Introduction to Computational Finance and Financial Econometrics
Probability Theory Review: Part 2

Eric Zivot

January 19, 2015
Bivariate Probability Distribution

Example - Two discrete rv’s X and Y

<table>
<thead>
<tr>
<th>Y</th>
<th>X</th>
<th>$\Pr(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1/8</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$\Pr(Y)$</td>
<td>4/8</td>
<td>4/8</td>
</tr>
</tbody>
</table>

$p(x, y) = \Pr(X = x, Y = y) = \text{values in table}$

$e.g., \ p(0, 0) = \Pr(X = 0, Y = 0) = 1/8$
Properties of joint pdf $p(x, y)$

$$S_{XY} = \{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)\}$$

$p(x, y) \geq 0$ for $x, y \in S_{XY}$

$$\sum_{x,y \in S_{XY}} p(x, y) = 1$$
Marginal pdfs

\[p(x) = \Pr(X = x) = \sum_{y \in S_Y} p(x, y) \]
\[= \text{sum over columns in joint table} \]

\[p(y) = \Pr(Y = y) = \sum_{x \in S_X} p(x, y) \]
\[= \text{sum over rows in joint table} \]
Conditional Probability

Suppose we know $Y = 0$. How does this knowledge affect the probability that $X = 0, 1, 2, \text{ or } 3$? The answer involves conditional probability.

Example

$$
\Pr(X = 0|Y = 0) = \frac{\Pr(X = 0, Y = 0)}{\Pr(Y = 0)}
= \frac{\text{joint probability}}{\text{marginal probability}} = \frac{1/8}{4/8} = 1/4
$$

Remark

$$
\Pr(X = 0|Y = 0) = 1/4 \neq \Pr(X = 0) = 1/8
\implies X \text{ depends on } Y
$$

The marginal probability, $\Pr(X = 0)$, ignores information about Y.
Definition - Conditional Probability

- The conditional pdf of X given $Y = y$ is, for all $x \in S_X$,
 \[p(x|y) = \Pr(X = x|Y = y) = \frac{\Pr(X = x, Y = y)}{\Pr(Y = y)} \]

- The conditional pdf of Y given $X = x$ is, for all values of $y \in S_Y$
 \[p(y|x) = \Pr(Y = y|X = x) = \frac{\Pr(X = x, Y = y)}{\Pr(X = x)} \]
Conditional Mean and Variance

\[\mu_{X|Y=y} = E[X|Y = y] = \sum_{x \in S_X} x \cdot \Pr(X = x|Y = y), \]
\[\mu_{Y|X=x} = E[Y|X = x] = \sum_{y \in S_Y} y \cdot \Pr(Y = y|X = x). \]

\[\sigma^2_{X|Y=y} = \text{var}(X|Y = y) = \sum_{x \in S_X} (x - \mu_{X|Y=y})^2 \cdot \Pr(X = x|Y = y), \]
\[\sigma^2_{Y|X=x} = \text{var}(Y|X = x) = \sum_{y \in S_Y} (y - \mu_{Y|X=x})^2 \cdot \Pr(Y = y|X = x). \]
Example:

\[E[X] = 0 \cdot 1/8 + 1 \cdot 3/8 + 2 \cdot 3/8 + 3 \cdot 1/8 = 3/2 \]
\[E[X|Y = 0] = 0 \cdot 1/4 + 1 \cdot 1/2 + 2 \cdot 1/4 + 3 \cdot 0 = 1, \]
\[E[X|Y = 1] = 0 \cdot 0 + 1 \cdot 1/4 + 2 \cdot 1/2 + 3 \cdot 1/4 = 2, \]

\[\text{var}(X) = (0 - 3/2)^2 \cdot 1/8 + (1 - 3/2)^2 \cdot 3/8 \\
+ (2 - 3/2)^2 \cdot 3/8 + (3 - 3/2)^2 \cdot 1/8 = 3/4, \]
\[\text{var}(X|Y = 0) = (0 - 1)^2 \cdot 1/4 + (1 - 1)^2 \cdot 1/2 \\
+ (2 - 1)^2 \cdot 1/2 + (3 - 1)^2 \cdot 0 = 1/2, \]
\[\text{var}(X|Y = 1) = (0 - 2)^2 \cdot 0 + (1 - 2)^2 \cdot 1/4 \\
+ (2 - 2)^2 \cdot 1/2 + (3 - 2)^2 \cdot 1/4 = 1/2. \]
Independence

Let X and Y be discrete rvs with pdfs $p(x)$, $p(y)$, sample spaces S_X, S_Y and joint pdf $p(x, y)$. Then X and Y are independent rv's if and only if

$$p(x, y) = p(x) \cdot p(y)$$

for all values of $x \in S_X$ and $y \in S_Y$

Result: If X and Y are independent rv’s, then

$$p(x|y) = p(x) \text{ for all } x \in S_X, y \in S_Y$$

$$p(y|x) = p(y) \text{ for all } x \in S_X, y \in S_Y$$

Intuition

Knowledge of X does not influence probabilities associated with Y

Knowledge of Y does not influence probabilities associated with X
Bivariate Distributions - Continuous rv’s

The joint pdf of X and Y is a non-negative function $f(x, y)$ such that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

Let $[x_1, x_2]$ and $[y_1, y_2]$ be intervals on the real line. Then

$$\Pr(x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2) = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) \, dx \, dy = \text{volume under probability surface over the intersection of the intervals} [x_1, x_2] \text{ and } [y_1, y_2]$$
Marginal and Conditional Distributions

The marginal pdf of X is found by integrating y out of the joint pdf $f(x, y)$ and the marginal pdf of Y is found by integrating x out of the joint pdf:

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy,$$

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

The conditional pdf of X given that $Y = y$, denoted $f(x|y)$, is computed as

$$f(x|y) = \frac{f(x, y)}{f(y)},$$

and the conditional pdf of Y given that $X = x$ is computed as

$$f(y|x) = \frac{f(x, y)}{f(x)}.$$
The conditional means are computed as

\[\mu_{X|Y=y} = E[X|Y = y] = \int x \cdot p(x|y)dx, \]
\[\mu_{Y|X=x} = E[Y|X = x] = \int y \cdot p(y|x)dy \]

and the conditional variances are computed as

\[\sigma^2_{X|Y=y} = \text{var}(X|Y = y) = \int (x - \mu_{X|Y=y})^2 p(x|y)dx, \]
\[\sigma^2_{Y|X=x} = \text{var}(Y|X = x) = \int (y - \mu_{Y|X=x})^2 p(y|x)dy. \]
Independence.

Let X and Y be continuous random variables. X and Y are independent iff

$$f(x|y) = f(x), \text{ for } -\infty < x, y < \infty,$$

$$f(y|x) = f(y), \text{ for } -\infty < x, y < \infty.$$

Result: Let X and Y be continuous random variables. X and Y are independent iff

$$f(x, y) = f(x)f(y)$$

The result in the above proposition is extremely useful in practice because it gives us an easy way to compute the joint pdf for two independent random variables: we simply compute the product of the marginal distributions.
Example: Bivariate standard normal distribution

Let $X \sim N(0, 1)$, $Y \sim N(0, 1)$ and let X and Y be independent. Then

$$f(x, y) = f(x)f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2}$$

$$= \frac{1}{2\pi} e^{-\frac{1}{2}(x^2+y^2)}.$$

To find $\Pr(-1 < X < 1, -1 < Y < 1)$ we must solve

$$\int_{-1}^{1} \int_{-1}^{1} \frac{1}{2\pi} e^{-\frac{1}{2}(x^2+y^2)} \, dx \, dy$$

which, unfortunately, does not have an analytical solution. Numerical approximation methods are required to evaluate the above integral. See R package mvtnorm.
Independence continued

Result: If the random variables X and Y (discrete or continuous) are independent then the random variables $g(X)$ and $h(Y)$ are independent for any functions $g(\cdot)$ and $h(\cdot)$.

For example, if X and Y are independent then X^2 and Y^2 are also independent.
Covariance and Correlation - Measuring linear dependence between two rv’s

Covariance: Measures direction but not strength of linear relationship between 2 rv’s

\[\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] \]
\[= \sum_{x,y \in S_{XY}} (x - \mu_X)(y - \mu_Y) \cdot p(x,y) \quad \text{(discrete)} \]
\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x,y)dx\,dy \quad \text{(cts)} \]
Example: For the data in Table 2, we have

\[\sigma_{XY} = \text{Cov}(X, Y) = (0 - 3/2)(0 - 1/2) \cdot 1/8 \]
\[+ (0 - 3/2)(1 - 1/2) \cdot 0 + \cdots \]
\[+ (3 - 3/2)(1 - 1/2) \cdot 1/8 = 1/4 \]
Properties of Covariance

\[
\text{Cov}(X, Y) = \text{Cov}(Y, X)
\]

\[
\text{Cov}(aX, bY) = a \cdot b \cdot \text{Cov}(X, Y) = a \cdot b \cdot \sigma_{XY}
\]

\[
\text{Cov}(X, X) = \text{Var}(X)
\]

\(X, Y\) independent \implies \text{Cov}(X, Y) = 0

\[
\text{Cov}(X, Y) = 0 \nRightarrow \text{\(X\) and \(Y\) are independent}
\]

\[
\text{Cov}(X, Y) = E[XY] - E[X]E[Y]
\]
Correlation: Measures direction and strength of linear relationship between 2 rv's

\[\rho_{XY} = \text{Cor}(X, Y) = \frac{\text{Cov}(X, Y)}{\text{SD}(X) \cdot \text{SD}(Y)} \]

\[= \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = \text{scaled covariance} \]
Example: For the Data in Table 2

\[\rho_{XY} = \text{Cor}(X, Y) = \frac{1/4}{\sqrt{(3/4) \cdot (1/2)}} = 0.577 \]
Properties of Correlation

\[-1 \leq \rho_{XY} \leq 1\]
\[\rho_{XY} = 1 \text{ if } Y = aX + b \text{ and } a > 0\]
\[\rho_{XY} = -1 \text{ if } Y = aX + b \text{ and } a < 0\]
\[\rho_{XY} = 0 \text{ if and only if } \sigma_{XY} = 0\]
\[\rho_{XY} = 0 \nRightarrow X \text{ and } Y \text{ are independent in general}\]
\[\rho_{XY} = 0 \implies \text{ independence if } X \text{ and } Y \text{ are normal}\]
Let X and Y be distributed bivariate normal. The joint pdf is given by

$$f(x, y) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho^2}} \times \exp\left\{ -\frac{1}{2(1 - \rho^2)} \left[\left(\frac{x - \mu_X}{\sigma_X} \right)^2 + \left(\frac{y - \mu_Y}{\sigma_Y} \right)^2 - \frac{2\rho(x - \mu_X)(y - \mu_Y)}{\sigma_X \sigma_Y} \right] \right\}$$

where $E[X] = \mu_X$, $E[Y] = \mu_Y$, $\text{SD}(X) = \sigma_X$, $\text{SD}(Y) = \sigma_Y$, and $\rho = \text{cor}(X, Y)$.
Linear Combination of 2 rv's

Let X and Y be rv's. Define a new rv Z that is a linear combination of X and Y:

$$Z = aX + bY$$

where a and b are constants. Then

$$\mu_Z = E[Z] = E[aX + bY]$$
$$= aE[X] + bE[Y]$$
$$= a \cdot \mu_X + b \cdot \mu_Y$$

and

$$\sigma_Z^2 = \text{Var}(Z) = \text{Var}(a \cdot X + b \cdot Y)$$
$$= a^2 \text{Var}(X) + b^2 \text{Var}(Y) + 2a \cdot b \cdot \text{Cov}(X, Y)$$
$$= a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2a \cdot b \cdot \sigma_{XY}$$

If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ then $Z \sim N(\mu_Z, \sigma_Z^2)$
Example: Portfolio returns

\[R_A = \text{return on asset } A \text{ with } E[R_A] = \mu_A \text{ and } \text{Var}(R_A) = \sigma^2_A \]

\[R_B = \text{return on asset } B \text{ with } E[R_B] = \mu_B \text{ and } \text{Var}(R_B) = \sigma^2_B \]

\[\text{Cov}(R_A, R_B) = \sigma_{AB} \text{ and } \text{Cor}(R_A, R_B) = \rho_{AB} = \frac{\sigma_{AB}}{\sigma_A \cdot \sigma_B} \]

Portfolio

\[x_A = \text{share of wealth invested in asset } A, x_B = \text{share of wealth invested in asset } B \]

\[x_A + x_B = 1 \text{ (exhaust all wealth in 2 assets)} \]

\[R_P = x_A \cdot R_A + x_B \cdot R_B = \text{portfolio return} \]
Portfolio Problem: How much wealth should be invested in assets A and B?

Portfolio expected return (gain from investing)

$$E[R_P] = \mu_P = E[x_A \cdot R_A + x_B \cdot R_B]$$
$$= x_A E[R_A] + x_B E[R_B]$$
$$= x_A \mu_A + x_B \mu_B$$

Portfolio variance (risk from investing)

$$\text{Var}(R_P) = \sigma_P^2 = \text{Var}(x_A R_A + x_B R_B)$$
$$= x_A^2 \text{Var}(R_A) + x_B^2 \text{Var}(R_B) + 2 \cdot x_A \cdot x_B \cdot \text{Cov}(R_A, R_B)$$
$$= x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2 x_A x_B \sigma_{AB}$$

$$\text{SD}(R_P) = \sqrt{\text{Var}(R_P)} = \sigma_P$$
$$= \left(x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2 x_A x_B \sigma_{AB} \right)^{1/2}$$
Linear Combination of N **rv’s.**

Let X_1, X_2, \cdots, X_N be rvs and let a_1, a_2, \ldots, a_N be constants. Define

$$Z = a_1X_1 + a_2X_2 + \cdots + a_NX_N = \sum_{i=1}^{N} a_iX_i$$

Then

$$\mu_Z = E[Z] = a_1E[X_1] + a_2E[X_2] + \cdots + a_NE[X_N]$$

$$= \sum_{i=1}^{N} a_iE[X_i] = \sum_{i=1}^{N} a_i\mu_i$$
For the variance,

\[\sigma_Z^2 = \text{Var}(Z) = a_1^2 \text{Var}(X_1) + \cdots + a_N^2 \text{Var}(X_N) \]
\[+ 2a_1a_2 \text{Cov}(X_1, X_2) + 2a_1a_3 \text{Cov}(X_1, X_3) + \cdots \]
\[+ 2a_2a_3 \text{Cov}(X_2, X_3) + 2a_2a_4 \text{Cov}(X_2, X_4) + \cdots \]
\[+ 2a_{N-1}a_N \text{Cov}(X_{N-1}, X_N) \]

Note: \(N \) variance terms and \(N(N - 1) = N^2 - N \) covariance terms. If \(N = 100 \), there are \(100 \times 99 = 9900 \) covariance terms!

Result: If \(X_1, X_2, \cdots, X_N \) are each normally distributed random variables then

\[Z = \sum_{i=1}^{N} a_i X_i \sim N(\mu_Z, \sigma_Z^2) \]
Example: Portfolio variance with three assets

R_A, R_B, R_C are simple returns on assets A, B and C

x_A, x_B, x_C are portfolio shares such that $x_A + x_B + x_C = 1$

$R_p = x_A R_A + x_B R_B + x_C R_C$

Portfolio variance

$$\sigma_P^2 = x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + x_C^2 \sigma_C^2$$

$$+ 2x_A x_B \sigma_{AB} + 2x_A x_C \sigma_{AC} + 2x_B x_C \sigma_{BC}$$
Note: Portfolio variance calculation may be simplified using matrix layout

\[
\begin{bmatrix}
 x_A & x_B & x_C \\
 x_A & \sigma_A^2 & \sigma_{AB} & \sigma_{AC} \\
 x_B & \sigma_{AB} & \sigma_B^2 & \sigma_{BC} \\
 x_C & \sigma_{AC} & \sigma_{BC} & \sigma_C^2 \\
\end{bmatrix}
\]
Example: Multi-period continuously compounded returns and the square-root-of-time rule

\[r_t = \ln(1 + R_t) = \text{monthly cc return} \]

\[r_t \sim N(\mu, \sigma^2) \quad \text{for all } t \]

\[\text{Cov}(r_t, r_s) = 0 \text{ for all } t \neq s \]

Annual return

\[r_t(12) = \sum_{j=0}^{11} r_{t-j} \]

\[= r_t + r_{t-1} + \cdots + r_{t-11} \]
Then

\[E[r_t(12)] = \sum_{j=0}^{11} E[r_{t-j}] \]

\[= \sum_{j=0}^{11} \mu \quad (E[r_t] = \mu \text{ for all } t) \]

\[= 12\mu \quad (\mu = \text{mean of monthly return}) \]
\[
\text{Var}(r_t(12)) = \text{Var} \left(\sum_{j=0}^{11} r_{t-j} \right) \\
= \sum_{j=0}^{11} \text{Var}(r_{t-j}) = \sum_{j=0}^{11} \sigma^2 \\
= 12 \cdot \sigma^2 \quad (\sigma^2 = \text{monthly variance}) \\
\text{SD}(r_t(12)) = \sqrt{12} \cdot \sigma \quad (\text{square root of time rule})
\]

Then

\[
r_t(12) \sim N(12\mu, 12\sigma^2)
\]
For example, suppose

\[r_t \sim N(0.01, (0.10)^2) \]

Then

\[E[r_t(12)] = 12 \times (0.01) = 0.12 \]
\[\text{Var}(r_t(12)) = 12 \times (0.10)^2 = 0.12 \]
\[\text{SD}(r_t(12)) = \sqrt{0.12} = 0.346 \]
\[r_t(12) \sim N(0.12, (0.346)^2) \]

and

\[(q_\alpha^r)^A = 12 \times \mu + \sqrt{12} \times \sigma \times z_\alpha \]
\[= 0.12 + 0.346 \times z_\alpha \]
\[(q_\alpha^R)^A = e^{(q_\alpha^r)^A} - 1 = e^{0.12+0.346\times z_\alpha} - 1 \]
Covariance between two linear combinations of random variables

Consider two linear combinations of two random variables

\[X = X_1 + X_2 \]
\[Y = Y_1 + Y_2 \]

Then

\[\text{cov}(X, Y) = \text{cov}(X_1 + X_2, Y_1 + Y_2) \]
\[= \text{cov}(X_1, Y_1) + \text{cov}(X_1, Y_2) \]
\[+ \text{cov}(X_2, Y_1) + \text{cov}(X_2, Y_2) \]

The result generalizes to linear combinations of \(N \) random variables in the obvious way.