
Chapter 1

Matrix Algebra Review

This chapter reviews some basic matrix algebra concepts that we will use

throughout the book.

Updated: August 15, 2013.

1.1 Matrices and Vectors

A matrix is just an array of numbers. The dimension of a matrix is deter-

mined by the number of its rows and columns. For example, a matrix A

with rows and columns is illustrated below

A
(×)

=

⎡⎢⎢⎢⎢⎢⎢⎣
11 12 1

21 22 2
...

...
...

1 2

⎤⎥⎥⎥⎥⎥⎥⎦
where denotes the

 row and column element of A

A vector is simply a matrix with 1 column. For example,

x
(×1)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1

2
...

⎤⎥⎥⎥⎥⎥⎥⎦
1

2 CHAPTER 1 MATRIX ALGEBRA REVIEW

is an ×1 vector with elements 1 2 Vectors and matrices are often
written in bold type (or underlined) to distinguish them from scalars (single

elements of vectors or matrices).

Example 1 Matrix creation in R

In R, matrix objects are created using the matrix() function. For example,

to create the 2× 3 matrix

A
(2×3)

=

⎡⎣ 1 2 3
4 5 6

⎤⎦
use

> matA = matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE)

> matA

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> class(matA)

[1] "matrix"

The optional argument byrow=TRUE fills the matrix row by row.1 The default

is byrow=FALSE which fills the matrix column by column:

> matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Matrix objects have row and column dimension attributes which can be ex-

amined with the dim() function:

> dim(matA)

[1] 2 3

1When specifying logical variables in R always spell out TRUE and FALSE instead of

using T and F. Upon startup R defines the variables T=TRUE and F=FALSE so that T and

F can be used as substitutes for TRUE and FALSE, respectively. However, this shortcut is

not recommended because the variables T and F could be reassigned during subsequent

programming.

1.1 MATRICES AND VECTORS 3

The rows and columns can be given names using

> dimnames(matA) = list(c("row1","row2"),c("col1","col2","col3"))

> matA

col1 col2 col3

row1 1 2 3

row2 4 5 6

or

> colnames(matA) = c("Col1", "Col2", "Col3")

> rownames(matA) = c("Row1", "Row2")

> matA

Col1 Col2 Col3

Row1 1 2 3

Row2 4 5 6

The elements of a matrix can extracted or subsetted as follows:

> matA[1, 2]

[1] 2

> matA["Row1", "Col1"]

[1] 1

> matA[1,]

Col1 Col2 Col3

1 2 3

> matA[, 2]

Row1 Row2

2 5

To preserve the dimension attributes when subsetting use the drop=FALSE

option:

> matA[1, , drop=FALSE]

Col1 Col2 Col3

Row1 1 2 3

> matA[, 2, drop=FALSE]

Col2

Row1 2

Row2 5

4 CHAPTER 1 MATRIX ALGEBRA REVIEW

¥
Example 2 Creating vectors in R

Vectors can be created in R using a variety of methods:

> xvec = c(1,2,3)

> xvec

[1] 1 2 3

> xvec = 1:3

> xvec

[1] 1 2 3

> xvec = seq(from=1,to=3,by=1)

> xvec

[1] 1 2 3

Vectors in R are of class numeric and do not have a dimension attribute:

> class(xvec)

[1] "numeric"

> dim(xvec)

NULL

The elements of a vector can be assigned names using the names() function:

> names(xvec) = c("x1", "x2", "x3")

> xvec

x1 x2 x3

1 2 3

To force a dimension attribute onto a vector, coerce it to a matrix object

using as.matrix():

> xvec = as.matrix(xvec)

> xvec

[,1]

x1 1

x2 2

x3 3

> class(xvec)

[1] "matrix"

> dim(xvec)

[1] 3 1

1.1 MATRICES AND VECTORS 5

¥
The transpose of an × matrix A is a new matrix with the rows and

columns of A interchanged, and is denoted A0 or A| For example,

A
(2×3)

=

⎡⎣ 1 2 3
4 5 6

⎤⎦ A0
(3×2)

=

⎡⎢⎢⎢⎣
1 4

2 5

3 6

⎤⎥⎥⎥⎦

x
(3×1)

=

⎡⎢⎢⎢⎣
1

2

3

⎤⎥⎥⎥⎦ x0
(1×3)

=
h
1 2 3

i

A symmetric matrix A is such that A = A0 Obviously, this can only
occur if A is a square matrix; i.e., the number of rows of A is equal to the

number of columns. For example, consider the 2× 2 matrix

A =

⎡⎣ 1 2
2 1

⎤⎦
Then,

A0 = A =

⎡⎣ 1 2
2 1

⎤⎦
Example 3 Transpose of a matrix in R

To take the transpose of a matrix or vector use the t() function

> matA = matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE)

> t(matA)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> xvec = c(1,2,3)

> t(xvec)

[,1] [,2] [,3]

[1,] 1 2 3

6 CHAPTER 1 MATRIX ALGEBRA REVIEW

Notice that, when applied to a vector with elements, the t() function

returns a matrix object with dimension 1× ¥

1.2 Basic Matrix Operations

In this section we review the basic matrix operations of addition, subtraction,

scalar multiplication and multiplication.

1.2.1 Addition and subtraction

Matrix addition and subtraction are element by element operations and only

apply to matrices of the same dimension. For example, let

A =

⎡⎣ 4 9
2 1

⎤⎦ B =
⎡⎣ 2 0
0 7

⎤⎦
Then

A+B =

⎡⎣ 4 9
2 1

⎤⎦+
⎡⎣ 2 0
0 7

⎤⎦ =
⎡⎣ 4 + 2 9 + 0
2 + 0 1 + 7

⎤⎦ =
⎡⎣ 6 9
2 8

⎤⎦
A−B =

⎡⎣ 4 9
2 1

⎤⎦−
⎡⎣ 2 0
0 7

⎤⎦ =
⎡⎣ 4− 2 9− 0
2− 0 1− 7

⎤⎦ =
⎡⎣ 2 9

2 −6

⎤⎦
Example 4 Matrix addition and subtraction in R

Matrix addition and subtraction is straightforward in R:

> matA = matrix(c(4,9,2,1),2,2,byrow=TRUE)

> matB = matrix(c(2,0,0,7),2,2,byrow=TRUE)

> matA

[,1] [,2]

[1,] 4 9

[2,] 2 1

> matB

[,1] [,2]

[1,] 2 0

1.2 BASIC MATRIX OPERATIONS 7

[2,] 0 7

> # matrix addition

> matC = matA + matB

> matC

[,1] [,2]

[1,] 6 9

[2,] 2 8

> # matrix subtraction

> matC = matA - matB

> matC

[,1] [,2]

[1,] 2 9

[2,] 2 -6

¥

1.2.2 Scalar Multiplication

Here we refer to the multiplication of a matrix by a scalar number. This is

also an element-by-element operation. For example, let = 2 and

A =

⎡⎣ 3 −1
0 5

⎤⎦
Then

 ·A =
⎡⎣ 2 · 3 2 · (−1)
2 · (0) 2 · 5

⎤⎦ =
⎡⎣ 6 −2
0 10

⎤⎦
Example 5 Scalar multiplication in R

> matA = matrix(c(3,-1,0,5),2,2,byrow=TRUE)

> matC = 2*matA

> matC

[,1] [,2]

[1,] 6 -2

[2,] 0 10

¥

8 CHAPTER 1 MATRIX ALGEBRA REVIEW

1.2.3 Matrix Multiplication

Matrix multiplication only applies to conformable matrices. A and B are

conformable matrices if the number of columns in A is equal to the number

of rows in B For example, if A is × and B is × then A and B are

conformable and the matrix product of A and B has dimension × . The

mechanics of matrix multiplication is best explained by example. Let

A
(2×2)

=

⎡⎣ 1 2
3 4

⎤⎦ and B
(2×3)

=

⎡⎣ 1 2 1
3 4 2

⎤⎦

Then

A
(2×2)

· B
(2×3)

=

⎡⎣ 1 2
3 4

⎤⎦ ·
⎡⎣ 1 2 1
3 4 2

⎤⎦
=

⎡⎣ 1 · 1 + 2 · 3 1 · 2 + 2 · 4 1 · 1 + 2 · 2
3 · 1 + 4 · 3 3 · 2 + 4 · 4 3 · 1 + 4 · 2

⎤⎦
=

⎡⎣ 7 10 5

15 22 11

⎤⎦ = C
(2×3)

The resulting matrix C has 2 rows and 3 columns. In general, if A is ×

and B is × then C = A ·B is ×

As another example, let

A
(2×2)

=

⎡⎣ 1 2
3 4

⎤⎦ and B
(2×1)

=

⎡⎣ 2
6

⎤⎦

1.2 BASIC MATRIX OPERATIONS 9

Then

A
(2×2)

· B
(2×1)

=

⎡⎣ 1 2
3 4

⎤⎦ ·
⎡⎣ 2
6

⎤⎦
=

⎡⎣ 1 · 2 + 2 · 6
3 · 2 + 4 · 6

⎤⎦
=

⎡⎣ 14
30

⎤⎦
As a final example, let

x =

⎡⎢⎢⎢⎣
1

2

3

⎤⎥⎥⎥⎦ y =
⎡⎢⎢⎢⎣
4

5

6

⎤⎥⎥⎥⎦
Then

x0y =
h
1 2 3

i
·

⎡⎢⎢⎢⎣
4

5

6

⎤⎥⎥⎥⎦ = 1 · 4 + 2 · 5 + 3 · 6 = 32
Example 6 Matrix multiplication in R

In R, matrix multiplication is performed with the %*% operator. For example:

> matA = matrix(1:4,2,2,byrow=TRUE)

> matB = matrix(c(1,2,1,3,4,2),2,3,byrow=TRUE)

> matA

[,1] [,2]

[1,] 1 2

[2,] 3 4

> matB

[,1] [,2] [,3]

[1,] 1 2 1

10 CHAPTER 1 MATRIX ALGEBRA REVIEW

[2,] 3 4 2

> dim(matA)

[1] 2 2

> dim(matB)

[1] 2 3

> matC = matA%*%matB

> matC

[,1] [,2] [,3]

[1,] 7 10 5

[2,] 15 22 11

> # note: B%*%A doesn’t work b/c B and A are not comformable

> matB%*%matA

Error in matB %*% matA : non-conformable arguments

The next example shows matrix multiplication in R also works on numeric

vectors:

> matA = matrix(c(1,2,3,4), 2, 2, byrow=TRUE)

> vecB = c(2,6)

> matA%*%vecB

[,1]

[1,] 14

[2,] 30

> vecX = c(1,2,3)

> vecY = c(4,5,6)

> t(vecX)%*%vecY

[,1]

[1,] 32

> crossprod(vecX, vecY)

[,1]

[1,] 32

¥

1.2.4 The Identity Matrix

The identity matrix plays a similar role as the number 1 Multiplying any

number by 1 gives back that number. In matrix algebra, pre or post multi-

plying a matrix A by a conformable identity matrix gives back the matrix

1.2 BASIC MATRIX OPERATIONS 11

A To illustrate, let

I2 =

⎡⎣ 1 0
0 1

⎤⎦
denote the 2 dimensional identity matrix and let

A =

⎡⎣ 11 12

21 22

⎤⎦
denote an arbitrary 2× 2 matrix. Then

I2·A =

⎡⎣ 1 0
0 1

⎤⎦ ·
⎡⎣ 11 12

21 22

⎤⎦
=

⎡⎣ 11 12

21 22

⎤⎦ = A
and

A · I2 =
⎡⎣ 11 12

21 22

⎤⎦ ·
⎡⎣ 1 0
0 1

⎤⎦
=

⎡⎣ 11 12

21 22

⎤⎦ = A
Example 7 The identity matrix in R

Use the diag() function to create an identity matrix:

> matI = diag(2)

> matI

[,1] [,2]

[1,] 1 0

[2,] 0 1

> matA = matrix(c(1,2,3,4), 2, 2, byrow=TRUE)

> matI%*%matA

12 CHAPTER 1 MATRIX ALGEBRA REVIEW

[,1] [,2]

[1,] 1 2

[2,] 3 4

> matA%*%matI

[,1] [,2]

[1,] 1 2

[2,] 3 4

¥

1.3 Representing Summation Using Vector No-

tation

Consider the sum

X
=1

 = 1 + · · ·+

Let x = (1)
0 be an ×1 vector and 1 = (1 1)0 be an ×1 vector

of ones. Then

x01 =
h
1

i
·

⎡⎢⎢⎢⎣
1
...

1

⎤⎥⎥⎥⎦ = 1 + · · ·+ =

X
=1

and

10x =
h
1 1

i
·

⎡⎢⎢⎢⎣
1
...

⎤⎥⎥⎥⎦ = 1 + · · ·+ =

X
=1

Next, consider the sum of squared values

X
=1

2 = 21 + · · ·+ 2

1.3 REPRESENTINGSUMMATIONUSINGVECTORNOTATION13

This sum can be conveniently represented as

x0x =
h
1

i
·

⎡⎢⎢⎢⎣
1
...

⎤⎥⎥⎥⎦ = 21 + · · ·+ 2 =

X
=1

2

Last, consider the sum of cross products

X
=1

 = 11 + · · ·

This sum can be compactly represented by

x0y =
h
1

i
·

⎡⎢⎢⎢⎣
1
...

⎤⎥⎥⎥⎦ = 11 + · · · =
X

=1

Note that x0y = y0x

Example 8 Computing sums in R

In R, summing the elements in a vector can be done using matrix algebra.

create vector of 1’s and a vector x

> onevec = rep(1,3)

> onevec

[1] 1 1 1

> xvec = c(1,2,3)

> xvec

[1] 1 2 3

sum elements in x

> t(xvec)%*%onevec

[,1]

[1,] 6

The functions crossprod() and sum() are generally computationally more

efficient:

14 CHAPTER 1 MATRIX ALGEBRA REVIEW

> crossprod(xvec,onevec)

[,1]

[1,] 6

> sum(xvec)

[1] 6

Sums of squares are best computed using

> crossprod(xvec)

[,1]

[1,] 14

> sum(xvec^2)

[1] 14

The dot-product or cross-product of two vectors can be conveniently com-

puted using the crossprod() function:

> yvec = 4:6

> xvec

[1] 1 2 3

> yvec

[1] 4 5 6

> crossprod(xvec,yvec)

[,1]

[1,] 32

> crossprod(yvec,xvec)

[,1]

[1,] 32

¥

1.4 Systems of Linear Equations

Consider the system of two linear equations

+ = 1 (1.1)

2− = 1 (1.2)

1.4 SYSTEMS OF LINEAR EQUATIONS 15

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

x+y=1, 2x-y=1

Figure 1.1: System of two linear equations.

As shown in Figure 1.1, equations (1.1) and (1.2) represent two straight lines

which intersect at the point = 2
3
and = 1

3
 This point of intersection is

determined by solving for the values of and such that + = 2− 2

The two linear equations can be written in matrix form as⎡⎣ 1 1

2 −1

⎤⎦⎡⎣

⎤⎦ =
⎡⎣ 1
1

⎤⎦
or

A · z = b
where

A =

⎡⎣ 1 1

2 −1

⎤⎦ z =
⎡⎣

⎤⎦ and b =

⎡⎣ 1
1

⎤⎦
2Soving for gives = 2 Substituting this value into the equation + = 1 gives

2 + = 1 and solving for gives = 13 Solving for then gives = 23

16 CHAPTER 1 MATRIX ALGEBRA REVIEW

If there was a (2× 2) matrix B with elements such that B ·A = I2
where I2 is the (2× 2) identity matrix, then we could solve for the elements
in z as follows. In the equation A · z = b, pre-multiply both sides by B to

give

B ·A · z = B · b
=⇒ I · z = B · b
=⇒ z = B · b

or ⎡⎣

⎤⎦ =
⎡⎣ 11 12

21 22

⎤⎦⎡⎣ 1
1

⎤⎦ =
⎡⎣ 11 · 1 + 12 · 1
21 · 1 + 22 · 1

⎤⎦
If such a matrix B exists it is called the inverse of A and is denoted A−1
Intuitively, the inverse matrix A−1 plays a similar role as the inverse of a
number. Suppose is a number; e.g., = 2 Then we know that 1

· =

−1 = 1 Similarly, in matrix algebra A−1A = I2 where I2 is the identity
matrix. Now, consider solving the equation · = 1 By simple division we
have that = 1

 = −1 Similarly, in matrix algebra if we want to solve the

system of linear equations Ax = b we multiply by A−1 and get the solution
x = A−1b
Using B = A−1 we may express the solution for z as

z = A−1b

As long as we can determine the elements in A−1 then we can solve for the
values of and in the vector z The system of linear equations has a solution

as long as the two lines intersect, so we can determine the elements in A−1

provided the two lines are not parallel. If the two lines are parallel, then one

of the equations is a multiple of the other. In this case we say that A is not

invertible.

There are general numerical algorithms for finding the elements of A−1

(e.g., so-called Gaussian elimination) and matrix programming languages

and spreadsheets have these algorithms available. However, if A is a (2× 2)
matrix then there is a simple formula for A−1 Let A be a (2 × 2) matrix
such that

A =

⎡⎣ 11 12

21 22

⎤⎦

1.4 SYSTEMS OF LINEAR EQUATIONS 17

Then

A−1 =
1

det(A)

⎡⎣ 22 −12
−21 11

⎤⎦
where det(A) = 1122−2112 denotes the determinant of A and is assumed
to be not equal to zero By brute force matrix multiplication we can verify

this formula:

A−1A =
1

1122 − 2112

⎡⎣ 22 −12
−21 11

⎤⎦⎡⎣ 11 12

21 22

⎤⎦
=

1

1122 − 2112

⎡⎣ 2211 − 1221 2212 − 1222

−2111 + 1121 −2112 + 1122

⎤⎦
=

1

1122 − 2112

⎡⎣ 2211 − 1221 0

0 −2112 + 1122

⎤⎦
=

⎡⎣ 2211−1221
1122−2112 0

0 −2112+1122
1122−2112

⎤⎦
=

⎡⎣ 1 0
0 1

⎤⎦
Let’s apply the above rule to find the inverse of A in our example linear

system (1.1)-(1.2):

A−1 =
1

−1− 2

⎡⎣−1 −1
−2 1

⎤⎦ =
⎡⎣ 1
3

1
3

2
3
−1
3

⎤⎦
Notice that

A−1A =

⎡⎣ 1
3

1
3

2
3
−1
3

⎤⎦⎡⎣ 1 1

2 −1

⎤⎦ =
⎡⎣ 1 0
0 1

⎤⎦

18 CHAPTER 1 MATRIX ALGEBRA REVIEW

Our solution for z is then

z = A−1b

=

⎡⎣ 1
3

1
3

2
3
−1
3

⎤⎦⎡⎣ 1
1

⎤⎦
=

⎡⎣ 2
3

1
3

⎤⎦ =
⎡⎣

⎤⎦
so that = 2

3
and = 1

3

Example 9 Solving systems of linear equations in R

In R, the solve() function is used to compute the inverse of a matrix and

solve a system of linear equations. The linear system + = 1 and 2− = 1
can be represented using

matA = matrix(c(1,1,2,-1), 2, 2, byrow=TRUE)

vecB = c(1,1)

First we solve for A−1:3

> matA.inv = solve(matA)

> matA.inv

[,1] [,2]

[1,] 0.3333 0.3333

[2,] 0.6667 -0.3333

> matA.inv%*%matA

[,1] [,2]

[1,] 1 -5.551e-17

[2,] 0 1.000e+00

> matA%*%matA.inv

[,1] [,2]

[1,] 1 5.551e-17

[2,] 0 1.000e+00

3Notice that the calculations in R do not show A−1A = I exactly. The (1 2) element

of A−1A is -5.552e-17, which for all practical purposes is zero. However, due to the

limitations of machine calculations the result is not exactly zero.

1.4 SYSTEMS OF LINEAR EQUATIONS 19

Then we solve the system z = A−1b:

> z = matA.inv%*%vecB

> z

[,1]

[1,] 0.6667

[2,] 0.3333

¥
In general, if we have linear equations in unknown variables we may

write the system of equations as

111 + 122 + · · ·+ 1 = 1

211 + 222 + · · ·+ 2 = 2
... =

...

11 + 22 + · · ·+ =

which we may then express in matrix form as⎡⎢⎢⎢⎢⎢⎢⎣
11 12 · · · 1

21 22 · · · 2
...

...

1 2 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1

2
...

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
1

2
...

⎤⎥⎥⎥⎥⎥⎥⎦
or

A
(×)

· x
(×1)

= b
(×1)

The solution to the system of equations is given by

x = A−1b

where A−1A = I and I is the (×) identity matrix. If the number of

equations is greater than two, then we generally use numerical algorithms to

find the elements in A−1

1.4.1 Partitioned Matrices and Partitioned Inverses

To be completed

20 CHAPTER 1 MATRIX ALGEBRA REVIEW

1.5 Positive Definite Matrices

To be completed

1.6 Multivariate Probability Distributions Us-

ing Matrix Algebra

In this section, we show how matrix algebra can be used to simplify many

of the messy expressions concerning expectations and covariances between

multiple random variables, and we show how certain multivariate probability

distributions (e.g., the multivariate normal distribution) can be expressed

using matrix algebra.

1.6.1 Random Vectors

Let 1 denote random variables for = 1 let = [] and

2 = var() and let = cov() for 6= Define the × 1 random
vector X = (1)

0. Associated with X is the × 1 vector of expected
values

μ
×1

= [X] =

⎛⎜⎜⎜⎝
[1]
...

[]

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
...

⎞⎟⎟⎟⎠

1.6.2 Covariance Matrix

The covariance matrix Σ summarizes the variances and covariances of the

elements of the random vector X. In general, the covariance matrix of a

random vector X (sometimes simply called the variance of the vector X)

with mean vector μ is defined as

cov(X) = [(X−μ)(X−μ)0] = Σ

1.6MULTIVARIATEPROBABILITYDISTRIBUTIONSUSINGMATRIXALGEBRA21

If X has elements then Σ will be the symmetric × matrix

Σ
×

=

⎛⎜⎜⎜⎜⎜⎜⎝
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠

For the case = 2, we have

[(X−μ)(X−μ)0] =

⎡⎣⎛⎝1 − 1

2 − 2

⎞⎠ · (1 − 12 − 2)

⎤⎦
=

⎡⎣⎛⎝ (1 − 1)
2 (1 − 1)(2 − 2)

(2 − 2)(1 − 1) (2 − 2)
2

⎞⎠⎤⎦
=

⎛⎝ [(1 − 1)
2] [(1 − 1)(2 − 2)]

[(2 − 2)(1 − 1)] [(2 − 2)
2]

⎞⎠
=

⎛⎝ var(1) cov(12)

cov(21) var(2)

⎞⎠ =

⎛⎝ 21 12

12 22

⎞⎠ = Σ

1.6.3 Variance of Linear Combination of Random Vec-

tors

Consider the × 1 random vector X with mean vector μ and covariance

matrix Σ Let a = (1)
0 be an × 1 vector of constants and consider

the random variable = a0X = 11 + · · ·+ . Then

 = [] = [a0X] = a0[X] = a0μ

and

var() = var(a0X) = [(a0X− a0μ)2] = [(a0(X−μ))2]
since = a0X is a scalar. Now we use a trick from matrix algebra. If is

a scalar (think of = 2) then 0 = · 0 = 2. Let = a0(X − μ) and so

22 CHAPTER 1 MATRIX ALGEBRA REVIEW

 · 0 = a0(X− μ)(X−μ)0a. Then

var() = [2] = [· 0]
= [a0(X− μ)(X−μ)0a]
= a0[(X− μ)(X−μ)0]a
= a0cov(X)a = a0Σa

1.6.4 Covariance Between Linear Combination of Two

Random Vectors

Consider the × 1 random vector X with mean vector μ and covariance

matrix Σ Let a = (1)
0 and b = (1)

0 be × 1 vectors of
constants, and consider the random variable = a0X = 11 + · · ·+

and = b0X = 11+ · · ·+. From the definition of covariance we have

cov() = [(−[])(−[])]

which may be rewritten in matrix notation as

cov(a0Xb0X) = [(a0X− a0μ)(b0X− b0μ)]
= [a0(X−μ)b0(X−μ)]
= [a0(X−μ)(X− μ)0b]
= a0[(X−μ)(X− μ)0]b
= a0Σb

Since a0(X−μ) and b0(X−μ) are scalars, we can use the trick

a0(X−μ)b0(X−μ) = a0(X− μ)(X−μ)0b

1.6.5 Bivariate Normal Distribution

Let and be distributed bivariate normal. The joint pdf is given by

() =
1

2
p
1− 2

× (1.3)

exp

(
− 1

2(1− 2)

"µ
−

¶2
+

µ
 −

¶2
− 2 (−)(−)

#)

1.6MULTIVARIATEPROBABILITYDISTRIBUTIONSUSINGMATRIXALGEBRA23

where [] = [] = sd() = sd() = and =

cor() The correlation coefficient describes the dependence between

 and If = 0 then and are independent and the pdf collapses

to the pdf of the standard bivariate normal distribution.

The formula for the bivariate normal distribution (1.3) is a bit messy. We

can greatly simplify the formula by using matrix algebra. Define the 2 × 1
vectors x = ()0 and μ = ()

0 and the 2× 2 matrix

Σ =

⎛⎝ 2

 2

⎞⎠

Then the bivariate normal distribution (1.3) may be compactly expressed as

(x) =
1

2 det(Σ)12
−

1
2
(x−)0Σ−1(x−)

where

det(Σ) = 2
2
 − 2 = 2

2
 − 2

2

2
 = 2

2
 (1− 2)

1.6.6 Multivariate Normal Distribution

Consider random variables 1 and assume they are jointly nor-

mally distributed. Define the ×1 vectorsX = (1)
0 x = (1)0

and μ = (1)
0 and the × covariance matrix

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠

Then X ∼ (μΣ) means that the random vector X has a multivariate

normal distribution with mean vector μ and covariance matrix Σ The pdf

of the multivariate normal distribution can be compactly expressed as

(x) =
1

22 det(Σ)12
−

1
2
(x−)0Σ−1(x−)

= (2)−2 det(Σ)−12−
1
2
(x−)0Σ−1(x−)

24 CHAPTER 1 MATRIX ALGEBRA REVIEW

1.7 Derivatives of Simple Matrix Functions

Result: Let A be an × symmetric matrix, and let x and y be an × 1
vectors. Then

x
×1
x0y =

⎛⎜⎜⎜⎝

1
x0y
...

x0y

⎞⎟⎟⎟⎠ = y (1.4)

x
×1
Ax =

⎛⎜⎜⎜⎝

1
(Ax)

0

...

(Ax)

0

⎞⎟⎟⎟⎠ = A (1.5)

x
×1
x0Ax =

⎛⎜⎜⎜⎝

1
x0Ax
...

x0Ax

⎞⎟⎟⎟⎠ = 2Ax (1.6)

We will demonstrate these results with simple examples. Let

A =

⎛⎝

⎞⎠ x =

⎛⎝ 1

2

⎞⎠ y =

⎛⎝ 1

2

⎞⎠
First, consider (1.4). Now

x0y = 11 + 22

Then

x
x0y =

⎛⎝
1
x0y

2
x0y

⎞⎠ =

⎛⎝
1
(11 + 22)

2
(11 + 22)

⎞⎠ =

⎛⎝ 1

2

⎞⎠ = y

Next, consider (1.5). Note that

Ax =

⎛⎝

⎞⎠⎛⎝ 1

2

⎞⎠ =

⎛⎝ 1 + 2

1 + 2

⎞⎠

1.8 PORTFOLIO MATH USING MATRIX ALGEBRA 25

and

(Ax)
0
= (1 + 2 1 + 2)

Then

x
Ax=

⎛⎝
1
(1 + 2 1 + 2)

2
(1 + 2 1 + 2)

⎞⎠ =

⎛⎝

⎞⎠ = A

Finally, consider (1.6). We have

x0Ax =
³
1 2

´⎛⎝

⎞⎠⎛⎝ 1

2

⎞⎠ = 21 + 212 + 22

Then

x
x0Ax =

⎛⎝
1
(21 + 212 + 22)

2
(21 + 212 + 22)

⎞⎠ =

⎛⎝ 21 + 22
21 + 22

⎞⎠
= 2

⎛⎝

⎞⎠⎛⎝ 1

2

⎞⎠ = 2Ax

1.8 Portfolio Math Using Matrix Algebra

Let denote the return on asset = and assume that and

 are jointly normally distributed with means, variances and covariances:

 = []
2
 = var() cov() =

Let denote the share of wealth invested in asset (=) and assume

that all wealth is invested in the three assets so that + + = 1 The

portfolio return, is the random variable

 = + + (1.7)

The subscript “” indicates that the portfolio is constructed using the x-

weights and The expected return on the portfolio is

 = [] = + + (1.8)

26 CHAPTER 1 MATRIX ALGEBRA REVIEW

and the variance of the portfolio return is

2 = var() = 2
2
+

2

2
+

2

2
+2+2+2

(1.9)

Notice that variance of the portfolio return depends on three variance terms

and six covariance terms. Hence, with three assets there are twice as many

covariance terms than variance terms contributing to portfolio variance. Even

with three assets, the algebra representing the portfolio characteristics (1.7)

- (1.9) is cumbersome. We can greatly simplify the portfolio algebra using

matrix notation.

Define the following 3×1 column vectors containing the asset returns and
portfolio weights

R =

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠ x =

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

The probability distribution of the random return vector R is simply the

joint distribution of the elements of R. Here all returns are jointly nor-

mally distributed and this joint distribution is completely characterized by

the means, variances and covariances of the returns. We can easily express

these values using matrix notation as follows. The 3× 1 vector of portfolio
expected values is

[R] =

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
[]

[]

[]

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠ = μ

and the 3× 3 covariance matrix of returns is

var(R) =

⎛⎜⎜⎜⎝
var() cov() cov()

cov() var() cov()

cov() cov() var()

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
2

 2

 2

⎞⎟⎟⎟⎠ = Σ

1.8 PORTFOLIO MATH USING MATRIX ALGEBRA 27

Notice that the covariance matrix is symmetric (elements off the diago-

nal are equal so that Σ = Σ0, where Σ0 denotes the transpose of Σ) since
cov() = cov() cov() = cov() and cov() =

cov()

The return on the portfolio using vector notation is

 = x
0R = () ·

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠ = + +

Similarly, the expected return on the portfolio is

 = [x0R] = x0[R] = x0μ

= () ·

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠ = + +

The variance of the portfolio is

2 = var(x0R) = x0Σx = () ·

⎛⎜⎜⎜⎝
2

 2

 2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠
= 2

2
 + 2

2
 + 2

2
 + 2 + 2 + 2

Finally, the condition that the portfolio weights sum to one can be expressed

as

x01 = () ·

⎛⎜⎜⎜⎝
1

1

1

⎞⎟⎟⎟⎠ = + + = 1

where 1 is a 3× 1 vector with each element equal to 1.
Consider another portfolio with weights y = ()

0 The return on
this portfolio is

 = y
0R = + +

28 CHAPTER 1 MATRIX ALGEBRA REVIEW

We often need to compute the covariance between the return on portfolio x

and the return on portfolio y cov() This can be easily expressed

using matrix algebra:

 = cov() = cov(x
0Ry0R)

= [(x0R− x0μ])(y0R− y0μ)0] = [x0(R− μ)(R−μ)0y]
= x0[(R−μ)(R− μ)0]y = x0Σy

Notice that

 = x0Σy = () ·

⎛⎜⎜⎜⎝
2

 2

 2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠
=

2
 +

2
 +

2

+(+) + (+) + (+)

which is quite a messy expression!

The global minimum variance portfolio m solves the constrained mini-

mization problem

min
m

2 =m
0Σm s.t. m01 = 1 (1.10)

The Lagrangian function is

(m) =m0Σm+ λ(m
0
1− 1)

The first order conditions can be expressed in matrix notation as

0
(3×1)

=
(m)

m
=

m
m0Σm+

m
λ(m

0
1− 1) = 2 ·Σm+ · 1(1.11)

0
(1×1)

=
(m)

=

m0Σm+

λ(m

0
1− 1) =m01− 1 (1.12)

1.9 Further Reading

A classic textbook on linear algebra is Strang (1980). Reviews of matrix al-

gebra with applications in economics and finance are given in Chang (1984).

Excellent treatments of portfolio theory using matrix algebra are given in In-

gersol (1987), Huang and Litzenberger (1988) and Campbell, Lo andMacKin-

lay (1996).

Bibliography

[1] Campbell, J.Y., Lo, A.W., and MacKinlay, A.C. (1997). The Economet-

rics of Financial Markets. Priceton, New Jersey: Princeton University

Press.

[2] Chiang, A. (1984). Fundamental Methods of Mathematical Economics,

Third Edition. McGraw-Hill, New York.

[3] Huang, C.-F., and Litzenbeger, R.H. (1988). Foundations for Financial

Economics. New York: North-Holland.

[4] Ingersoll, J.E. (1987). Theory of Financial Decision Making. Totowa, New

Jersey: Rowman & Littlefield.

[5] Strang, G. (1980). Linear Algebra and Its Applications. Academic Press.

29

