005 = Φ−1(05) = −1645 010 = Φ−1(10) = −128
05 = Φ−1(5) = 0

Often, the standard normal quantile is denoted  ¥

1.1.5 R Functions for Discrete and Continuous Distri-

butions

R has built-in functions for a number of discrete and continuous distributions.

These are summarized in Table 1.2. For each distribution, there are four

functions starting with d, p, q and r that compute density (pdf) values,

cumulative probabilities (cdf), quantiles (inverse cdf) and random draws,

respectively. Consider, for example, the functions associated with the normal

distribution. The functions dnorm(), pnorm() and qnorm() evaluate the

standard normal density (1.2), the cdf (1.3), and the inverse cdf or quantile

function (1.6), respectively, with the default values mean=0 and sd = 1. The

function rnorm() returns a specified number of simulated values from the

normal distribution.
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Distribution Function (root) Parameters Defaults

beta beta shape1, shape2 _, _

binomial binom size, prob _, _

Cauchy cauchy location, scale 0, 1

chi-squared chisq df, ncp _, 1

F f df1, df2 _, _

gamma gamma shape, rate, scale _, 1, 1/rate

geometric geom prob _

hyper-geometric hyper m, n, k _, _, _

log-normal lnorm meanlog, sdlog 0, 1

logistic logis location, scale 0, 1

negative binomial nbinom size, prob, mu _, _, _

normal norm mean, sd 0, 1

Poisson pois Lambda 1

Student’s t t df, ncp _, 1

uniform unif min, max 0, 1

Weibull weibull shape, scale _, 1

Wilcoxon wilcoxon m, n _, _

Table 1.2: Probability distributions in base R.
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Finding Areas Under the Normal Curve Most spreadsheet and sta-

tistical software packages have functions for finding areas under the nor-

mal curve. Let  denote a standard normal random variable. Some tables

and functions give Pr(0 ≤  ≤ ) for various values of   0 some give

Pr( ≥ ) and some give Pr( ≤ ) Given that the total area under

the normal curve is one and the distribution is symmetric about zero the

following results hold:

• Pr( ≤ ) = 1− Pr( ≥ ) and Pr( ≥ ) = 1− Pr( ≤ )

• Pr( ≥ ) = Pr( ≤ −)
• Pr( ≥ 0) = Pr( ≤ 0) = 05

The following examples show how to compute various probabilities.

Example 18 Finding areas under the normal curve using R

First, consider finding Pr( ≥ 2). By the symmetry of the normal distribu-
tion, Pr( ≥ 2) = Pr( ≤ −2) = Φ(−2) In R use
> pnorm(-2)

[1] 0.0228

Next, consider finding Pr(−1 ≤  ≤ 2) Using the cdf, we compute Pr(−1 ≤
 ≤ 2) = Pr( ≤ 2)− Pr( ≤ −1) = Φ(2)−Φ(−1) In R use
> pnorm(2) - pnorm(-1)

[1] 0.8186

Finally, using R the exact values for Pr(−1 ≤  ≤ 1) Pr(−2 ≤  ≤ 2) and
Pr(−3 ≤  ≤ 3) are
> pnorm(1) - pnorm(-1)

[1] 0.6827

> pnorm(2) - pnorm(-2)

[1] 0.9545

> pnorm(3) - pnorm(-3)

[1] 0.9973

¥
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Plotting Distributions

When working with a probability distribution, it is a good idea to make plots

of the pdf or cdf to reveal important characteristics. The following examples

illustrate plotting distributions using R.

Example 19 Plotting the standard normal curve

The graphs of the standard normal pdf and cdf in Figures 1.4 and 1.6 were

created using the following R code:

# plot pdf

> x.vals = seq(-4, 4, length=150)

> plot(x.vals, dnorm(x.vals), type="l", lwd=2, col="blue",

+ xlab="x", ylab="pdf")

# plot cdf

> plot(x.vals, pnorm(x.vals), type="l", lwd=2, col="blue",

+ xlab="x", ylab="CDF")

¥

Example 20 Shading a region under the standard normal curve

Figure 1.2 showing Pr(−2 ≤  ≤ 1) as a red shaded area is created with the
following code

> lb = -2

> ub = 1

> x.vals = seq(-4, 4, length=150)

> d.vals = dnorm(x.vals)

# plot normal density

> plot(x.vals, d.vals, type="l", xlab="x", ylab="pdf")

> i = x.vals >= lb & x.vals <= ub

# add shaded region between -2 and 1

> polygon(c(lb, x.vals[i], ub), c(0, d.vals[i], 0), col="red")

¥
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1.1.6 Shape Characteristics of Probability Distributions

Very often we would like to know certain shape characteristics of a probability

distribution. We might want to know where the distribution is centered, and

how spread out the distribution is about the central value. We might want to

know if the distribution is symmetric about the center or if the distribution

has a long left or right tail. For stock returns we might want to know about

the likelihood of observing extreme values for returns representing market

crashes. This means that we would like to know about the amount of proba-

bility in the extreme tails of the distribution. In this section we discuss four

important shape characteristics of a probability distribution:

1. expected value (mean): measures the center of mass of a distribution

2. variance and standard deviation: measures the spread about the mean

3. skewness: measures symmetry about the mean

4. kurtosis: measures “tail thickness”

Expected Value

The expected value of a random variable  denoted [] or   measures

the center of mass of the pdf. For a discrete random variable  with sample

space  , the expected value is defined as

 = [] =
X
∈

 · Pr( = ) (1.7)

Eq. (1.7) shows that [] is a probability weighted average of the possible

values of 

Example 21 Expected value of discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1.1,

the expected return is computed as:

[] = (−03) · (005) + (00) · (020) + (01) · (05) + (02) · (02) + (05) · (005)
= 010

¥
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Example 22 Expected value of Bernoulli and binomial random variables

Let  be a Bernoulli random variable with success probability  Then

[] = 0 · (1− ) + 1 ·  = 

That is, the expected value of a Bernoulli random variable is its probability

of success. Now, let  ∼ ( ) It can be shown that

[ ] =

X
=0



µ




¶
(1− )− =  (1.8)

¥
For a continuous random variable  with pdf () the expected value is

defined as

 = [] =

Z ∞

−∞
 · () (1.9)

Example 23 Expected value of a uniform random variable

Suppose  has a uniform distribution over the interval [ ] Then

[] =
1

− 

Z 



 =
1

− 

∙
1

2
2
¸


=
1

2(− )

£
2 − 2

¤
=
(− )(+ )

2(− )
=

+ 

2


If  = −1 and  = 1 then [] = 0 ¥

Example 24 Expected value of a standard normal random variable

Let  ∼ (0 1). Then it can be shown that

[] =

Z ∞

−∞
 · 1√

2
−

1
2
2 = 0

Hence, the standard normal distribution is centered at zero. ¥
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Expectation of a Function of a Random Variable

The other shape characteristics of the distribution of a random variable 

are based on expectations of certain functions of . Let () denote some

function of the random variable . If  is a discrete random variable with

sample space  then

[()] =
X
∈

() · Pr( = ) (1.10)

and if  is a continuous random variable with pdf  then

[()] =

Z ∞

−∞
() · () (1.11)

Variance and Standard Deviation

The variance of a random variable , denoted var() or 2  measures the

spread of the distribution about the mean using the function () = ( −
)

2 If most values of  are close to  then on average ( − )
2 will be

small. In contrast, if many values of  are far below and/or far above 
then on average ( − )

2 will be large Squaring the deviations about 
guarantees a positive value. The variance of  is defined as

2 = var() = [( − )
2] (1.12)

Because 2 represents an average squared deviation, it is not in the same

units as  The standard deviation of  denoted sd() or   is the square

root of the variance and is in the same units as . For “bell-shaped” distri-

butions,  measures the typical size of a deviation from the mean value.

The computation of (1.12) can often be simplified by using the result

var() = [( − )
2] = [2]− 2 (1.13)

Example 25 Variance and standard deviation for a discrete random vari-

able

Using the discrete distribution for the return on Microsoft stock in Table 1.1

and the result that  = 01, we have

var() = (−03− 01)2 · (005) + (00− 01)2 · (020) + (01− 01)2 · (05)
+(02− 01)2 · (02) + (05− 01)2 · (005)

= 0020
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Alternatively, we can compute var() using (1.13)

[2]− 2 = (−03)2 · (005) + (00)2 · (020) + (01)2 · (05)
+ (02)2 · (02) + (05)2 · (005)− (01)2
= 0020

The standard deviation is sd() =  =
√
0020 = 0141Given that the

distribution is fairly bell-shaped we can say that typical values deviate from

the mean value of 10% by about 14.1%. ¥
Example 26 Variance and standard deviation of a Bernoulli and binomial

random variables

Let  be a Bernoulli random variable with success probability  Given that

 =  it follows that

var() = (0− )2 · (1− ) + (1− )2 · 
= 2(1− ) + (1− )2

= (1− ) [ + (1− )]

= (1− )

sd() =
p
(1− )

Now, let  ∼ ( ) It can be shown that

var( ) = (1− )

and so sd( ) =
p
(1− ) ¥

Example 27 Variance and standard deviation of a uniform random variable

Let  ∼  [ ] Using (1.13) and  =
+
2
, after some algebra, it can be

shown that

var() = [2]− 2 =
1

− 

Z 



2−
µ
+ 

2

¶2
=
1

12
(− )2

and sd() = (− )
√
12

Example 28 Variance and standard deviation of a standard normal random

variable

Let  ∼ (0 1)Here,  = 0 and it can be shown that

2 =

Z ∞

−∞
2 · 1√

2
−

1
2
2 = 1

It follows that sd() = 1 ¥
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The General Normal Distribution

Recall, if  has a standard normal distribution then [] = 0 var() = 1

A general normal random variable  has [] =  and var() = 2 and

is denoted  ∼ (  
2
) Its pdf is given by

() =
1p
22

exp

½
− 1

22
(− )

2

¾
 −∞ ≤  ≤ ∞ (1.14)

Showing that [] =  and var() = 2 is a bit of work and is good

calculus practice. As with the standard normal distribution, areas under

the general normal curve cannot be computed analytically. Using numerical

approximations, it can be shown that

Pr( −      + ) ≈ 067
Pr( − 2     + 2) ≈ 095
Pr( − 3     + 3) ≈ 099

Hence, for a general normal random variable about 95% of the time we expect

to see values within ± 2 standard deviations from its mean. Observations

more than three standard deviations from the mean are very unlikely.

Example 29 Normal distribution for monthly returns

Let  denote the monthly return on an investment in Microsoft stock, and

assume that it is normally distributed with mean  = 001 and standard

deviation  = 010 That is,  ∼ (001 (010)2) Notice that 2 = 001

and is not in units of return per month. Figure 1.7 illustrates the distribution.

Notice that essentially all of the probability lies between −04 and 04 Using
the R function pnorm(), we can easily compute the probabilities Pr( 

−05) Pr(  0) Pr(  05) and Pr(  1):

> pnorm(-0.5, mean=0.01, sd=0.1)

[1] 1.698e-07

> pnorm(0, mean=0.01, sd=0.1)

[1] 0.4602

> 1 - pnorm(0.5, mean=0.01, sd=0.1)

[1] 4.792e-07

> 1 - pnorm(1, mean=0.01, sd=0.1)

[1] 0
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Figure 1.7: Normal distribution for the monthly returns on Microsoft:  ∼
(001 (010)2)

Using the R function qnorm(), we can find the quantiles 001 005 095 and

099:

> a.vals = c(0.01, 0.05, 0.95, 0.99)

> qnorm(a.vals, mean=0.01, sd=0.10)

[1] -0.2226 -0.1545 0.1745 0.2426

Hence, over the next month, there are 1% and 5% chances of losing more than

22.2% and 15.5%, respectively. In addition, there are 5% and 1% chances of

gaining more than 17.5% and 24.3%, respectively.

¥

Example 30 Risk-return tradeoff

Consider the following investment problem. We can invest in two non-

dividend paying stocks, Amazon and Boeing, over the next month. Let 
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Figure 1.8: Risk-return tradeoff between one-month investments in Amazon

and Boeing stock.

denote the monthly return on Amazon and  denote the monthly return

on Boeing. Assume that  ∼ (002 (010)2) and  ∼ (001 (005)2)

Figure 1.8 shows the pdfs for the two returns. Notice that  = 002   =

001 but also that  = 010   = 005. The return we expect on Amazon

is bigger than the return we expect on Boeing but the variability Amazon’s

return is also greater than the variability of Boeing’s return. The high return

variability (volatility) of Amazon reflects the higher risk associated with in-

vesting in Amazon compared to investing in Boeing. If we invest in Boeing

we get a lower expected return, but we also get less return variability or

risk. This example illustrates the fundamental “no free lunch” principle of

economics and finance: you can’t get something for nothing. In general, to

get a higher expected return you must be prepared to take on higher risk.

Example 31 Why the normal distribution may not be appropriate for simple

returns
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Let  denote the simple annual return on an asset, and suppose that  ∼
(005 (050)2) Because asset prices must be non-negative,  must always

be larger than −1 However, the normal distribution is defined for −∞ ≤
 ≤ ∞ and based on the assumed normal distribution Pr(  −1) = 0018
That is, there is a 1.8% chance that  is smaller than −1 This implies that
there is a 1.8% chance that the asset price at the end of the year will be

negative! This is why the normal distribution may not appropriate for simple

returns. ¥

Example 32 The normal distribution is more appropriate for continuously

compounded returns

Let  = ln(1+) denote the continuously compounded annual return on an

asset, and suppose that  ∼ (005 (050)2) Unlike the simple return, the

continuously compounded return can take on values less than −1 In fact, 
is defined for −∞ ≤  ≤ ∞ For example, suppose  = −2 This implies
a simple return of  = −2 − 1 = −08654 Then Pr( ≤ −2) = Pr( ≤
−0865) = 000002. Although the normal distribution allows for values of 
smaller than −1 the implied simple return  will always be greater than

−1 ¥

The Log-Normal distribution

Let  ∼ (  
2
) which is defined for −∞    ∞ The log-normally

distributed random variable  is determined from the normally distributed

random variable  using the transformation  =   In this case, we say

that  is log-normally distributed and write

 ∼ ln(  2) 0   ∞ (1.15)

The pdf of the log-normal distribution for  can be derived from the normal

distribution for  using the change-of-variables formula from calculus and is

given by

() =
1


√
2


− (ln − )2

22
 (1.16)

4If  = −∞ then  =  − 1 = −∞ − 1 = 0− 1 = −1
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Due to the exponential transformation,  is only defined for non-negative

values. It can be shown that

 = [ ] = +
2
2 (1.17)

2 = var( ) = 2+
2
 (

2
 − 1)

Example 33 Log-normal distribution for simple returns

Let  = ln(−1) denote the continuously compounded monthly return on
an asset and assume that  ∼ (005 (050)2) That is,  = 005 and  =

050 Let  =
−−1


denote the simple monthly return. The relationship

between  and  is given by  = ln(1 + ) and 1 +  =  Since 
is normally distributed 1 +  is log-normally distributed. Notice that the

distribution of 1 +  is only defined for positive values of 1 +  This is

appropriate since the smallest value that  can take on is −1 Using (1.17),
the mean and variance for 1 + are given by

1+ = 005+(05)
22 = 1191

21+ = 2(005)+(05)
2

((05)
2 − 1) = 0563

The pdfs for  and 1 + are shown in Figure 1.9. ¥

Skewness

The skewness of a random variable  denoted skew() measures the sym-

metry of a distribution about its mean value using the function () =

( − )
33  where 

3
 is just sd() raised to the third power:

skew() =
[( − )

3]

3
(1.18)

When  is far below its mean (−)3 is a big negative number, and when
 is far above its mean ( − )

3 is a big positive number. Hence, if there

are more big values of  below  then skew()  0 Conversely, if there

are more big values of  above  then skew()  0 If  has a symmetric

distribution then skew() = 0 since positive and negative values in (1.18)

cancel out. If skew()  0 then the distribution of  has a “long right tail”

and if skew()  0 the distribution of  has a “long left tail”. These cases

are illustrated in Figure xxx.

insert figure xxx here
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Figure 1.9: Normal distribution for  and log-normal distribution for 1+ =



Example 34 Skewness for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1,

the results that  = 01 and  = 0141, we have

skew() = [(−03− 01)3 · (005) + (00− 01)3 · (020) + (01− 01)3 · (05)
+(02− 01)3 · (02) + (05− 01)3 · (005)](0141)3

= 00

¥

Example 35 Skewness for a normal random variable

Suppose  has a general normal distribution with mean  and variance

2 . Then it can be shown that

skew() =

Z ∞

−∞

(− )
3

3
· 1√
22


− 1

22


(−)2
 = 0
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This result is expected since the normal distribution is symmetric about it’s

mean value   ¥

Example 36 Skewness for a log-Normal random variable

Let  =   where  ∼ (  
2
) be a log-normally distributed random

variable with parameters  and 2  Then it can be shown that

skew( ) =
³


2
 + 2

´p


2
 − 1  0

Notice that skew( ) is always positive, indicating that the distribution of 

has a long right tail, and that it is an increasing function of 2  This positive

skewness is illustrated in Figure 1.9. ¥

Kurtosis

The kurtosis of a random variable  denoted kurt() measures the thick-

ness in the tails of a distribution and is based on () = ( − )
44 :

kurt() =
[( − )

4]

4
 (1.19)

where 4 is just sd() raised to the fourth power. Since kurtosis is based

on deviations from the mean raised to the fourth power, large deviations

get lots of weight. Hence, distributions with large kurtosis values are ones

where there is the possibility of extreme values. In contrast, if the kurtosis

is small then most of the observations are tightly clustered around the mean

and there is very little probability of observing extreme values. Figure xxx

illustrates distributions with large and small kurtosis values.

Insert Figure Here

Example 37 Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1,

the results that  = 01 and  = 0141, we have

kurt() = [(−03− 01)4 · (005) + (00− 01)4 · (020) + (01− 01)4 · (05)
+(02− 01)4 · (02) + (05− 01)4 · (005)](0141)4

= 65

¥
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Example 38 Kurtosis for a normal random variable

Suppose  has a general normal distribution mean  and variance 2 .

Then it can be shown that

kurt() =

Z ∞

−∞

(− )
4

4
· 1p

22

−1
2
(
−


)2

 = 3

Hence a kurtosis of 3 is a benchmark value for tail thickness of bell-shaped

distributions. If a distribution has a kurtosis greater than 3 then the distrib-

ution has thicker tails than the normal distribution and if a distribution has

kurtosis less than 3 then the distribution has thinner tails than the normal.

¥
Sometimes the kurtosis of a random variable is described relative to the

kurtosis of a normal random variable. This relative value of kurtosis is re-

ferred to as excess kurtosis and is defined as

ekurt() = kurt()− 3 (1.20)

If the excess kurtosis of a random variable is equal to zero then the random

variable has the same kurtosis as a normal random variable. If excess kurtosis

is greater than zero, then kurtosis is larger than that for a normal; if excess

kurtosis is less than zero, then kurtosis is less than that for a normal.

The Student’s-t Distribution The kurtosis of a random variable gives

information on the tail thickness of its distribution. The normal distribu-

tion, with kurtosis equal to three, gives a benchmark for the tail thickness

of symmetric distributions. A distribution similar to the standard normal

distribution but with fatter tails, and hence larger kurtosis, is the Student’s

t distribution. If  has a Student’s t distribution with degrees of freedom

parameter , denoted  ∼  then its pdf has the form

() =
Γ
¡
+1
2

¢
√
Γ

¡

2

¢ µ1 + 2



¶−( +12 )
 −∞   ∞   0 (1.21)
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Figure 1.10: Student’s t density with  = 1 5 10 and 60

where Γ() =
R∞
0

−1− denotes the gamma function. It can be shown
that

[] = 0   1

var() =


 − 2    2
skew() = 0   3

kurt() =
6

 − 4 + 3   4

The parameter  controls the scale and tail thickness of distribution. If  is

close to four, then the kurtosis is large and the tails are thick. If   4 then

kurt() =∞ As  →∞ the Student’s t pdf approaches that of a standard

normal random variable and kurt() = 3. Figure 1.10 shows plots of the

Student’s t density for various values of  as well as the standard normal

density.

Example 39 Computing tail probabilities and quantiles from the Student’s
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t distribution

The R functions pt() and qt() can be used to compute the cdf and quantiles

of a Student’s t random variable. For  = 1 2 5 10 60 100 and ∞ the 1%

quantiles can be computed using

> v = c(1, 2, 5, 10, 60, 100, Inf)

> qt(0.01, df=v)

[1] -31.821 -6.965 -3.365 -2.764 -2.390 -2.364 -2.326

For  = 1 2 5 10 60 100 and ∞ the values of Pr(  −3) are

> pt(-3, df=v)

[1] 0.102416 0.047733 0.015050 0.006672 0.001964 0.001704 0.001350

¥

1.1.7 Linear Functions of a Random Variable

Let  be a random variable either discrete or continuous with [] =  

var() = 2  and let  and  be known constants. Define a new random

variable  via the linear function of 

 = () =  + 

Then the following results hold:

 = [ ] =  · [] +  =  ·  + 

2 = var( ) = 2var() = 22 

 = sd( ) =  · sd() =  ·  

The first result shows that expectation is a linear operation. That is,

[ + ] = [] + 

The second result shows that adding a constant to  does not affect its

variance, and that the effect of multiplying  by the constant  increases

the variance of  by the square of  These results will be used often enough

that it instructive to go through the derivations.



1.1 RANDOM VARIABLES 31

Consider the first result. Let  be a discrete random variable. By the

definition of [()] with () = +  we have

[ ] =
X
∈

(+ ) · Pr( = )

= 
X
∈

 · Pr( = ) + 
X
∈

Pr( = )

=  ·[] +  · 1
=  ·  + 

If  is a continuous random variable then by the linearity of integration

[ ] =

Z ∞

−∞
(+ )() = 

Z ∞

−∞
()+ 

Z ∞

−∞
()

= [] + 

Next consider the second result. Since  =  +  we have

var( ) = [( − )
2]

= [( + − ( + ))2]

= [(( − ) + (− ))2]

= [2( − )
2]

= 2[( − )
2] (by the linearity of [·])

= 2var()

Notice that the derivation of the second result works for discrete and contin-

uous random variables.

A normal random variable has the special property that a linear function

of it is also a normal random variable. The following proposition establishes

the result.

Proposition 40 Let  ∼ (  
2
) and let  and  be constants. Let

 =  +  Then  ∼ ( +  22)

The above property is special to the normal distribution and may or may

not hold for a random variable with a distribution that is not normal.

Example 41 Standardizing a Random Variable
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Let  be a random variable with [] =  and var() = 2  Define a

new random variable  as

 =
 − 


=
1


 − 




which is a linear function  +  where  = 1

and  = −


 This transfor-

mation is called standardizing the random variable  since

[] =
1


[]− 


=

1


 −




= 0

var() =

µ
1



¶2
var() =

2
2

= 1

Hence, standardization creates a new random variable with mean zero and

variance 1. In addition, if  is normally distributed then  ∼ (0 1) ¥

Example 42 Computing probabilities using standardized random variables

Let  ∼ (2 4) and suppose we want to find Pr(  5) but we only

know probabilities associated with a standard normal random variable  ∼
(0 1) We solve the problem by standardizing  as follows:

Pr (  5) = Pr

µ
 − 2√
4


5− 2√
4

¶
= Pr

µ
 

3

2

¶
= 006681

¥
Standardizing a random variable is often done in the construction of test

statistics. For example, the so-called t-statistic or t-ratio used for testing sim-

ple hypotheses on coefficients is constructed by the standardization process.

A non-standard random variable  with mean  and variance 
2
 can

be created from a standard random variable via the linear transformation:

 =  +  ·  (1.22)

This result is useful for modeling purposes as illustrated in the next example.

Example 43 Quantile of general normal random variable
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Let  ∼ (  
2
) Quantiles of  can be conveniently computed using

 =  +  (1.23)

where  ∈ (0 1) and  is the ×100% quantile of a standard normal random
variable. This formula is derived as follows. By the definition  and (1.22)

 = Pr( ≤ ) = Pr ( +  ·  ≤  +  · ) = Pr( ≤ + ·)

which implies (1.23).

Example 44 Constant expected return model for asset returns

Let  denote the monthly continuously compounded return on an asset, and

assume that  ∼ ( 
2
). Then  can be expressed as

 =  +  ·   ∼ (0 1)

The random variable  can be interpreted as representing the random news

arriving in a given month that makes the observed return differ from its

expected value  The fact that  has mean zero means that news, on average,

is neutral. The value of  represents the typical size of a news shock. The

bigger is  the larger is the impact of a news shock and vice-versa. ¥

1.1.8 Value at Risk: An Introduction

As an example of working with linear functions of a normal random variable,

and to illustrate the concept of Value-at-Risk (VaR), consider an investment

of $10,000 in Microsoft stock over the next month. Let  denote the monthly

simple return on Microsoft stock and assume that  ∼ (005 (010)2).

That is, [] =  = 005 and var() = 2 = (010)
2 Let 0 denote the

investment value at the beginning of the month and1 denote the investment

value at the end of the month. In this example, 0 = $10 000 Consider the

following questions:

(i) What is the probability distribution of end of month wealth, 1?

(ii) What is the probability that end of month wealth is less than $9 000

and what must the return on Microsoft be for this to happen?
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(iii) What is the loss in dollars that would occur if the return on Microsoft

stock is equal to its 5% quantile, 05? That is, what is the monthly 5%

VaR on the $10 000 investment in Microsoft?

To answer (i), note that end of month wealth, 1 is related to initial

wealth 0 and the return on Microsoft stock  via the linear function

1 =0(1 +) =0 +0 = $10 000 + $10 000 ·
Using the properties of linear functions of a random variable we have

[1] =0 +0[] = $10 000 + $10 000(005) = $10 500

and

var(1) = (0)
2var() = ($10 000)2(010)2

sd(1) = ($10 000)(010) = $1 000

Further, since  is assumed to be normally distributed it follows that 1 is

normally distributed:

1 ∼ ($10 500 ($1 000)2)

To answer (ii), we use the above normal distribution for 1 to get

Pr(1  $9 000) = 0067

To find the return that produces end of month wealth of $9 000 or a loss of

$10 000− $9 000 = $1 000 we solve

 =
$9 000− $10 000

$10 000
= −010

If the monthly return on Microsoft is −10% or less, then end of month wealth
will be $9 000 or less. Notice that  = −010 is the 67% quantile of the

distribution of  :

Pr(  −010) = 0067
Question (iii) can be answered in two equivalent ways. First, we use

 ∼ (005 (010)2) and solve for the 5% quantile of Microsoft Stock using

(1.23)5:

Pr(  05) = 005

⇒ 05 =  +  · 05 = 005 + 010 · (−1645) = −0114
5Using R, 05 = (005) = −1645
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That is, with 5% probability the return on Microsoft stock is −114% or

less. Now, if the return on Microsoft stock is −114% the loss in investment

value is $10 000 · (0114) = $1 144 Hence, $1 144 is the 5% VaR over the

next month on the $10 000 investment in Microsoft stock. For the second

method, use1 ~($10 500 ($1 000)
2) and solve for the 5% quantile of end

of month wealth directly:

Pr(1  1

05 ) = 005⇒ 1

05 = $8 856

This corresponds to a loss of investment value of $10 000−$8 856 = $1 144
Hence, if 0 represents the initial wealth and 1

05 is the 5% quantile of the

distribution of 1 then the 5% VaR is

5% VaR =0 − 1

05 

In general if 0 represents the initial wealth in dollars and  is the

× 100% quantile of distribution of the simple return  then the × 100%
VaR is defined as

VaR = |0 ·  | (1.24)

In words, VaR represents the dollar loss that could occur with probability

 By convention, it is reported as a positive number (hence the use of the

absolute value function).

Value-at-Risk Calculations for Continuously Compounded Returns

The above calculations illustrate how to calculate value-at-risk using the nor-

mal distribution for simple returns. However, as argued in Example 31, the

normal distribution may not be appropriate for characterizing the distribu-

tion of simple returns and may be more appropriate for characterizing the

distribution of continuously compounded returns. Let  denote the simple

monthly return, let  = ln(1 + ) denote the continuously compounded re-

turn and assume that  ∼ ( 
2
) The  × 100% monthly VaR on an

investment of $0 is computed using the following steps:

1. Compute the  · 100% quantile, , from the normal distribution for

the continuously compounded return  :

 =  + 

where  is the  · 100% quantile of the standard normal distribution
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2. Convert the continuously compounded return quantile, , to a simple

return quantile using the transformation

 = 

 − 1

3. Compute VaR using the simple return quantile (1.24).

Example 45 Computing VaR from simple and continuously compounded re-

turns using R

Let  denote the simple monthly return on Microsoft stock and assume

that  ∼ (005 (010)2) Consider an initial investment of 0 = $10 000

To compute the 1% and 5% VaR values over the next month use

> mu.R = 0.05

> sd.R = 0.10

> w0 = 10000

> q.01.R = mu.R + sd.R*qnorm(0.01)

> q.05.R = mu.R + sd.R*qnorm(0.05)

> VaR.01 = abs(q.01.R*w0)

> VaR.05 = abs(q.05.R*w0)

> VaR.01

[1] 1826

> VaR.05

[1] 1145

Hence with 1% and 5% probability the loss over the next month is at least

$1,826 and $1,145, respectively.

Let  denote the continuously compounded return on Microsoft stock and

assume that  ∼ (005 (010)2) To compute the 1% and 5% VaR values

over the next month use

> mu.r = 0.05

> sd.r = 0.10

> q.01.R = exp(mu.r + sd.r*qnorm(0.01)) - 1

> q.05.R = exp(mu.r + sd.r*qnorm(0.05)) - 1

> VaR.01 = abs(q.01.R*w0)

> VaR.05 = abs(q.05.R*w0)

> VaR.01
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[1] 1669

> VaR.05

[1] 1082

Notice that when 1+ =  has a log-normal distribution, the 1% and 5%

VaR values (losses) are slightly smaller than when  is normally distributed.

This is due to the positive skewness of the log-normal distribution. ¥

1.2 Bivariate Distributions

So far we have only considered probability distributions for a single random

variable. In many situations we want to be able to characterize the prob-

abilistic behavior of two or more random variables simultaneously. In this

section, we discuss bivariate distributions.

1.2.1 Discrete Random Variables

Let  and  be discrete random variables with sample spaces  and  

respectively. The likelihood that  and  takes values in the joint sample

space  =  ×  is determined by the joint probability distribution

( ) = Pr( =   = ) The function ( ) satisfies

(i) ( )  0 for   ∈  ;

(ii) ( ) = 0 for   ∈  ;

(iii)
P

∈
( ) =

P
∈

P
∈ ( ) = 1

Example 46 Bivariate discrete distribution for stock returns

Let  denote the monthly return (in percent) on Microsoft stock and let 

denote the monthly return on Apple stock. For simplicity suppose that the

sample spaces for  and  are  = {0 1 2 3} and  = {0 1} so that
the random variables  and  are discrete. The joint sample space is the

two dimensional grid  = {(0 0) (0 1) (1 0) (1 1) (2 0) (2 1) (3 0)
(3 1)} Table 1.3 illustrates the joint distribution for  and  From the

table, (0 0) = Pr( = 0  = 0) = 18 Notice that sum of all the entries

in the table sum to unity. The bivariate distribution is illustrated graphically

in Figure 1.11 as a 3-dimensional barchart. ¥
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

% 0 1 Pr()

0 1/8 0 1/8

 1 2/8 1/8 3/8

2 1/8 2/8 3/8

3 0 1/8 1/8

Pr( ) 4/8 4/8 1

Table 1.3: Discrete bivariate distribution for Microsoft and Apple stock

prices.

Marginal Distributions

The joint probability distribution tells the probability of  and  occuring

together. What if we only want to know about the probability of occurring,

or the probability of  occuring?

Example 47 Find Pr( = 0) and Pr( = 1) from joint distribution

Consider the joint distribution in Table 1.3. What is Pr( = 0) regardless

of the value of  ? Now  can occur if  = 0 or if  = 1 and since these

two events are mutually exclusive we have that Pr( = 0) = Pr( = 0  =

0)+Pr( = 0  = 1) = 0+18 = 18 Notice that this probability is equal

to the horizontal (row) sum of the probabilities in the table at = 0We can

find Pr( = 1) in a similar fashion: Pr( = 1) = Pr( = 0  = 1)+Pr( =

1  = 1)+Pr( = 2  = 1)+Pr( = 3  = 1) = 0+18+28+18 = 48

This probability is the vertical (column) sum of the probabilities in the table

at  = 1 ¥
The probability Pr( = ) is called the marginal probability of  and is

given by

Pr( = ) =
X
∈

Pr( =   = ) (1.25)

Similarly, the marginal probability of  =  is given by

Pr( = ) =
X
∈

Pr( =   = ) (1.26)
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Figure 1.11: Discrete bivariate distribution.

Example 48 Marginal probabilities of discrete bivariate distribution

The marginal probabilities of  =  are given in the last column of Table

1.3, and the marginal probabilities of  =  are given in the last row of Table

1.3. Notice that these probabilities sum to 1. For future reference we note

that [] = 32 var() = 34 [ ] = 12 and var( ) = 14. ¥

Conditional Distributions

For random variables in Table 1.3, suppose we know that the random variable

 takes on the value  = 0 How does this knowledge affect the likelihood

that  takes on the values 0 1 2 or 3? For example, what is the probability

that  = 0 given that we know  = 0? To find this probability, we use

Bayes’ law and compute the conditional probability

Pr( = 0| = 0) = Pr( = 0  = 0)

Pr( = 0)
=
18

48
= 14

The notation Pr( = 0| = 0) is read as “the probability that  = 0 given

that  = 0”. Notice that Pr( = 0| = 0) = 14  Pr( = 0) = 18
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Hence, knowledge that  = 0 increases the likelihood that  = 0 Clearly,

 depends on 

Now suppose that we know that  = 0. How does this knowledge affect

the probability that  = 0? To find out we compute

Pr( = 0| = 0) =
Pr( = 0  = 0)

Pr( = 0)
=
18

18
= 1

Notice that Pr( = 0| = 0) = 1  Pr( = 0) = 12. That is, knowledge

that  = 0 makes it certain that  = 0

In general, the conditional probability that  =  given that  = 

(provided Pr( = ) 6= 0) is

Pr( = | = ) =
Pr( =   = )

Pr( = )
 (1.27)

and the conditional probability that  =  given that  =  (provided

Pr( = ) 6= 0) is

Pr( = | = ) =
Pr( =   = )

Pr( = )
 (1.28)

Example 49 Conditional distributions

For the bivariate distribution in Table 1.3, the conditional probabilities along

with marginal probabilities are summarized in Tables 1.4 and 1.5. Notice that

the marginal distribution of is centered at  = 32 whereas the conditional

distribution of | = 0 is centered at  = 1 and the conditional distribution
of | = 1 is centered at  = 2 ¥

Conditional Expectation and Conditional Variance

Just as we defined shape characteristics of the marginal distributions of 

and  we can also define shape characteristics of the conditional distributions

of | =  and  | =  The most important shape characteristics are the

conditional expectation (conditional mean) and the conditional variance. The

conditional mean of | =  is denoted by |= = [| = ] and the
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x Pr( = ) Pr(| = 0) Pr(| = 1)
0 1/8 2/8 0

1 3/8 4/8 2/8

2 3/8 2/8 4/8

3 1/8 0 2/8

Table 1.4: Conditional probability distribution of X from bivariate discrete

distribution.

y Pr( = ) Pr( | = 0) Pr( | = 1) Pr( | = 2) Pr( | = 3)

0 1/2 1 2/3 1/3 0

1 1/2 0 1/3 2/3 1

Table 1.5: Conditional distribution of Y from bivariate discrete distribution.

conditional mean of  | =  is denoted by  |= = [ | = ]. These

means are computed as

|= = [| = ] =
X
∈

 · Pr( = | = ) (1.29)

 |= = [ | = ] =
X
∈

 · Pr( = | = ) (1.30)

Similarly, the conditional variance of| =  is denoted by 2|= =var(| =
) and the conditional variance of  | =  is denoted by 2 |= =var( | =

) These variances are computed as

2|= = var(| = ) =
X
∈

(− |=)
2 · Pr( = | = )(1.31)

2 |= = var( | = ) =
X
∈

( −  |=)
2 · Pr( = | = )(1.32)

Example 50 Compute conditional expectation and conditional variance
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For the random variables in Table 1.3, we have the following conditional

moments for :

[| = 0] = 0 · 14 + 1 · 12 + 2 · 14 + 3 · 0 = 1
[| = 1] = 0 · 0 + 1 · 14 + 2 · 12 + 3 · 14 = 2
var(| = 0) = (0− 1)2 · 14 + (1− 1)2 · 12 + (2− 1)2 · 12 + (3− 1)2 · 0 = 12
var(| = 1) = (0− 2)2 · 0 + (1− 2)2 · 14 + (2− 2)2 · 12 + (3− 2)2 · 14 = 12
Compare these values to [] = 32 and var() = 34 Notice that as 

increases, [| = ] increases.

For  similar calculations gives

[ | = 0] = 0 [ | = 1] = 13 [ | = 2] = 23 [ | = 3] = 1

var( | = 0) = 0 var( | = 1) = 02222 var( | = 2) = 02222 var( | = 3) = 0

Compare these values to [ ] = 12 and var( ) = 14 Notice that as 

increases [ | = ] increases. ¥

Conditional Expectation and the Regression Function

Consider the problem of predicting the value  given that we know  = 

A natural predictor to use is the conditional expectation [ | = ] In

this prediction context, the conditional expectation [ | = ] is called the

regression function. The graph with [ | = ] on the vertical axis and 

on the horizontal axis gives the regression line. The relationship between 

and the regression function may expressed using the trivial identity

 = [ | = ] +  −[ | = ]

= [ | = ] +  (1.33)

where  =  −[ |] is called the regression error.
Example 51 Regression line for bivariate discrete distribution

For the random variables in Table 1.3, the regression line is plotted in Figure

1.12. Notice that there is a linear relationship between [ | = ] and 

When such a linear relationship exists we call the regression function a linear

regression. Linearity of the regression function, however, is not guaranteed.

It may be the case that there is a non-linear (e.g., quadratic) relationship

between [ | = ] and . In this case, we call the regression function a

non-linear regression.
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Figure 1.12: Regression function [ | = ] from discrete bivariate distri-

bution.

Law of Total Expectations

For the random variables in Table 1.3, notice that

[] = [| = 0] · Pr( = 0) +[| = 1] · Pr( = 1)
= 1 · 12 + 2 · 12 = 32

and

[ ] = [ | = 0] · Pr( = 0) +[ | = 1] · Pr( = 1)

+[ | = 2] · Pr( = 2) +[ | = 3] · Pr( = 3) = 12

This result is known as the law of total expectations. In general, for two

random variables  and  (discrete or continuous) we have

[] = [[| ]] (1.34)

[ ] = [[ |]]
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where the first expectation is taken with respect to  and the second expec-

tation is taken with respect to 

1.2.2 Bivariate Distributions for Continuous Random

Variables

Let  and  be continuous random variables defined over the real line. We

characterize the joint probability distribution of  and  using the joint

probability function (pdf) ( ) such that ( ) ≥ 0 andZ ∞

−∞

Z ∞

−∞
( ) = 1

The three-dimensional plot of the joint probability distribution gives a prob-

ability surface whose total volume is unity. To compute joint probabilities of

1 ≤  ≤ 2 and 1 ≤  ≤ 2 we need to find the volume under the prob-

ability surface over the grid where the intervals [1 2] and [1 2] overlap.

Finding this volume requries solving the double integral

Pr(1 ≤  ≤ 2 1 ≤  ≤ 2) =

Z 2

1

Z 2

1

( )

Example 52 Bivariate standard normal distribution

A standard bivariate normal pdf for  and  has the form

( ) =
1

2
−

1
2
(2+2)−∞ ≤   ≤ ∞ (1.35)

and has the shape of a symmetric bell (think Liberty Bell) centered at  = 0

and  = 0 To find Pr(−1    1−1    1) we must solveZ 1

−1

Z 1

−1

1

2
−

1
2
(2+2)

which, unfortunately, does not have an analytical solution. Numerical ap-

proximation methods are required to evaluate the above integral. The func-

tion pmvnorm() in the R package mvtnorm can be used to evaluate areas

under the bivariate standard normal surface. To compute Pr(−1   

1−1    1) use
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> library(mvtnorm)

> pmvnorm(lower=c(-1, -1), upper=c(1, 1))

[1] 0.4661

attr(,"error")

[1] 1e-15

attr(,"msg")

[1] "Normal Completion"

Here, Pr(−1    1−1    1) = 04661 The attribute error gives the

estimated absolute error of the approximation, and the attribute message

tells the status of the algorithm used for the approximation. See the online

help for pmvnorm for more details. ¥

Marginal and Conditional Distributions

The marginal pdf of  is found by integrating  out of the joint pdf ( )

and the marginal pdf of  is found by integrating  out of the joint pdf:

() =

Z ∞

−∞
( ) (1.36)

() =

Z ∞

−∞
( ) (1.37)

The conditional pdf of  given that  = , denoted (|) is computed as

(|) = ( )

()
 (1.38)

and the conditional pdf of  given that  =  is computed as

(|) = ( )

()
 (1.39)

The conditional means are computed as

|= = [| = ] =

Z
 · (|) (1.40)

 |= = [ | = ] =

Z
 · (|) (1.41)
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and the conditional variances are computed as

2|= = var(| = ) =

Z
(− |=)

2(|) (1.42)

2 |= = var( | = ) =

Z
( −  |=)

2(|) (1.43)

Example 53 Conditional and marginal distributions from bivariate stan-

dard normal

Suppose  and  are distributed bivariate standard normal. To find the

marginal distribution of  we use (1.36) and solve

() =

Z ∞

−∞

1

2
−

1
2
(2+2) =

1√
2

−
1
2
2
Z ∞

−∞

1√
2

−
1
2
2 =

1√
2

−
1
2
2 

Hence, the marginal distribution of  is standard normal. Similiar calcula-

tions show that the marginal distribution of  is also standard normal. To

find the conditional distribution of | =  we use (1.38) and solve

(|) = ( )

()
=

1
2
−

1
2
(2+2)

1√
2
−

1
2
2

=
1√
2

−
1
2
(2+2)+1

2
2 =

1√
2

−
1
2
2

= ()

So, for the standard bivariate normal distribution (|) = () which does

not depend on  Similar calculations show that (|) = () ¥

1.2.3 Independence

Let  and  be two discrete random variables. Intuitively,  is independent

of  if knowledge about  does not influence the likelihood that  =  for

all possible values of  ∈  and  ∈   Similarly,  is independent of 

if knowledge about  does not influence the likelihood that  =  for all

values of  ∈   We represent this intuition formally for discrete random

variables as follows.
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Definition 54 Let  and  be discrete random variables with sample spaces

 and   respectively.  and  are independent random variables iff

Pr( = | = ) = Pr( = ) for all  ∈    ∈ 

Pr( = | = ) = Pr( = ) for all  ∈    ∈ 

Example 55 Check independence of bivariate discrete random variables

For the data in Table 1.11, we know that Pr( = 0| = 0) = 14 6= Pr( =

0) = 18 so  and  are not independent.

Proposition 56 Let  and  be discrete random variables with sample

spaces  and   respectively.  and  are independent if and only if

(iff)

Pr( =   = ) = Pr( = ) · Pr( = ) for all  ∈    ∈ 

Intuition for the above result follows from

Pr( = | = ) =
Pr( =   = )

Pr( = )
=
Pr( = ) · Pr( = )

Pr( = )
= Pr( = )

Pr( = | = ) =
Pr( =   = )

Pr( = )
=
Pr( = ) · Pr( = )

Pr( = )
= Pr( = )

which shows that  and  are independent.

For continuous random variables, we have the following definition of in-

dependence.

Definition 57 Let  and  be continuous random variables.  and  are

independent iff

(|) = () for −∞    ∞

(|) = () for −∞    ∞

As with discrete random variables, we have the following result for con-

tinuous random variables.

Proposition 58 Let  and  be continuous random variables .  and 

are independent iff

( ) = ()()
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The result in the above proposition is extremely useful in practice because

it gives us an easy way to compute the joint pdf for two independent random

variables: we simple compute the product of the marginal distributions.

Example 59 Constructing the bivariate standard normal distribution

Let  ∼ (0 1),  ∼ (0 1) and let  and  be independent. Then

( ) = ()() =
1√
2

−
1
2
2 1√

2
−

1
2
2 =

1

2
−

1
2
(2+2)

This result is a special case of the bivariate normal distribution6.

A useful property of the independence between two random variables is

the following.

Result: If and  are independent then () and ( ) are independent

for any functions (·) and (·)
For example, if  and  are independent then 2 and  2 are also inde-

pendent.

1.2.4 Covariance and Correlation

Let  and  be two discrete random variables. Figure 1.13 displays several

bivariate probability scatterplots (where equal probabilities are given on the

dots). In panel (a) we see no linear relationship between  and  In panel

(b) we see a perfect positive linear relationship between  and  and in

panel (c) we see a perfect negative linear relationship. In panel (d) we see a

positive, but not perfect, linear relationship; in panel (e) we see a negative,

but not perfect, linear relationship. Finally, in panel (f) we see no system-

atic linear relationship but we see a strong nonlinear (parabolic) relationship.

The covariance between  and  measures the direction of linear relation-

ship between the two random variables. The correlation between  and 

measures the direction and strength of linear relationship between the two

random variables.

Let  and  be two random variables with [] =   var() =

2  [ ] =  and var( ) = 2 

6stuff to add: if  and  are independent then () and ( ) are independent for

any functions (·) and (·)
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Figure 1.13: Probability scatterplots illustrating dependence between  and



Definition 60 The covariance between two random variables X and Y is

given by

 = cov( ) = [( − )( −  )]

=
X
∈

X
∈

(− )( −  ) Pr( =   = ) for discrete X and Y,

=

Z ∞

−∞

Z ∞

−∞
(− )( −  )( ) for continuous X and Y.

Definition 61 The correlation between two random variables X and Y is

given by

 = cor( ) =
cov( )p
var()var( )

=





The correlation coefficient,   is a scaled version of the covariance.
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Figure 1.14: Probability scatterplot of discrete distribution with positive

covariance. Each pair ( ) occurs with equal probability.

To see how covariance measures the direction of linear association, con-

sider the probability scatterplot in Figure 1.14. In the figure, each pair of

points occurs with equal probability. The plot is separated into quadrants

(right to left, top to bottom). In the first quadrant (black circles), the realized

values satisfy        so that the product (−)(− )  0 In the
second quadrant (blue squares), the values satisfy    and    so that

the product (−)(− )  0 In the third quadrant (red triangles), the

values satisfy    and    so that the product (−)(− )  0

Finally, in the fourth quadrant (green diamonds),    but    so that

the product (−)(− )  0 Covariance is then a probability weighted

average all of the product terms in the four quadrants. For the values in

Figure 1.14, this weighted average is positive because most of the values are

in the second and third quadrants.
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Example 62 Calculate covariance and correlation for discrete random vari-

ables

For the data in Table 1.3, we have

 = cov( ) = (0− 32)(0− 12) · 18 + (0− 32)(1− 12) · 0
+ · · ·+ (3− 32)(1− 12) · 18 = 14

 = cor( ) =
14p

(34) · (12) = 0577

Properties of Covariance and Correlation

Let  and  be random variables and let  and  be constants. Some

important properties of cov( ) are

1. cov() =var()

2. cov( ) = cov()

3. cov( ) = [ ]−[][ ] = [ ]− 

4. cov(  ) =  ·  · cov( )

5. If  and  are independent then cov( ) = 0 (no association =⇒ no

linear association). However, if cov( ) = 0 then  and  are not

necessarily independent (no linear association ; no association).

6. If  and  are jointly normally distributed and cov( ) = 0 then

 and  are independent.

The first two properties are intuitive. The third property results from

expanding the definition of covariance:

cov( ) = [( − )( −  )]

=  [ − −  +  ]

= [ ]−[] − [ ] + 

= [ ]− 2 + 

= [ ]− 
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The fourth property follows from the linearity of expectations

cov(  ) = [( − )( −  )]

=  ·  ·[( − )( −  )]

=  ·  · cov( )

The fourth property shows that the value of cov( ) depends on the scaling

of the random variables  and  By simply changing the scale of  or 

we can make cov( ) equal to any value that we want. Consequently,

the numerical value of cov( ) is not informative about the strength of

the linear association between  and  . However, the sign of cov( )

is informative about the direction of linear association between  and 

The fifth property should be intuitive. Independence between the random

variables  and  means that there is no relationship, linear or nonlinear,

between  and  However, the lack of a linear relationship between  and

 does not preclude a nonlinear relationship. The last result illustrates an

important property of the normal distribution: lack of covariance implies

independence.

Some important properties of cor( ) are

1. −1 ≤  ≤ 1

2. If  = 1 then  and  are perfectly positively linearly related. That

is,  =  +  where   0

3. If  = −1 then  and  are perfectly negatively linearly related.

That is,  =  +  where   0

4. If  = 0 then  and  are not linearly related but may be nonlin-

early related.

5. cor(  ) = cor( ) if   0 and   0; cor( ) = −cor( )

if   0   0 or   0   0
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Bivariate normal distribution

Let  and  be distributed bivariate normal. The joint pdf is given by

( ) =
1

2
p
1− 2

× (1.44)

exp

(
− 1

2(1− 2 )

"µ
− 


¶2
+

µ
 − 


¶2
− 2 (− )( −  )



#)

where [] =   [ ] =   sd() =   sd( ) =   and  =

cor( ) The correlation coefficient  describes the dependence between

 and  If  = 0 then the pdf collapses to the pdf of the standard

bivariate normal distribution.

It can be shown that the marginal distributions of  and  are normal:

 ∼ (  
2
)  ∼ (  

2
 ) In addition, it can be shown that the

conditional distributions (|) and (|) are also normal with means given
by

|= =  +  ·  (1.45)

 |= =  +  ·  (1.46)

where

 =  −    =  
2
 

 =  −     =  
2
 

and variances given by

2|= = 2 − 2 
2
 

2|= = 2 − 2 
2
 

Notice that the conditional means (regression functions) (1.29) and (1.30)

are linear functions of  and  respectively.

Example 63 Expressing the bivariate normal distribution using matrix al-

gebra

The formula for the bivariate normal distribution (1.44) is a bit messy.

We can greatly simplify the formula by using matrix algebra. Define the 2×1
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vectors x = ( )0 and μ = (  )
0 and the 2× 2 matrix

Σ =

⎛⎝ 2 

 2

⎞⎠
Then the bivariate normal distribution (1.44) may be compactly expressed

as

(x) =
1

2 det(Σ)12
−

1
2
(x−)0Σ−1(x−)

where

det(Σ) = 2
2
 − 2 = 2

2
 − 2

2
 

2
 = 2

2
 (1− 2 )

Example 64 Plotting the bivariate normal distribution

The R package mvtnorm contains the functions dmvnorm(), pmvnorm(), and

qmvnorm() which can be used to compute the bivariate normal pdf, cdf and

quantiles, respectively. Plotting the bivariate normal distribution over a

specified grid of  and  values in R can be done with the persp() function.

First, we specify the parameter values for the joint distribution. Here, we

choose  =  = 0,  =  = 1 and  = 05. We will use the dmvnorm()

function to evaluate the joint pdf at these values. To do so, we must specify

a covariance matrix of the form

Σ =

⎛⎝ 2 

 2

⎞⎠ =

⎛⎝ 1 05

05 1

⎞⎠ 

In R this matrix can be created using

> sigma = matrix(c(1, 0.5, 0.5, 1), 2, 2)

Next we specify a grid of  and  values between −3 and 3:
> x = seq(-3, 3, length=100)

> y = seq(-3, 3, length=100)

To evaluate the joint pdf over the two-dimensional grid we can use the

outer() function:
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Figure 1.15: Bivariate normal pdf with  =  = 0,  =  = 1 and

 = 05

# function to evaluate bivariate normal pdf on grid of x & y values

> bv.norm <- function(x, y, sigma) {

+ z = cbind(x,y)

+ return(dmvnorm(z, sigma=sigma))

+ }

# use outer function to evaluate pdf on 2D grid of x-y values

> fxy = outer(x, y, bv.norm, sigma)

To create the 3D plot of the joint pdf, use the persp() function:

> persp(x, y, fxy, theta=60, phi=30, expand=0.5, ticktype="detailed",

+ zlab="f(x,y)")

The resulting plot is given in Figure 1.15.
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Expectation and variance of the sum of two random variables

Let  and  be two random variables with well defined means, variances

and covariance and let  and  be constants. Then the following results hold:

[ +  ] = [] + [ ] =  + 

var( +  ) = 2var() + 2var( ) + 2 ·  ·  · cov( )

= 22 + 22 + 2 ·  ·  · 

The first result states that the expected value of a linear combination of two

random variables is equal to a linear combination of the expected values of

the random variables. This result indicates that the expectation operator

is a linear operator. In other words, expectation is additive. The second

result states that variance of a linear combination of random variables is not

a linear combination of the variances of the random variables. In particular,

notice that covariance comes up as a term when computing the variance of

the sum of two (not independent) random variables. Hence, the variance

operator is not, in general, a linear operator. That is, variance, in general, is

not additive.

It is instructive to go through the derivation of these results. Let  and

 be discrete random variables. Then,

[ +  ] =
X
∈

X
∈

(+ ) Pr( =   = )

=
X
∈

X
∈

Pr( =   = ) +
X
∈

X
∈

Pr( =   = )

= 
X
∈


X
∈

Pr( =   = ) + 
X
∈


X
∈

Pr( =   = )

= 
X
∈

Pr( = ) + 
X
∈

Pr( = )

= [] + [ ] =  +  

The result for continuous random variables is similar. Effectively, the sum-

mations are replaced by integrals and the joint probabilities are replaced by

the joint pdf. Next, let  and  be discrete or continuous random variables.
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Then

var( +  ) = [( +  −[ +  ])2]

= [( +  −  −  )
2]

= [(( − ) + ( −  ))
2]

= 2[( − )
2] + 2[( −  )

2] + 2 ·  ·  · [( − )( −  )]

= 2var() + 2var( ) + 2 ·  ·  · cov( )

Linear Combination of two Normal random variables

The following proposition gives an important result concerning a linear com-

bination of normal random variables.

Proposition 65 Let  ∼ (  
2
),  ∼ (  

2
 )  = cov( )

and  and  be constants Define the new random variable  as

 =  + 

Then

 ∼ (  
2
)

where  =  +  and 
2
 = 22 + 22 + 2 .

This important result states that a linear combination of two normally dis-

tributed random variables is itself a normally distributed random variable.

The proof of the result relies on the change of variables theorem from calculus

and is omitted. Not all random variables have the nice property that their

distributions are closed under addition.

Example 66 Portfolio of two assets

Consider a portfolio of two stocks A (Amazon) and B (Boeing) with invest-

ment shares  and  with  +  = 1. Let  and  denote the

simple monthly returns on these assets, and assume that  ∼ ( 
2
)

and  ∼ ( 
2
) Furthermore, let  =  = cov( )

The portfolio return is  =  + , which is a linear function of

two random variables. Using the properties of linear functions of random

variables, we have

 = [] = [] + [] =  + 

2 = var() = 2var() + 2var() + 2cov( )

= 2
2
 + 2

2
 + 2



58 CHAPTER 1 REVIEW OF RANDOM VARIABLES

¥

1.3 Multivariate Distributions

Multivariate distributions are used to characterize the joint distribution of a

collection of  random variables 1 2      for   1 The mathemat-

ical formulation of this joint distribution can be quite complex and typically

makes use of matrix algebra. Here, we summarize some basic properties of

multivariate distributions without the use of matrix algebra. In Chapter xxx,

we show how matrix algebra greatly simplifies the description of multivariate

distribution.

1.3.1 Discrete Random Variables

Let12     be discrete random variables with sample spaces 1
 2

     


The likelihood that these random variables take values in the joint sample

space 1
× 2

× · · · × 
is given by the joint probability function

(1 2     ) = Pr(1 = 12 = 2     = )

For   2 it is not easy to represent the joint probabilities in a table like

Table 1.3 or to visualize the distribution as in Figure 1.11.

Marginal distributions for each variable  can be derived from the joint

distribution as in (1.25) by summing the joint probabilities over the other

variables  6=  For example,

(1) =
X

2∈2 ∈

(1 2     )

With  random variables, there are numerous conditional distributions that

can be formed. For example, the distribution of 1 given 2 = 2      =

 is determined using

Pr(1 = 1|2 = 2     = ) =
Pr(1 = 12 = 2     = )

Pr(2 = 2     = )


Similarly, the joint distribution of 1 and 2 given 3 = 3     = 
is given by

Pr(1 = 12 = 2|3 = 3      = ) =
Pr(1 = 12 = 2      = )

Pr(3 = 3      = )

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1.3.2 Continuous Random Variables

Let 12     be  continuous random variables each taking values on

the real line. The joint pdf is a function (1 2     ) ≥ 0 such thatZ ∞

−∞

Z ∞

−∞
· · ·
Z ∞

−∞
(1 2     )12 · · ·  = 1

Joint probabilities of 11 ≤ 1 ≤ 12 21 ≤ 2 ≤ 22     1 ≤  ≤ 2
are computed by solving the integral equationZ 12

11

Z 22

21

· · ·
Z 2

1

(1 2     )12 · · ·   (1.47)

For most multivariate distribution (1.47) cannot be solved analytically and

must be approximated numerically.

The marginal pdf for  is found by integrating the joint pdf with respect

to the other variables. For example, the marginal pdf for 1 is found by

solving

(1) =

Z ∞

−∞
· · ·
Z ∞

−∞
(1 2     )2 · · ·  

Conditional pdf for a single random variable or a collection of random vari-

ables are defined in the obvious way.

1.3.3 Independence

A collection of  random variables are independent if their joint distribution

factors into the product of all of the marginal distributions:

(1 2     ) = (1)(2) · · · () for  discrete,

 (1 2     ) = (1)(2) · · · () for  continuous.

In addition, if  random variables are independent then any functions of

these random variables are also independent.

1.3.4 Dependence Concepts

In general it is difficult to define dependence concepts for collections of more

than two random variables. Dependence is typically only defined between
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pairwise random variables. Hence, covariance and correlation are also useful

concepts when dealing with more than two random variables.

For  random variables 12      , with mean values  = []

and variances 2 = var() the pairwise covariances and correlations are

defined as

cov() =  = [( − )( − )]

cov() =  =





for  6=  There are (−1)2 pairwise covariances and correlations. Often,
these values are summarized using matrix algebra in an  ×  covariance

matrix Σ and an  × correlation matrix R

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠  (1.48)

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1 12 · · · 1

12 1 · · · 2
...

...
. . .

...

1 2 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠  (1.49)

1.3.5 Linear Combinations of  Random Variables

Many of the results for manipulating a collection of random variables gener-

alize in a straightforward way to the case of more than two random variables.

The details of the generalizations are not important for our purposes. How-

ever, the following results will be used repeatedly throughout the book.

Let 12     denote a collection of  random variables (discrete

or continuous) with means variances 
2
 and covariances . Define the

new random variable  as a linear combination

 = 11 + 22 + · · ·+ 

where 1 2      are constants. Then the following results hold
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 = [] = 1[1] + 2[2] + · · ·+ [ ] (1.50)

=

X
=1

[] =

X
=1



2 = var() = 21
2
1 + 22

2
2 + · · ·+ 2

2
 (1.51)

+21212 + 21313 + · · ·+ 11

+22323 + 22424 + · · ·+ 22

+ · · ·+
+2−1(−1) 

The derivation of these results is very similar to the bivariate case and so is

omitted. In addition, if all of the  are normally distributed then  is also

normally distributed with mean  and variance 
2
 as described above.

The variance of a linear combination of  random variables contains 

variance terms and ( − 1) covariance terms. For  = 2 5 10 and 100

the number of covariance terms in var() is 2 20 90 and 9900 respectively.

Notice that when  is large there are many more covariance terms than

variance terms in var()

The expression for var() is messy. It can be simplified using matrix

algebra notation, as explained in detail in Chapter xxx. To preview, define

the  × 1 vectors X = (1    )
0 and a = (1     )0Then  = a0X

and var() = var(a0X) = a0Σa where Σ is the  ×  covariance matrix,

which is much more compact than (1.51).

Example 67 Square-root-of-time rule for multi-period continuously compounded

returns

Let  denote the continuously compounded monthly return on an asset at

times  = 1     12 Assume that 1     12 are independent and identically

distributed (iid) ( 2) Recall, the annual continuously compounded re-

turn is equal the sum of twelve monthly continuously compounded returns:

 = (12) =
P12

=1 Since each monthly return is normally distributed, the
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annual return is also normally distributed. The mean of (12) is

[(12)] = 

"
12X
=1



#

=

12X
=1

[] (by linearity of expectation)

=

12X
=1

 (by identical distributions)

= 12 · 
Hence, the expected 12-month (annual) return is equal to 12 times the ex-

pected monthly return. The variance of (12) is

var((12)) = var

Ã
12X
=1



!

=

12X
=1

var() (by independence)

=

11X
=0

2 (by identical distributions)

= 12 · 2
so that the annual variance is also equal to 12 times the monthly variance7.

Hence, the annual standard deviation is
√
12 times the monthly standard

deviation: sd((12)) =
√
12 (this result is known as the square root of time

rule) Therefore, (12) ∼ (12 122)

1.3.6 Covariance Between Linear Combinations of Ran-

dom Variables

Consider the linear combinations of two random variables

 = 1 +2

 = 3 +4

7This result often causes some confusion. It is easy to make the mistake and say that

the annual variance is (12)2 = 144 time the monthly variance. This result would occur if

 = 12 so that var() = (12)
2var() = 144var()
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The covariance between  and  is

cov( ) = cov(1 +2 3 +4)

= [((1 +2)− (1 + 2))((3 +4)− (3 + 4))]

= [((1 − 1) + (2 − 2))((3 − 3) + (4 − 4))]

= [(1 − 1)(3 − 3)] +[(1 − 1)(4 − 4)]

+[(2 − 2)(3 − 3)] +[(2 − 2)(4 − 4)]

= cov(1 3) + cov(14) + cov(23) + cov(24)

Hence, covariance is additive for linear combinations of random variables.

1.4 Further Reading

Excellent intermediate level treatments of probability theory using calculus

are given in Hoel, Port and Stone (1971) and DeGroot (1986). Intermediate

treatments with an emphasis towards applications in finance include Ross

(1999) and Watsom and Parramore (1998). Intermediate textbooks with

an emphasis on econometrics include Amemiya (1994), Goldberger (1991),

Ramanathan (1995). Advanced treatments of probability theory applied to

finance are given in Neftci (1996). Everything you ever wanted to know about

probability distributions is given in Johnson and Kotz (1994, 1995), Kotz,

Balakrishnan and Johnson (2000) and .
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