69 References
There must have been a time, in the beginning, when we could have said – no. But somehow we missed it. (Guildenstern)
— from Rosencranz and Guildenstern are Dead, Tom Stoppard
If you want a PDF and can’t find it at the link provided, let us know and we can help you find a copy.
1.
Ross R. The Prevention of Malaria. 2nd ed. London: John Murray; 1911.
2.
Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8: e1002588. doi:10.1371/journal.ppat.1002588
3.
Reiner RC Jr, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J R Soc Interface. 2013;10: 20120921.
4.
Molineaux L, Dietz K. Review of intra-host models of malaria. Parassitologia. 1999;41: 221–231. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10697860&retmode=ref&cmd=prlinks
5.
Smith DL, Perkins TA, Reiner RC Jr, Barker CM, Niu T, Chaves LF, et al. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg. 2014;108: 185–197. doi:10.1093/trstmh/tru026
6.
Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW, Gosling R, et al. A sticky situation: The unexpected stability of malaria elimination. Philos Trans R Soc Lond B Biol Sci. 2013;368: 20120145. doi:10.1098/rstb.2012.0145
7.
Chiyaka C, Tatem AJ, Cohen JM, Gething PW, Johnston G, Gosling R, et al. Infectious disease. The stability of malaria elimination. Science. 2013;339: 909–910. doi:10.1126/science.1229509
8.
Wu SL, Sánchez C HM, Henry JM, Citron DT, Zhang Q, Compton K, et al. Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Comput Biol. 2020;16: e1007446. doi:10.1371/journal.pcbi.1007446
9.
Levin S. The Problem of Relevant Detail. In: Busenberg S, Martelli M, editors. Differential Equations Models in Biology, Epidemiology and Ecology: Proceedings of a Conference held in Claremont California, January 13–16, 1990. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. pp. 9–15. doi:10.1007/978-3-642-45692-3_1
10.
Smith NR, Trauer JM, Gambhir M, Richards JS, Maude RJ, Keith JM, et al. Agent-based models of malaria transmission: A systematic review. Malar J. 2018;17: 299. doi:10.1186/s12936-018-2442-y
11.
Carter R. Spatial simulation of malaria transmission and its control by malaria transmission blocking vaccination. International Journal for Parasitology. 2002;32: 1617–1624. doi:10.1016/S0020-7519(02)00190-X
12.
Gu W, Killeen GF, Mbogo CM, Regens JL, Githure JI, Beier JC. An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans R Soc Trop Med Hyg. 2003;97: 43–50. doi:10.1016/s0035-9203(03)90018-6
13.
Perkins TA, Scott TW, Le Menach A, Smith DL. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Comput Biol. 2013;9: e1003327.
14.
Tatem AJ, Smith DL. International population movements and regional Plasmodium falciparum malaria elimination strategies. Proc Natl Acad Sci U S A. 2010;107: 12222–12227. doi:10.1073/pnas.1002971107
15.
Wu SL, Henry JM, Citron DT, Ssebuliba DM, Nsumba JN, C HMS, et al. Spatial dynamics of malaria transmission. PLOS Computational Biology. 2023;19: e1010684. doi:10.1371/journal.pcbi.1010684
16.
Ross R. The logical basis of the sanitary policy of mosquito reduction. Science. 1905;22: 689–699. doi:10.1126/science.22.570.689
17.
Ross R. Report on the Prevention of Malaria in Mauritius. London: Waterlow; 1908.
18.
Ross R. On some peculiar pigmented cells found in two mosquitos fed on malarial blood. British medical journal. 1897;2: 1786–1788. Available: http://www.bmj.com/content/2/1929/1786.full.pdf
19.
Ross R. The role of the mosquito in the evolution of the malarial parasite. Lancet. 1898;152: 488–490. Available: https://scholar.archive.org/work/vejsrzltgva5nmudubd5oebje4/access/ia_file/crossref-pre-1909-scholarly-works/10.1016%252Fs0140-6736%252801%252981394-5.zip/10.1016%252Fs0140-6736%252801%252981400-8.pdf
20.
Grassi B, Bastianelli G, Bignami A. Ulteriori ricerche sul ciclo dei parassiti malarici umani sul corpo del zanzarone. Rend Acad Lincei. 1898.
21.
Grassi B. Studi di uno zoologo sulla malaria. Roma : R. Accademia dei lincei,; 1901. doi:10.5962/bhl.title.37999
22.
Laveran A. Note sur un nouveau parasite dans le sang de plusieurs malades atteints de fièvre palustre. Note communiquée a l’Académie de Medicine, seance du. 1880;23.
23.
Laveran A. Traité des fièvres palustres. Octave Doin; 1884.
24.
Garnham PCC. History of Discoveries of Malaria Parasites and of Their Life Cycles. History and Philosophy of the Life Sciences. 1988;10: 93–108. Available: https://www.jstor.org/stable/23329001
25.
Shortt HE, Garnham PCC. The pre-erythrocytic stage of human malaria, Plasmodium vivax. Br Med J. 1948;1: 547. doi:10.1136/bmj.1.4550.547
26.
Dempster TE. Notes on the Application of the Test of Organic Disease of the Spleen, as an Easy and Certain Method of Detecting Malarious Localities in Hot Climates. Wm. H. Haycock, Secundra Orphan Press; 1848. Available: https://play.google.com/store/books/details?id=3j9pAAAAcAAJ
27.
Bruce-Chwatt LJ. History of malaria from prehistory to eradication. In: Wernsdorfer WH, McGregor IA, editors. Malaria: Principles and Practice of Malariology. New York: Churchill Livingstone; 1988. pp. 1–59. Available: http://www.cabdirect.org/abstracts/19900861468.html
28.
Service MW. A short history of early medical entomology. Journal of Medical Entomology. 1978;14: 603–626. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=357723&retmode=ref&cmd=prlinks
29.
Cox FEG. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010;3: 5. doi:10.1186/1756-3305-3-5
30.
Ross R. The thick film process for the detection of organisms in the blood. Liverpool, United Kingdom: University Press of Liverpool; 1903 Jun.
31.
Ross R. An improved method for the microscopical diagnosis of intermittent fever. The Lancet. 1903;161: 86. Available: http://scholar.google.com/scholar?q=related:G2VdXAzaHkoJ:scholar.google.com/&hl=en&num=30&as_sdt=0,5
32.
Ross R. Some quantitative studies in epidemiology. Nature. 1911;87: 466–467.
33.
Boyd MF, editor. Malariology. A Comprehensive Survey of all Aspects of this Group of Diseases from a Global Standpoint. Philadelphia, Pa.; London,: W. B. Saunders Co.; 1949. Available: https://www.cabdirect.org/cabdirect/abstract/19501000283
34.
Wernsdorfer WH, McGregor IA, editors. Malaria: Principles and Practice of Malariology. New York: Churchill Livingstone; 1988. Available: http://www.worldcat.org/title/malaria-principles-and-practice-of-malariology/oclc/15793746
35.
Ross R. Extermination of Malaria. Ind Med Gaz. 1899;34: 231–232. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145409/
36.
Ross R. Inaugural Lecture on the Possibility of Extirpating Malaria from Certain Localities by a New Method. British medical journal. 1899;2: 1–4. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20758555&retmode=ref&cmd=prlinks
37.
Ross R. Mosquito brigades and how to organise them. London: George Philip & Son; 1902.
38.
Lotka AJ. Contribution to the Analysis of Malaria Epidemiology. I. General Part. American Journal of Epidemiology. 1923;3: 1–36. doi:10.1093/oxfordjournals.aje.a118963
39.
Lotka AJ. Contribution to the Analysis of Malaria Epidemiology. II. General Part (continued). Comparison of Two Formulae given by Sir Ronald Ross. American Journal of Epidemiology. 1923;3: 38–54. doi:10.1093/oxfordjournals.aje.a118965
40.
Lotka AJ. Contribution to the Analysis of Malaria Epidemiology. III. Numerical Part. American Journal of Epidemiology. 1923;3: 55–95. doi:10.1093/oxfordjournals.aje.a118966
41.
Lotka AJ. Contribution to the Analysis of Malaria Epidemiology. V. Summary. American Journal of Epidemiology. 1923;3: 113–121. doi:10.1093/oxfordjournals.aje.a118964
42.
Macdonald G. The analysis of the sporozoite rate. Trop Dis Bull. 1952;49: 569–586. Available: https://www.ncbi.nlm.nih.gov/pubmed/14958825
43.
Macdonald G. The analysis of equilibrium in malaria. Trop Dis Bull. 1952;49: 813–829. Available: https://www.ncbi.nlm.nih.gov/pubmed/12995455
44.
Bockarie MJ, Gbakima AA, Barnish G. It all began with Ronald Ross: 100 years of malaria research and control in Sierra Leone (1899–1999). Ann Trop Med Parasitol. 1999;93: 213–224. doi:10.1080/00034983.1999.11813416
45.
Ross R. The prevention of malaria in British possessions, Egypt, and parts of America. The Lancet. 1907; 879–887.
46.
Ross R. Malaria in Greece. Washington, DC: Government Printing Office; 1909 pp. 697–710.
47.
Ross R. Some a priori pathometric equations. Br Med J. 1915;i: 546–547. doi:10.1136/bmj.1.2830.546
48.
Ross R. An application of the theory of probabilities to the study of a priori pathometry. Part I. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science. 1916;92: 204–230.
49.
Bernoulli D, Blower S. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev Med Virol. 2004;14: 275–288. Available: https://www.ingentaconnect.com/content/jws/rmv/2004/00000014/00000005/art00002?crawler=true
50.
Bacaër N. Daniel Bernoulli, d’Alembert and the inoculation of smallpox (1760). A short history of mathematical population dynamics. Springer; 2011. pp. 21–30. Available: https://link.springer.com/chapter/10.1007/978-0-85729-115-8_4
51.
Dietz K. The first epidemic model: A historical note on PD En’ko. Aust J Stat. 1988;30A: 56–65. doi:10.1111/j.1467-842X.1988.tb00464.x
52.
Ross R, Hudson HP. An application of the theory of probabilities to the study of a priori pathometry. Part II. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences. 1917;93: 212–225.
53.
Ross R, Hudson H. An application of the theory of probabilities to the study of a priori pathometry. Part III. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science. 1917;93: 225–240. Available: http://adsabs.harvard.edu/abs/1917RSPSA..93..225R
54.
55.
Fine PEM. Superinfection - a problem in formulating a problem. Tropical Diseases Bulletin. 1975;75: 475–488.
56.
Fine PEM. Ross’s a priori pathometry - a perspective. Proc R Soc Med. 1975;68: 547–551. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1105597
57.
Macdonald G. The analysis of infection rates in diseases in which superinfection occurs. Trop Dis Bull. 1950;47: 907–915. Available: https://www.ncbi.nlm.nih.gov/pubmed/14798656
58.
Bailey NTJ. The Biomathematics of Malaria. Oxford: Charles Griffin & Company Ltd.; 1982. Available: https://play.google.com/store/books/details?id=4MCAQgAACAAJ
59.
Aron JL, May RM. The population dynamics of malaria. In: Anderson RM, editor. The Population Dynamics of Infectious Diseases: Theory and Applications. Boston, MA: Springer US; 1982. pp. 139–179. doi:10.1007/978-1-4899-2901-3_5
60.
Malaria WEC on. Expert Committee on Malaria, Sixth Report. Athens: Geneva: Palais des Nations.; 1957. Report No.: 123. Available: https://www.cabdirect.org/cabdirect/abstract/19582900403
61.
Macdonald G. Epidemiologic models in studies of vectorborne diseases. Public Health Rep. 1961;76: 753–764. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13764730
62.
Macdonald G. The analysis of malaria parasite rates in infants. Tropical diseases bulletin. 1950;47: 915–938.
63.
Armitage P. A note on the epidemiology of malaria. Trop Dis Bull. 1953;50: 890–892.
64.
Macdonald G. The measurement of malaria transmission. Proceedings of the Royal Society of Medicine. 1955;48: 295–302.
65.
Macdonald G. Epidemiological basis of malaria control. Bull World Health Organ. 1956;15: 613–626. Available: https://www.ncbi.nlm.nih.gov/pubmed/13404439
66.
Macdonald G. Theory of the eradication of malaria. Bull World Health Organ. 1956;15: 369–387. Available: https://www.ncbi.nlm.nih.gov/pubmed/13404426
67.
Macdonald G. The epidemiology and control of malaria. Oxford university press; 1957. Available: https://www.cabdirect.org/cabdirect/abstract/19582900392
68.
Sharpe FR, Lotka AJ. Contribution to the Analysis of Malaria Epidemiology. IV. Incubation lag. American Journal of Epidemiology. 1923;3: 96–112. doi:10.1093/oxfordjournals.aje.a118967
69.
Waite H. Mosquitoes and malaria. A study of the relation between the number of mosquitoes in a locality and the malaria rate. Biometrika. 1910;7: 421–436. doi:10.2307/2345376
70.
Hay SI, Smith DL, Snow RW. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis. 2008;8: 369–378. doi:10.1016/S1473-3099(08)70069-0
71.
Smith DL, Smith TA, Hay SI. Measuring malaria for elimination. In: Feachem RGA, Phillips AA, Targett GAT, editors. Shrinking the Malaria Map. San Francisco, CA: University of California, San Francisco; 2009. pp. 108–126. Available: http://www.worldcat.org/title/shrinking-the-malaria-map-a-prospectus-on-malaria-elimination/oclc/421361248
72.
Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics. Adv Parasitol. 2014;84: 151–208. doi:10.1016/B978-0-12-800099-1.00003-X
73.
Nájera JA. A critical review of the field application of a mathematical model of malaria eradication. Bull World Health Organ. 1974;50: 449–457. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4156197
74.
Dietz K, Molineaux L, Thomas A. A malaria model tested in the African savannah. Bull World Health Organ. 1974;50: 347–357. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4613512
75.
Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria Journal. 2004;3: 13. doi:10.1186/1475-2875-3-13
76.
Hackett LW. Malaria in Europe. London, Oxford University Press; 1937.
77.
Dietz K. Models for parasitic disease control. Bull Int Stat Inst. 1975;46: 531–544.
78.
Dietz K. The incidence of infectious diseases under the influence of seasonal fluctuations. In: Berger J, Bühler WJ, Repges R, Tautu P, editors. Mathematical models in medicine. Berlin, Heidelberg: Springer Berlin Heidelberg; 1976. pp. 1–15.
79.
Dietz K. Models for vector-borne parasitic diseases. In: Barigozzi C, Levin SA, editors. Vito Volterra Symposium on Mathematical Models in biology. Berlin: Springer-Verlag; 1980. pp. 264–277.
80.
Dietz K, Hadeler KP. Epidemiological models for sexually transmitted diseases. J Math Biol. 1988;26: 1–25. Available: https://www.ncbi.nlm.nih.gov/pubmed/3351391
81.
Dye C, Hasibeder G. Population dynamics of mosquito-borne disease: Effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg. 1986;80: 69–77. doi:10.1016/0035-9203(86)90199-9
82.
Hasibeder G, Dye C. Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment. Theor Popul Biol. 1988;33: 31–53. doi:10.1016/0040-5809(88)90003-2
83.
Molineaux L, Diebner HH, Eichner M, Collins WE, Jeffery GM, Dietz K. Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology. 2001;122: 379–391. doi:10.1017/s0031182001007533
84.
Macdonald G, Goeckel GW. The malaria parasite rate and interruption of transmission. Bull World Health Organ. 1964;31: 365–377. Available: https://www.ncbi.nlm.nih.gov/pubmed/14267746
85.
Smith DL, Hay SI. Endemicity response timelines for Plasmodium falciparum elimination. Malaria Journal. 2009;8: 87. doi:10.1186/1475-2875-8-87
86.
Walton GA. On the control of malaria in Freetown, Sierra Leone; I. Plasmodium falciparum and Anopheles gambiae in relation to malaria occurring in infants. Ann Trop Med Parasitol. 1947;41: 380–407. doi:10.1080/00034983.1947.11685341
87.
Henry JM. A hybrid model for the effects of treatment and demography on malaria superinfection. Journal of Theoretical Biology. 2020;491: 110194. doi:10.1016/j.jtbi.2020.110194
88.
Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Adult vector control, mosquito ecology and malaria transmission. International Health. 2015;7: 121–129. doi:10.1093/inthealth/ihv010
89.
Smith DL, Perkins TA, Tusting LS, Scott TW, Lindsay SW. Mosquito Population Regulation and Larval Source Management in Heterogeneous Environments. PLOS ONE. 2013;8: e71247. doi:10.1371/journal.pone.0071247