
Chapter 1

Time Series Concepts

Updated: January 22, 2015.

This chapter reviews some basic times series concepts that are important

for describing and modeling financial time series.

1.1 Stochastic Processes

A stochastic process

{    1 2      +1   } = {}∞=−∞

is a sequence of random variables indexed by time 1 In most applications,

the time index is a regularly spaced index representing calendar time (e.g.,

days, months, years, etc.). In modeling time series data, the ordering im-

posed by the time index is important because we often would like to capture

the temporal relationships, if any, between the random variables in the sto-

chastic process. In random sampling from a population, the ordering of the

random variables representing the sample does not matter because they are

independent.

A realization of a stochastic process with  observations is the sequence

of observed data

{1 = 1 2 = 2      = } = {}=1
1To conserve on notation, we will often represent the stochastic process {}∞=−∞

simply as {}

1
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The goal of time series modeling is to describe the probabilistic behavior

of the underlying stochastic process that is believed to have generated the

observed data in a concise way. In addition, we want to be able to use the

observed sample to estimate important characteristics of a time series model

such as measures of time dependence. In order to do this, we need to make a

number of assumptions regarding the joint behavior of the random variables

in the stochastic process such that we may treat the stochastic process in

much the same way as we treat a random sample from a given population.

1.1.1 Stationary Stochastic Processes

We often describe random sampling from a population as a sequence of in-

dependent, and identically distributed (iid) random variables 12    such

that each  is described by the same probability distribution   and write

 ∼   With time series data, we would like to preserve the identical dis-

tribution assumption but we do not want to impose the restriction that each

random variable in the sequence is independent of all of the other variables.

In many contexts, we would expect some dependence between random vari-

ables close together in time (e.g, 1 and 2) but little or no dependence

between random variables far apart in time (e.g., 1 and100). We can allow

for this type of behavior using the concepts of stationarity and ergodicity.

We start with the definition of strict stationarity.

Definition 1 Strict stationarity

A stochastic process {}∞=−∞ is strictly stationary if, for any given finite

integer  and for any set of subscripts 1 2      the joint distribution of

(1 2     ) depends only on 1 −  2 −       −  but not on  ¥
In simple terms, the joint distribution of random variables in a strictly

stationary stochastic process is time invariant. For example, the joint distri-

bution of (1 5 7) is the same as the distribution of (12 16 18) Just like

in an iid sample, in a strictly stationary process all of the random variables

 ( = −∞    ∞) have the same marginal distribution   This means

they all have the same mean, variance etc., assuming these quantities exist

However, assuming strict stationarity does not make any assumption about

the correlations between  1      other than that the correlation be-

tween  and  only depends on  −  (the time between  and ) and
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not on . That is, strict stationarity allows for general temporal dependence

between the random variables in the stochastic process.

A useful property of strict stationarity is that it is preserved under general

transformations, as summarized in the following proposition.

Proposition 2 let {}∞=−∞ be strictly stationary and let (·) be any func-
tion of the elements in {}∞=−∞ Then {()}∞=−∞ is also strictly station-
ary.

For example, if {}∞=−∞ is strictly stationary then { 2
 }∞=−∞ and {−1}∞=−∞

are also strictly stationary.

Example 3 iid sequence

If {}∞=−∞ is an iid sequence, then it is strictly stationary. ¥

Example 4 Non iid sequence

Let {}∞=−∞ be an iid sequence and let ∼ (0 1) independent of {}∞=−∞
Define  =  + The sequence {}∞=−∞ is not an independent sequence
(because of the common ) but is an identically distributed sequence and is

strictly stationary. ¥
If we assume that the stochastic process {}∞=−∞ is strictly stationary

and that [] var() and all pairwise covariances exist, then we say that

{}∞=−∞ is a covariance stationary stochastic process.

Definition 5 Covariance stationarity

A stochastic process {}∞=1 is covariance stationary if

1. [] =  does not depend on 

2. var() = 2 does not depend on 

3. cov( −) =  exists, is finite, and depends only on  but not on 

for  = 0 1 2   
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Gaussian White Noise Process
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Figure 1.1: Realization of a GWN(0,1) process.

The term  is called the j
 order autocovariance. The j order autocorre-

lation is defined as

 =
cov( −)p
var()var(−)

=


2
 (1.1)

The autocovariances,  measure the direction of linear dependence be-

tween  and − The autocorrelations,  measure both the direction and
strength of linear dependence between  and −
The autocovariances and autocorrelations are measures of the linear tem-

poral dependence in a covariance stationary stochastic process. A graphical

summary of this temporal dependence is given by the plot of  against ,

and is called the autocorrelation function (ACF).

Example 6 Gaussian White Noise

Let  ∼  (0 2) Then {}∞=−∞ is called aGaussian white noise process
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and is denoted  ∼ GWN(0 2). Notice that
[] = 0 independent of 

var() = 2 independent of 

cov( −) = 0 (for   0) independent of  for all 

so that {}∞=−∞ is covariance stationary. Figure 1.1 shows a realization

of a GWN(0,1) process. The defining characteristic of a GWN process is

the lack of any predictable pattern over time in the realized values of the

process as illustrated in 1.1. In the electrical engineering literature, white

noise represents the absence of any signal.

Figure 1.1was created with the R commands:

> set.seed(123)

> y = rnorm(250)

> ts.plot(y, main="Gaussian White Noise Process", xlab="time",

+ ylab="y(t)", col="blue", lwd=2)

> abline(h=0)

The simulated iid N(0,1) values are generated using the rnorm() function.

The command set.seed(123) initializes R’s internal random number gen-

erator using the seed 123. Everytime the random number generator seed is

set to a particular value, the random number generator produces the same

set of random numbers. This allows different people to create the same set of

random numbers so that results are reproducible. The function ts.plot()

creates a time series line plot with a dummy time index. An equivalent plot

can be created using the generic plot() function:

> plot(y, main="Gaussian White Noise Process", type="l", xlab="time",

+ ylab="y(t)", col="blue", lwd=2)

> abline(h=0)

¥

Example 7 Gaussian White Noise Model for Continuously Compounded

Returns

Let  denote the continuously compounded monthly return on Microsoft

stock and assume that  ∼ GWN(001 (005)2) 60 Simulated values of {}
are computed using
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GWN Process for Monthly Continuously Compounded Returns
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Figure 1.2: Simuluated returns from GWN(0.01,(0.05)2)

> set.seed(123)

> y = rnorm(60, mean=0.01, sd=0.05)

> ts.plot(y,main="GWN Process for Monthly Continuously Compounded Returns",

+ xlab="time",ylab="r(t)", col="blue", lwd=2, type="p")

> abline(h=c(0,-0.05,0.05), lwd=2, lty=c("solid","dotted","dotted"),

+ col=c("black", "red", "red"))

and are illustrated in Figure 1.2. Notice that the returns fluctuate around

the mean value of 001 and the size of a typically deviation from the mean

is about 005. An implication of the GWN assumption for monthly returns

is that non-overlapping multiperiod returns are also GWN. For example,

consider the two-month return (2) = +−1 The non-overlapping process
{(2)} = { −2(2) (2) +2(2) } is GWN with mean [(2)] = 2 ·
(001) = 002 and variance var((2)) = 2 · (005)2
Example 8 Independent White Noise

Let  ∼ iid (0 2) Then {}∞=−∞ is called an independent white noise
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process and is denoted  ∼ IWN(0 2) The difference between GWN and
IWN is that with IWN we don’t specify that all random variables are nor-

mally distributed. The random variables can have any distribution with

mean zero and variance 2¥

Example 9 Weak White Noise

Let {}∞=−∞ be a sequence of uncorrelated random variables each with mean
zero and variance 2 Then {}∞=−∞ is called a weak white noise process and
is denoted  ∼ WN(0 2). With a weak white noise process, the random
variables are not independent, only uncorrelated. This allows for potential

non-linear temporal dependence between the random variables in the process.

¥

1.1.2 Non-Stationary Processes

In a covariance stationary stochastic process it is assumed that the means,

variances and autocovariances are independent of time. In a non-stationary

process, one or more of these assumptions is not true.

Example 10 Deterministically trending process

Suppose {}∞=0 is generated according to the deterministically trending
process

 = 0 + 1+   ∼(0 2)

 = 0 1 2   

Then {}∞=0 is nonstationary because the mean of  depends on  :

[] = 0 + 1 depends on 

Figure 1.3 shows a realization of this process with 0 = 0 1 = 01 and

2 = 1 created using the R commands:

> set.seed(123)

> e = rnorm(250)

> y.dt = 0.1*seq(1,250) + e

> ts.plot(y.dt, lwd=2, col="blue", main="Deterministic Trend + Noise")

> abline(a=0, b=0.1)
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Deterministic Trend + Noise
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Figure 1.3: Deterministically trending nonstationary process  = 01 +

  ∼ (0 1)

Here the non-stationarity is created by the deterministic trend 0 + 1 in

the data. The non-stationary process {}∞=0 can be transformed into a
stationary process by simply subtracting off the trend:

 =  − 0 − 1 =  ∼WN(0 2)

The detrended process  ∼WN(0 2) ¥

Example 11 Random walk

A random walk (RW) process {}∞=1 is defined as

 = −1 +   ∼ IWN(0 2)
0 is fixed (non-random).
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By recursive substitution starting at  = 1 we have

1 = 0 + 1

2 = 1 + 2 = 0 + 1 + 2
...

 = 0 + 1 + · · ·+ 

= 0 +

X
=1



Now, [] = 0 which is independent of  However,

var() = var

Ã
X

=1



!
=

X
=1

2 = 2 × 

which depends on and so {}∞=1 is not stationary.
Figure 1.4 shows a realization of the RW process with 0 = 0 and 

2
 = 1

created using the R commands:

> set.seed(321)

> e = rnorm(250)

> y.rw = cumsum(e)

> ts.plot(y.rw, lwd=2, col="blue", main="Random Walk")

> abline(h=0)

Although {}∞=1 is non-stationary, a simple first-differencing transformation,
however, yields a covariance stationary process:

 =  − −1 =  ∼ IWN(0 2)

¥

Example 12 Random Walk Model for log Stock Prices

Let  denote the continuously compounded monthly return on Microsoft

stock and assume that  ∼ GWN(001 (005)2) Since  = ln(−1) it
follows that ln = ln−1 +  and so ln follows a random walk process.

Prices, however, do not follow a random walk since  = ln = ln−1+.
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Random Walk
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Figure 1.4: Random walk process:  = −1 +   ∼ (0 1)

1.1.3 Ergodicity

In a strictly stationary or covariance stationary stochastic process no assump-

tion is made about the strength of dependence between random variables in

the sequence. For example, in a covariance stationary stochastic process

it is possible that 1 = cor( −1) = 100 = cor( −100) = 05 say.

However, in many contexts it is reasonable to assume that the strength of

dependence between random variables in a stochastic process diminishes the

farther apart they become. That is, 1  2 · · · and that eventually  = 0

for  large enough. This diminishing dependence assumption is captured by

the concept of ergodicity.

Definition 13 Ergodicity (intuitive definition)

Intuitively, a stochastic process {}∞=−∞ is ergodic if any two collections of
random variables partitioned far apart in the sequence are essentially inde-

pendent. ¥
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The formal definition of ergodicity is highly technical and requires ad-

vanced concepts in probability theory. However, the intuitive definition cap-

tures the essence of the concept. The stochastic process {}∞=−∞ is ergodic
if  and − are essentially independent if  is large enough.
If a stochastic process {}∞=−∞ is covariance stationary and ergodic then

strong restrictions are placed on the joint behavior of the elements in the

sequence and on the type of temporal dependence allowed.

Example 14 White noise processes

If {}∞=−∞ is GWN or IWN then it is both covariance stationary and ergodic.

Example 15 Covariance stationary but not ergodic process (White 1984,

pp. xxx)

Let  ∼ GWN(0 1) and let  ∼ (0 1) independent of {}∞=−∞ Define
 =  +  Then {}∞=−∞ is covariance stationary but not ergodic. To

see why {}∞=−∞ is not ergodic, note that for all   0

var() = var( +) = 1 + 1 = 2

 = cov( +− +) = cov( −) + cov() + cov(− ) + cov()

= cov() = var() = 1

 =
1

2
for all 

Hence, the correlation between random variables separated far apart does

not eventually go to zero and so {}∞=−∞ cannot be ergodic. ¥
The different flavors of white noise processes are not very interesting be-

cause they do not allow any linear dependence between the observations in

the series. The following sections describe some simple covariance station-

ary and ergodic time series models that allow for different patterns of time

dependence captured by autocorrelations.

1.2 Moving Average Processes

Moving average models are simple covariance stationary and ergodic time

series models that can capture a wide variety of autocorrelation patterns.
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1.2.1 MA(1) Model

Suppose you want to create a covariance stationary and ergodic stochastic

process {}∞=−∞ in which  and −1 are correlated but  and − are not
correlated for   1 That is, the time dependence in the process only lasts

for one period. Such a process can be created using the first order moving

average (MA(1)) model:

 = +  + −1 − 1    1 (1.2)

 ∼  (0 2)

The moving average parameter  determines the sign and magnitude of the

correlation between  and −1 Clearly, if  = 0 then  =  +  so that

{}∞=−∞ exhibits no time dependence.
To verify that (1.2) process is a covariance stationary process we must

show that the mean, variance and autocovariances are time invariant. For

the mean, we have

[] = +[] + [−1] = 

because [] = [−1] = 0
For the variance, we have

var() = 2 = [( − )2] = [( + −1)
2]

= [2 ] + 2[−1] + 2[2−1]

= 2 + 0 + 22 = 2(1 + 2)

The term [−1] = cov( −1) = 0 because {}∞=−∞ is an independent

process.

For 1 = cov( −1) we have

cov( −1) = [( − )(−1 − )]

= [( + −1)(−1 + −2)]

= [−1] + [−2]

+[2−1] + 2[−1−2]

= 0 + 0 + 2 + 0 = 2

Note that the sign of 1 is the same as the sign of  For 1 = cor( −1)
we have

1 =
1
2
=

2

2(1 + 2)
=



(1 + 2)

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Clearly, 1 = 0 if  = 0; 1  0 if   0; 1  0 if   0 Also, the largest

value for |1| is 05 which occurs when || = 1
For 2 = cov( −2) we have

cov( −2) = [( − )(−2 − )]

= [( + −1)(−2 + −3)]

= [−2] + [−3]

+[−1−2] + 2[−1−3]

= 0 + 0 + 0 + 0 = 0

Similar calculations can be used to show that

cov( −) =  = 0 for   1

Hence, for   1 we have  = 0 and there is only time dependence between

 and −1 but no time dependence between  and − for   1 Because
 = 0 for   1 the MA(1) process is ergodic.

Example 16 Simulated values from MA(1) process

The R function arima.sim() can be used to simulate observations from

a MA(1) process2. For example, to simulate 250 observations from (1.2) with

 = 1  = 09 and  = 1 use

> ma1.model = list(ma=0.9)

> mu = 1

> set.seed(123)

> ma1.sim = mu + arima.sim(model=ma1.model,n=250)

The ma component of the list object ma1.model specifies the value of  for

the MA(1) model, and is used as an input to the function arima.sim().

By default, arima.sim() sets  = 0 and specifies  ∼ GWN(0 1). Other
distributions for  can be specified using the optional innov argument. For

example, to set  ∼ GWN(0 (01)2) use
> ma1.sim = mu + arima.sim(model=ma1.model,n=250,

+ innov=rnorm(250,mean=0,sd=0.1))

2The function arima.sim() can be used to simulate observations from the class of

autoregressive integrated moving average (ARIMA) models, of which the MA(1) model is

a special case.
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MA(1) Process: mu=1, theta=0.9
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Figure 1.5: Simulated values and theoretical ACF from MA(1) process with

 = 1  = 09 and 2 = 1

The function ARMAacf() can be used to compute the theoretical autocor-

relations,  from the MA(1) model (recall, 1 = (1 + 2) and  = 0 for

  1) For example, to compute  for  = 1     10 use

> ma1.acf = ARMAacf(ar=0, ma=0.9, lag.max=10)

> ma1.acf

0 1 2 3 4 5 6 7 8 9

1.0000 0.4972 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10

0.0000

Figure 1.5 shows the simulated data and the theoretical ACF created using

> par(mfrow=c(2,1))

> ts.plot(ma1.sim,main="MA(1) Process: mu=1, theta=0.9",

+ xlab="time",ylab="y(t)", col="blue", lwd=2)

> abline(h=c(0,1))
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> plot(0:10, ma1.acf,type="h", col="blue", lwd=2,

+ main="ACF for MA(1): theta=0.9",xlab="lag",ylab="rho(j)")

> abline(h=0)

> par(mfrow=c(1,1)

Compared to the GWN process in 1.1, the MA(1) process is a bit smoother

in its appearance. This is due to the positive one-period time dependence

1 = 04972

¥

Example 17 MA(1) model for overlapping continuously compounded re-

turns

Let  denote the one-month continuously compounded return and assume

that

 ∼ iid ( 2)

Consider creating a monthly time series of two-month continuously com-

pounded returns using

(2) =  + −1

The time series of these two-month returns, observed monthly, overlap by

one month:

(2) =  + −1

−1(2) = −1 + −2

−2(2) = −2 + −3
...

The one-month overlap in the two-month returns implies that {(2)} follows
an MA(1) process. To show this, we need to show that the autocovariances

of {(2)} behave like the autocovariances of an MA(1) process.
To verify that {(2)} follows an MA(1) process, first we have

[(2)] = [] +[−1] = 2

var((2)) = ( + −1) = 2
2

Next, we have

cov((2) −1(2)) = cov(+−1 −1+−2) = cov(−1 −1) = var(−1) = 2
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and

cov((2) −2(2)) = cov( + −1 −2 + −3) = 0

cov((2) −(2)) = 0 for   1

Hence, the autocovariances of {(2)} are those of an MA(1) process. Notice
that

1 =
2

22
=
1

2


What MA(1) process describes {(2)}? Because 1 = 

1+2
= 05 it follows

that  = 1 Hence, the MA(1) process has mean 2 and  = 1 and can be

expressed as

(2) = 2+  + −1

 ∼ (0 2)

1.3 Autoregressive Processes

1.3.1 AR(1) Model

Suppose you want to create a covariance stationary and ergodic stochas-

tic process {}∞=−∞ in which  and −1 are correlated,  and −2 are
slightly less correlated,  and −3 are even less correlated and eventually 
and − are uncorrelated for  large enough. That is, the time dependence
in the process decays to zero as the random variables in the process get far-

ther and farther apart. Such a process can be created using the first order

autoregressive (AR(1)) model:

 −  = (−1 − ) +  − 1    1 (1.3)

 ∼ iid (0 2)

It can be shown that the AR(1) model is covariance stationary and ergodic

provided −1    1We will show that the AR(1) process has the following
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properties:

[] =  (1.4)

var() = 2 = 2(1− 2) (1.5)

cov( −1) = 1 = 2 (1.6)

cor( −1) = 1 = 1
2 =  (1.7)

cov( −) =  = 2 (1.8)

cor( −) =  = 
2 =  (1.9)

Notice that the restriction ||  1 implies that
lim
→∞

 =  = 0

so that  is essentially independent of − for large  and so {}∞=−∞ is

ergodic For example, if  = 05 then 10 = (05)
10 = 0001; if  = 09 then

10 = (09)
10 = 0349. Hence, the closer  is to unity the stronger is the time

dependence in the process.

Verifying covariance stationarity for the AR(1) model is more involved

than for the MA(1) model, and establishing the properties (1.4) - (1.9) in-

volves some tricks. First, consider the derivation for (1.4). We have

[] = + ([−1]− ) +[]

= + [−1]− 

If we assume that {}∞=−∞ is covariance stationary then [] = [−1]
Substituting into the above and solving for [] gives (1.4). A similar trick

can be used to derive (1.5):

var() = 2(var(−1)) + var() = 2(var()) + 2

which uses the fact that −1 is independent of  and var() = var(−1)
provided {} is covariance stationary. Solving for 2 = var() gives (1.5).
To determine (1.6), multiply both sides of (1.3) by −1 −  and take expec-

tations to give

1 =  [( − ) (−1 − )] = 
£
(−1 − )2

¤
+ [ (−1 − )] = 2

which uses the fact that −1 is independent of  and var() = var(−1) =
2 Finally, to determine (1.8), multiply both sides of (1.3) by − −  and
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take expectations to give

 =  [( − ) (− − )] =  [(−1 − )(− − )] + [ (− − )]

= −1

which uses the fact that − is independent of  and [(−1 − )(− − )] =

−1 provided {} is covariance stationary. Using recursive substitution and
0 = 2 gives (1.8).

The AR(1) Model can be re-expressed in the form of a linear regression

model as follows:

 −  = (−1 − ) +  ⇒
 = − + −1 + 

= + −1 + 

where  = (1−)⇒  = (1−) This regression model form is convenient
for estimation by ordinary least squares.

Example 18 Simulated values from AR(1) process

The R function arima.sim() can be used to simulate observations from an

AR(1) process, and the function ARMAacf() can be used to compute the

theoretical ACF. For example, to simulate 250 observations from (1.3) with

 = 1  = 09 and  = 1, and compute the theoretical ACF use

> ar1.model = list(ar=0.9)

> mu = 1

> set.seed(123)

> ar1.sim = mu + arima.sim(model=ar1.model,n=250)

> ar1.acf = ARMAacf(ar=0.9, ma=0, lag.max=10)

These values are shown in Figure 1.6. Compared to the MA(1) process in

1.5, the realizations from the AR(1) process are much smoother. That is,

when  wanders high above its mean it tends to stay above the mean for a

while and when it wanders low below the mean it tends to stay below for a

while.
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AR(1) Process: mu=1, phi=0.9
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Figure 1.6: Simulated values and ACF from AR(1) model with  = 1  = 09

and 2 = 1


