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Bivariate Probability Distribution

Example - Two discrete rv’s  and 

Bivariate pdf


% 0 1 Pr()
0 1/8 0 1/8

 1 2/8 1/8 3/8
2 1/8 2/8 3/8
3 0 1/8 1/8

Pr( ) 4/8 4/8 1

( ) = Pr( =   = ) = values in table
 (0 0) = Pr( = 0  = 0) = 18



Properties of joint pdf ( )

 = {(0 0) (0 1) (1 0) (1 1)
(2 0) (2 1) (3 0) (3 1)}

( ) ≥ 0 for   ∈ X
∈

( ) = 1



Marginal pdfs

() = Pr( = ) =
X
∈

( )

= sum over columns in joint table

() = Pr( = ) =
X

∈
( )

= sum over rows in joint table



Conditional Probability

Suppose we know  = 0 How does this knowledge affect the probability that
 = 0 1 2 or 3? The answer involves conditional probability.

Example

Pr( = 0| = 0) =
Pr( = 0  = 0)

Pr( = 0)

=
joint probability

marginal probability
=
18

48
= 14

Remark

Pr( = 0| = 0) = 14 6= Pr( = 0) = 18

=⇒  depends on 

The marginal probability, Pr( = 0) ignores information about 



Definition - Conditional Probability

• The conditional pdf of  given  =  is, for all  ∈ 

(|) = Pr( = | = ) =
Pr( =   = )

Pr( = )

• The conditional pdf of  given  =  is, for all values of  ∈ 

(|) = Pr( = | = ) =
Pr( =   = )

Pr( = )



Conditional Mean and Variance

|= = [| = ] =
X

∈
 · Pr( = | = )

 |= = [ | = ] =
X
∈

 · Pr( = | = )

2|= = var(| = ) =
X

∈
(− |=)

2 · Pr( = | = )

2 |= = var( | = ) =
X
∈

( −  |=)
2 · Pr( = | = )



Example:

[] = 0 · 18 + 1 · 38 + 2 · 38 + 3 · 18 = 32
[| = 0] = 0 · 14 + 1 · 12 + 2 · 14 + 3 · 0 = 1
[| = 1] = 0 · 0 + 1 · 14 + 2 · 12 + 3 · 14 = 2

var() = (0− 32)2 · 18 + (1− 32)2 · 38
+(2− 32)2 · 38 + (3− 32)2 · 18 = 34
var(| = 0) = (0− 1)2 · 14 + (1− 1)2 · 12

+(2− 1)2 · 12 + (3− 1)2 · 0 = 12
var(| = 1) = (0− 2)2 · 0 + (1− 2)2 · 14
+(2− 2)2 · 12 + (3− 2)2 · 14 = 12



Independence

Let  and  be discrete rvs with pdfs () () sample spaces   and
joint pdf ( ) Then  and  are independent rv’s if and only if

( ) = () · ()
for all values of  ∈  and  ∈ 

Result: If  and  are independent rv’s, then

(|) = () for all  ∈  ,  ∈ 
(|) = () for all  ∈  ,  ∈ 

Intuition

Knowledge of  does not influence probabilities associated with 

Knowledge of  does not influence probablities associated with 



Bivariate Distributions - Continuous rv’s

The joint pdf of  and  is a non-negative function ( ) such thatZ ∞
−∞

Z ∞
−∞

( ) = 1

Let [1 2] and [1 2] be intervals on the real line. Then

Pr(1 ≤  ≤ 2 1 ≤  ≤ 2)

=
Z 2

1

Z 2

1
( )

= volume under probability surface

over the intersection of the intervals

[1 2] and [1 2]



Marginal and Conditional Distributions

The marginal pdf of  is found by integrating  out of the joint pdf ( )
and the marginal pdf of  is found by integrating  out of the joint pdf:

() =
Z ∞
−∞

( )

() =
Z ∞
−∞

( )

The conditional pdf of  given that  = , denoted (|) is computed as

(|) = ( )

()


and the conditional pdf of  given that  =  is computed as

(|) = ( )

()




The conditional means are computed as

|= = [| = ] =
Z
 · (|)

 |= = [ | = ] =
Z
 · (|)

and the conditional variances are computed as

2|= = var(| = ) =
Z
(− |=)

2(|)

2 |= = var( | = ) =
Z
( −  |=)

2(|)



Independence.

Let  and  be continuous random variables.  and  are independent iff

(|) = () for −∞    ∞

(|) = () for −∞    ∞

Result: Let  and  be continuous random variables .  and  are indepen-
dent iff

( ) = ()()

The result in the above proposition is extremely useful in practice because it
gives us an easy way to compute the joint pdf for two independent random
variables: we simple compute the product of the marginal distributions.



Example: Bivariate standard normal distribution

Let  ∼ (0 1),  ∼ (0 1) and let  and  be independent. Then

( ) = ()() =
1√
2

−
1
2
2 1√
2

−
1
2
2

=
1

2
−

1
2(

2+2)

To find Pr(−1    1−1    1) we must solveZ 1
−1

Z 1
−1

1

2
−

1
2(

2+2)

which, unfortunately, does not have an analytical solution. Numerical approx-
imation methods are required to evaluate the above integral. See R package
mvtnorm.



Independence continued

Result: If the random variables  and  (discrete or continuous) are inde-
pendent then the random variables () and ( ) are independent for any
functions (·) and (·)

For example, if and  are independent then2 and  2 are also independent.



Covariance and Correlation - Measuring linear dependence between two
rv’s

Covariance: Measures direction but not strength of linear relationship between
2 rv’s

 = [( − )( −  )]

=
X

∈

(− )( −  ) · ( ) (discrete)

=
Z ∞
−∞

Z ∞
−∞

(− )( −  )( ) (cts)



Example: For the data in Table 2, we have

 = Cov( ) = (0− 32)(0− 12) · 18
+(0− 32)(1− 12) · 0 + · · ·

+(3− 32)(1− 12) · 18 = 14



Properties of Covariance

Cov( ) = Cov()

Cov(  ) =  ·  · Cov( ) =  ·  · 

Cov() = Var()

 independent =⇒ Cov( ) = 0

Cov( ) = 0;  and  are independent

Cov( ) = [ ]−[][ ]



Correlation: Measures direction and strength of linear relationship be-
tween 2 rv’s

 = Cor( ) =
Cov( )

SD() · SD( )
=



 · 
= scaled covariance



Example: For the Data in Table 2

 = Cor( ) =
14q

(34) · (12)
= 0577



Properties of Correlation

−1 ≤  ≤ 1
 = 1 if  =  +  and   0

 = −1 if  =  +  and   0

 = 0 if and only if  = 0

 = 0;  and  are independent in general

 = 0 =⇒ independence if  and  are normal



Bivariate normal distribution

Let  and  be distributed bivariate normal. The joint pdf is given by

( ) =
1

2

q
1− 2

×

exp

⎧⎨⎩− 1

2(1− 2)

⎡⎣Ã− 


!2
+

Ã
 − 


!2
− 2(− )( −  )



⎤⎦⎫⎬⎭
where [] =  [ ] =   SD() =  SD( ) =   and  =

cor( )



Linear Combination of 2 rv’s

Let  and  be rv’s. Define a new rv  that is a linear combination of  and
 :

 =  + 

where  and  are constants. Then

 = [] = [ +  ]

= [] + [ ]

=  ·  +  · 
and

2 = Var() = Var( · +  ·  )
= 2Var() + 2Var( ) + 2 ·  · Cov( )

= 22 + 22 + 2 ·  · 

If  ∼ ( 
2
) and  ∼ (  

2
 ) then  ∼ ( 

2
)



Example: Portfolio returns

 = return on asset  with [] =  and Var() = 2

 = return on asset  with [] =  and Var() = 2

Cov() =  and Cor( ) =  =

·

Portfolio

 = share of wealth invested in asset   = share of wealth invested in
asset 

 +  = 1 (exhaust all wealth in 2 assets)

 =  · +  · = portfolio return



Portfolio Problem: How much wealth should be invested in assets  and ?

Portfolio expected return (gain from investing)

[ ] =  = [ · +  ·]

= [] + []

=  + 

Portfolio variance (risk from investing)

Var( ) = 2 = Var( + )

= 2Var() + 2Var()+

2 ·  ·  · Cov( )

= 2
2
 + 2

2
 + 2

SD( ) =
q
Var( ) = 

=
³
2

2
 + 2

2
 + 2

´12



Linear Combination of  rv’s.

Let 1 2 · · ·  be rvs and let 1 2      be constants. Define

 = 11 + 22 + · · ·+  =
X
=1



Then

 = [] = 1[1] + 2[2] + · · ·+ [ ]

=
X
=1

[] =
X
=1





For the variance,

2 = Var() = 21Var(1) + · · ·+ 2Var()

+ 212Cov(1 2) + 213Cov(1 3) + · · ·
+ 223Cov(2 3) + 224Cov(2 4) + · · ·
+ 2−1Cov(−1)

Note:  variance terms and ( − 1) = 2 −  covariance terms. If
 = 100 there are 100× 99 = 9900 covariance terms!

Result: If 1 2 · · ·  are each normally distributed random variables
then

 =
X
=1

 ∼ ( 
2
)



Example: Portfolio variance with three assets

 are simple returns on assets A, B and C

   are portfolio shares such that  +  +  = 1

 =  +  + 

Portfolio variance

2 = 2
2
 + 2

2
 + 2

2


+ 2 + 2 + 2



Note: Portfolio variance calculation may be simplified using matrix layout

  
 2  
  2 
   2



Example: Multi-period continuously compounded returns and the square-root-
of-time rule

 = ln(1 +) = monthly cc return

 ∼ ( 2) for all 

Cov( ) = 0 for all  6= 

Annual return

(12) =
11X
=0

−

=  + −1 + · · ·+ −11



Then

[(12)] =
11X
=0

[−]

=
11X
=0

 ([] =  for all )

= 12 ( = mean of monthly return)



Var((12)) = Var

⎛⎝ 11X
=0

−

⎞⎠
=

11X
=0

Var(−) =
11X
=0

2

= 12 · 2 (2 = monthly variance)

SD((12)) =
√
12 ·  (square root of time rule)

Then

(12) ∼ (12 122)



For example, suppose

 ∼ (001 (010)2)

Then

[(12)] = 12× (001) = 012
Var((12)) = 12× (010)2 = 012
SD((12)) =

√
012 = 0346

(12) ∼ (012 (0346)2)

and

()
 = 12× +

√
12×  × 

= 012 + 0346× 

( )
 = (


)

 − 1 = 012+0346× − 1



Covariance between two linear combinations of random variables

Consider two linear combinations of two random variables

 = 1 +2

 = 1 + 2

Then

cov( ) = cov(1 +2 1 + 2)

= cov(1 1) + cov(1 2)

+ cov(2 1) + cov(2 2)

The result generalizes to linear combinations of  random variables in the
obvious way.


