Introduction to Computational Finance and Financial Econometrics

Probability Theory Review: Part 2

Eric Zivot

January 19, 2015

Bivariate Probability Distribution

Example - Two discrete rv's X and Y

$$
\begin{aligned}
& \text { Bivariate pdf } \\
& p(x, y)=\operatorname{Pr}(X=x, Y=y)=\text { values in table } \\
& \text { e.g., } p(0,0)=\operatorname{Pr}(X=0, Y=0)=1 / 8
\end{aligned}
$$

Properties of joint pdf $p(x, y)$

$$
\begin{aligned}
S_{X Y} & =\{(0,0),(0,1),(1,0),(1,1) \\
& (2,0),(2,1),(3,0),(3,1)\} \\
p(x, y) & \geq 0 \text { for } x, y \in S_{X Y} \\
\sum_{x, y \in S_{X Y}} p(x, y) & =1
\end{aligned}
$$

Marginal pdfs

$$
p(x)=\operatorname{Pr}(X=x)=\sum_{y \in S_{Y}} p(x, y)
$$

$=$ sum over columns in joint table

$$
p(y)=\operatorname{Pr}(Y=y)=\sum_{x \in S_{X}} p(x, y)
$$

$=$ sum over rows in joint table

Conditional Probability

Suppose we know $Y=0$. How does this knowledge affect the probability that $X=0,1,2$, or 3 ? The answer involves conditional probability.

Example

$$
\begin{aligned}
\operatorname{Pr}(X & =0 \mid Y=0)=\frac{\operatorname{Pr}(X=0, Y=0)}{\operatorname{Pr}(Y=0)} \\
& =\frac{\text { joint probability }}{\text { marginal probability }}=\frac{1 / 8}{4 / 8}=1 / 4
\end{aligned}
$$

Remark

$$
\begin{aligned}
\operatorname{Pr}(X & =0 \mid Y=0)=1 / 4 \neq \operatorname{Pr}(X=0)=1 / 8 \\
& \Longrightarrow X \text { depends on } Y
\end{aligned}
$$

The marginal probability, $\operatorname{Pr}(X=0)$, ignores information about Y.

Definition - Conditional Probability

- The conditional pdf of X given $Y=y$ is, for all $x \in S_{X}$,

$$
p(x \mid y)=\operatorname{Pr}(X=x \mid Y=y)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(Y=y)}
$$

- The conditional pdf of Y given $X=x$ is, for all values of $y \in S_{Y}$

$$
p(y \mid x)=\operatorname{Pr}(Y=y \mid X=x)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x)}
$$

Conditional Mean and Variance

$$
\begin{gathered}
\mu_{X \mid Y=y}=E[X \mid Y=y]=\sum_{x \in S_{X}} x \cdot \operatorname{Pr}(X=x \mid Y=y) \\
\mu_{Y \mid X=x}=E[Y \mid X=x]=\sum_{y \in S_{Y}} y \cdot \operatorname{Pr}(Y=y \mid X=x) \\
\sigma_{X \mid Y=y}^{2}=\operatorname{var}(X \mid Y=y)=\sum_{x \in S_{X}}\left(x-\mu_{X \mid Y=y}\right)^{2} \cdot \operatorname{Pr}(X=x \mid Y=y) \\
\sigma_{Y \mid X=x}^{2}=\operatorname{var}(Y \mid X=x)=\sum_{y \in S_{Y}}\left(y-\mu_{Y \mid X=x}\right)^{2} \cdot \operatorname{Pr}(Y=y \mid X=x)
\end{gathered}
$$

Example:

$$
\begin{gathered}
E[X]=0 \cdot 1 / 8+1 \cdot 3 / 8+2 \cdot 3 / 8+3 \cdot 1 / 8=3 / 2 \\
E[X \mid Y=0]=0 \cdot 1 / 4+1 \cdot 1 / 2+2 \cdot 1 / 4+3 \cdot 0=1 \\
E[X \mid Y=1]=0 \cdot 0+1 \cdot 1 / 4+2 \cdot 1 / 2+3 \cdot 1 / 4=2
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{var}(X)=(0-3 / 2)^{2} \cdot 1 / 8+(1-3 / 2)^{2} \cdot 3 / 8 \\
& +(2-3 / 2)^{2} \cdot 3 / 8+(3-3 / 2)^{2} \cdot 1 / 8=3 / 4 \\
& \operatorname{var}(X \mid Y=0)=(0-1)^{2} \cdot 1 / 4+(1-1)^{2} \cdot 1 / 2 \\
& \quad+(2-1)^{2} \cdot 1 / 2+(3-1)^{2} \cdot 0=1 / 2 \\
& \quad \operatorname{var}(X \mid Y=1)=(0-2)^{2} \cdot 0+(1-2)^{2} \cdot 1 / 4 \\
& \quad+(2-2)^{2} \cdot 1 / 2+(3-2)^{2} \cdot 1 / 4=1 / 2
\end{aligned}
$$

Independence

Let X and Y be discrete rvs with pdfs $p(x), p(y)$, sample spaces S_{X}, S_{Y} and joint pdf $p(x, y)$. Then X and Y are independent rv's if and only if

$$
p(x, y)=p(x) \cdot p(y)
$$

for all values of $x \in S_{X}$ and $y \in S_{Y}$
Result: If X and Y are independent rv's, then

$$
\begin{aligned}
& p(x \mid y)=p(x) \text { for all } x \in S_{X}, y \in S_{Y} \\
& p(y \mid x)=p(y) \text { for all } x \in S_{X}, y \in S_{Y}
\end{aligned}
$$

Intuition

Knowledge of X does not influence probabilities associated with Y

Knowledge of Y does not influence probablities associated with X

Bivariate Distributions - Continuous rv’s

The joint pdf of X and Y is a non-negative function $f(x, y)$ such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

Let $\left[x_{1}, x_{2}\right.$] and $\left[y_{1}, y_{2}\right.$] be intervals on the real line. Then

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}\right. & \left.\leq X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right) \\
& =\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y) d x d y \\
& =\text { volume under probability surface } \\
& \text { over the intersection of the intervals } \\
& {\left[x_{1}, x_{2}\right] \text { and }\left[y_{1}, y_{2}\right] }
\end{aligned}
$$

Marginal and Conditional Distributions

The marginal pdf of X is found by integrating y out of the joint pdf $f(x, y)$ and the marginal pdf of Y is found by integrating x out of the joint pdf:

$$
\begin{aligned}
& f(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& f(y)=\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

The conditional pdf of X given that $Y=y$, denoted $f(x \mid y)$, is computed as

$$
f(x \mid y)=\frac{f(x, y)}{f(y)}
$$

and the conditional pdf of Y given that $X=x$ is computed as

$$
f(y \mid x)=\frac{f(x, y)}{f(x)}
$$

The conditional means are computed as

$$
\begin{aligned}
& \mu_{X \mid Y=y}=E[X \mid Y=y]=\int x \cdot p(x \mid y) d x \\
& \mu_{Y \mid X=x}=E[Y \mid X=x]=\int y \cdot p(y \mid x) d y
\end{aligned}
$$

and the conditional variances are computed as

$$
\begin{aligned}
& \sigma_{X \mid Y=y}^{2}=\operatorname{var}(X \mid Y=y) \\
&=\int\left(x-\mu_{X \mid Y=y}\right)^{2} p(x \mid y) d x \\
& \sigma_{Y \mid X=x}^{2}=\operatorname{var}(Y \mid X=x)
\end{aligned}=\int\left(y-\mu_{Y \mid X=x}\right)^{2} p(y \mid x) d y .
$$

Independence.

Let X and Y be continuous random variables. X and Y are independent iff

$$
\begin{aligned}
& f(x \mid y)=f(x), \text { for }-\infty<x, y<\infty \\
& f(y \mid x)=f(y), \text { for }-\infty<x, y<\infty
\end{aligned}
$$

Result: Let X and Y be continuous random variables. X and Y are independent iff

$$
f(x, y)=f(x) f(y)
$$

The result in the above proposition is extremely useful in practice because it gives us an easy way to compute the joint pdf for two independent random variables: we simple compute the product of the marginal distributions.

Example: Bivariate standard normal distribution

Let $X \sim N(0,1), Y \sim N(0,1)$ and let X and Y be independent. Then

$$
\begin{aligned}
f(x, y) & =f(x) f(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} \\
& =\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

To find $\operatorname{Pr}(-1<X<1,-1<Y<1)$ we must solve

$$
\int_{-1}^{1} \int_{-1}^{1} \frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y
$$

which, unfortunately, does not have an analytical solution. Numerical approximation methods are required to evaluate the above integral. See R package mvtnorm.

Independence continued

Result: If the random variables X and Y (discrete or continuous) are independent then the random variables $g(X)$ and $h(Y)$ are independent for any functions $g(\cdot)$ and $h(\cdot)$.

For example, if X and Y are independent then X^{2} and Y^{2} are also independent.

Covariance and Correlation - Measuring linear dependence between two rv's

Covariance: Measures direction but not strength of linear relationship between 2 rv's

$$
\begin{aligned}
\sigma_{X Y} & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\sum_{x . y \in S_{X Y}}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) \cdot p(x, y) \quad \text { (discrete) } \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y \quad(\mathrm{cts})
\end{aligned}
$$

Example: For the data in Table 2, we have

$$
\begin{aligned}
\sigma_{X Y}= & \operatorname{Cov}(X, Y)=(0-3 / 2)(0-1 / 2) \cdot 1 / 8 \\
& +(0-3 / 2)(1-1 / 2) \cdot 0+\cdots \\
& +(3-3 / 2)(1-1 / 2) \cdot 1 / 8=1 / 4
\end{aligned}
$$

Properties of Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}(Y, X) \\
\operatorname{Cov}(a X, b Y) & =a \cdot b \cdot \operatorname{Cov}(X, Y)=a \cdot b \cdot \sigma_{X Y} \\
\operatorname{Cov}(X, X) & =\operatorname{Var}(X) \\
X, Y \text { independent } & \Longrightarrow \operatorname{Cov}(X, Y)=0 \\
\operatorname{Cov}(X, Y) & =0 \nRightarrow X \text { and } Y \text { are independent } \\
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Correlation: Measures direction and strength of linear relationship between 2 rv's

$$
\begin{aligned}
\rho_{X Y} & =\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD}(X) \cdot \operatorname{SD}(Y)} \\
& =\frac{\sigma_{X Y}}{\sigma_{X} \cdot \sigma_{Y}}=\text { scaled covariance }
\end{aligned}
$$

Example: For the Data in Table 2

$$
\rho_{X Y}=\operatorname{Cor}(X, Y)=\frac{1 / 4}{\sqrt{(3 / 4) \cdot(1 / 2)}}=0.577
$$

Properties of Correlation

$$
\begin{aligned}
-1 & \leq \rho_{X Y} \leq 1 \\
\rho_{X Y} & =1 \text { if } Y=a X+b \text { and } a>0 \\
\rho_{X Y} & =-1 \text { if } Y=a X+b \text { and } a<0 \\
\rho_{X Y} & =0 \text { if and only if } \sigma_{X Y}=0 \\
\rho_{X Y} & =0 \nRightarrow X \text { and } Y \text { are independent in general } \\
\rho_{X Y} & =0 \Longrightarrow \text { independence if } X \text { and } Y \text { are normal }
\end{aligned}
$$

Bivariate normal distribution

Let X and Y be distributed bivariate normal. The joint pdf is given by

$$
\begin{gathered}
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \times \\
\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right]\right\}
\end{gathered}
$$

where $E[X]=\mu_{X}, E[Y]=\mu_{Y}, \operatorname{SD}(X)=\sigma_{X}, \operatorname{SD}(Y)=\sigma_{Y}$, and $\rho=$ $\operatorname{cor}(X, Y)$.

Linear Combination of 2 rv's

Let X and Y be rv's. Define a new rv Z that is a linear combination of X and Y :

$$
Z=a X+b Y
$$

where a and b are constants. Then

$$
\begin{aligned}
\mu_{Z} & =E[Z]=E[a X+b Y] \\
& =a E[X]+b E[Y] \\
& =a \cdot \mu_{X}+b \cdot \mu_{Y}
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{Z}^{2} & =\operatorname{Var}(Z)=\operatorname{Var}(a \cdot X+b \cdot Y) \\
& =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a \cdot b \cdot \operatorname{Cov}(X, Y) \\
& =a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a \cdot b \cdot \sigma_{X Y}
\end{aligned}
$$

If $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ then $Z \sim N\left(\mu_{Z}, \sigma_{Z}^{2}\right)$

Example: Portfolio returns
$R_{A}=$ return on asset A with $E\left[R_{A}\right]=\mu_{A}$ and $\operatorname{Var}\left(R_{A}\right)=\sigma_{A}^{2}$
$R_{B}=$ return on asset B with $E\left[R_{B}\right]=\mu_{B}$ and $\operatorname{Var}\left(R_{B}\right)=\sigma_{B}^{2}$
$\operatorname{Cov}\left(R_{A}, R_{B}\right)=\sigma_{A B}$ and $\operatorname{Cor}\left(R_{A}, R_{B}\right)=\rho_{A B}=\frac{\sigma_{A B}}{\sigma_{A} \cdot \sigma_{B}}$
Portfolio
$x_{A}=$ share of wealth invested in asset $A, x_{B}=$ share of wealth invested in asset B
$x_{A}+x_{B}=1$ (exhaust all wealth in 2 assets)
$R_{P}=x_{A} \cdot R_{A}+x_{B} \cdot R_{B}=$ portfolio return

Portfolio Problem: How much wealth should be invested in assets A and B ?

Portfolio expected return (gain from investing)

$$
\begin{aligned}
E\left[R_{P}\right] & =\mu_{P}=E\left[x_{A} \cdot R_{A}+x_{B} \cdot R_{B}\right] \\
& =x_{A} E\left[R_{A}\right]+x_{B} E\left[R_{B}\right] \\
& =x_{A} \mu_{A}+x_{B} \mu_{B}
\end{aligned}
$$

Portfolio variance (risk from investing)

$$
\begin{aligned}
\operatorname{Var}\left(R_{P}\right) & =\sigma_{P}^{2}=\operatorname{Var}\left(x_{A} R_{A}+x_{B} R_{B}\right) \\
& =x_{A}^{2} \operatorname{Var}\left(R_{A}\right)+x_{B}^{2} \operatorname{Var}\left(R_{B}\right)+ \\
2 & \cdot x_{A} \cdot x_{B} \cdot \operatorname{Cov}\left(R_{A}, R_{B}\right) \\
& =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B} \\
\operatorname{SD}\left(R_{P}\right) & =\sqrt{\operatorname{Var}\left(R_{P}\right)}=\sigma_{P} \\
& =\left(x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B}\right)^{1 / 2}
\end{aligned}
$$

Linear Combination of N rv's.

Let $X_{1}, X_{2}, \cdots, X_{N}$ be rvs and let $a_{1}, a_{2}, \ldots, a_{N}$ be constants. Define

$$
Z=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{N} X_{N}=\sum_{i=1}^{N} a_{i} X_{i}
$$

Then

$$
\begin{aligned}
\mu_{Z} & =E[Z]=a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]+\cdots+a_{N} E\left[X_{N}\right] \\
& =\sum_{i=1}^{N} a_{i} E\left[X_{i}\right]=\sum_{i=1}^{N} a_{i} \mu_{i}
\end{aligned}
$$

For the variance,

$$
\begin{aligned}
\sigma_{Z}^{2} & =\operatorname{Var}(Z)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+\cdots+a_{N}^{2} \operatorname{Var}\left(X_{N}\right) \\
& +2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)+2 a_{1} a_{3} \operatorname{Cov}\left(X_{1}, X_{3}\right)+\cdots \\
& +2 a_{2} a_{3} \operatorname{Cov}\left(X_{2}, X_{3}\right)+2 a_{2} a_{4} \operatorname{Cov}\left(X_{2}, X_{4}\right)+\cdots \\
& +2 a_{N-1} a_{N} \operatorname{Cov}\left(X_{N-1}, X_{N}\right)
\end{aligned}
$$

Note: N variance terms and $N(N-1)=N^{2}-N$ covariance terms. If $N=100$, there are $100 \times 99=9900$ covariance terms!

Result: If $X_{1}, X_{2}, \cdots, X_{N}$ are each normally distributed random variables then

$$
Z=\sum_{i=1}^{N} a_{i} X_{i} \sim N\left(\mu_{Z}, \sigma_{Z}^{2}\right)
$$

Example: Portfolio variance with three assets
R_{A}, R_{B}, R_{C} are simple returns on assets A, B and C
x_{A}, x_{B}, x_{C} are portfolio shares such that $x_{A}+x_{B}+x_{C}=1$
$R_{p}=x_{A} R_{A}+x_{B} R_{B}+x_{C} R_{C}$

Portfolio variance

$$
\begin{aligned}
\sigma_{P}^{2} & =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+x_{C}^{2} \sigma_{C}^{2} \\
& +2 x_{A} x_{B} \sigma_{A B}+2 x_{A} x_{C} \sigma_{A C}+2 x_{B} x_{C} \sigma_{B C}
\end{aligned}
$$

Note: Portfolio variance calculation may be simplified using matrix layout

$$
\begin{array}{cccc}
& x_{A} & x_{B} & x_{C} \\
x_{A} & \sigma_{A}^{2} & \sigma_{A B} & \sigma_{A C} \\
x_{B} & \sigma_{A B} & \sigma_{B}^{2} & \sigma_{B C} \\
x_{C} & \sigma_{A C} & \sigma_{B C} & \sigma_{C}^{2}
\end{array}
$$

Example: Multi-period continuously compounded returns and the square-root-of-time rule

$$
\begin{gathered}
r_{t}=\ln \left(1+R_{t}\right)=\text { monthly cc return } \\
r_{t} \sim N\left(\mu, \sigma^{2}\right) \text { for all } t \\
\operatorname{Cov}\left(r_{t}, r_{s}\right)=0 \text { for all } t \neq s
\end{gathered}
$$

Annual return

$$
\begin{aligned}
r_{t}(12) & =\sum_{j=0}^{11} r_{t-j} \\
& =r_{t}+r_{t-1}+\cdots+r_{t-11}
\end{aligned}
$$

Then

$$
\begin{aligned}
E\left[r_{t}(12)\right] & =\sum_{j=0}^{11} E\left[r_{t-j}\right] \\
& =\sum_{j=0}^{11} \mu \quad\left(E\left[r_{t}\right]=\mu \text { for all } t\right) \\
& =12 \mu \quad(\mu=\text { mean of monthly return })
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(r_{t}(12)\right) & =\operatorname{Var}\left(\sum_{j=0}^{11} r_{t-j}\right) \\
& =\sum_{j=0}^{11} \operatorname{Var}\left(r_{t-j}\right)=\sum_{j=0}^{11} \sigma^{2} \\
& =12 \cdot \sigma^{2} \quad\left(\sigma^{2}=\text { monthly variance }\right) \\
\mathrm{SD}\left(r_{t}(12)\right) & =\sqrt{12} \cdot \sigma(\text { square root of time rule })
\end{aligned}
$$

Then

$$
r_{t}(12) \sim N\left(12 \mu, 12 \sigma^{2}\right)
$$

For example, suppose

$$
r_{t} \sim N\left(0.01,(0.10)^{2}\right)
$$

Then

$$
\begin{aligned}
E\left[r_{t}(12)\right] & =12 \times(0.01)=0.12 \\
\operatorname{Var}\left(r_{t}(12)\right) & =12 \times(0.10)^{2}=0.12 \\
\mathrm{SD}\left(r_{t}(12)\right) & =\sqrt{0.12}=0.346 \\
r_{t}(12) & \sim N\left(0.12,(0.346)^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(q_{\alpha}^{r}\right)^{A} & =12 \times \mu+\sqrt{12} \times \sigma \times z_{\alpha} \\
& =0.12+0.346 \times z_{\alpha} \\
\left(q_{\alpha}^{R}\right)^{A} & =e^{\left(q_{\alpha}^{r}\right)^{A}}-1=e^{0.12+0.346 \times z_{\alpha}}-1
\end{aligned}
$$

Covariance between two linear combinations of random variables

Consider two linear combinations of two random variables

$$
\begin{aligned}
& X=X_{1}+X_{2} \\
& Y=Y_{1}+Y_{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\operatorname{cov}\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right) \\
& =\operatorname{cov}\left(X_{1}, Y_{1}\right)+\operatorname{cov}\left(X_{1}, Y_{2}\right) \\
& +\operatorname{cov}\left(X_{2}, Y_{1}\right)+\operatorname{cov}\left(X_{2}, Y_{2}\right)
\end{aligned}
$$

The result generalizes to linear combinations of N random variables in the obvious way.

