New Hammerstein Modeling and Analysis for Controlling Melt Pool Width in Powder Bed Fusion Additive Manufacturing

Oct 1, 2020ยท
Dan Wang
,
Xinyu Zhao
Xu Chen
Xu Chen
ยท 0 min read
Abstract
Despite the advantages and emerging applications, broader adoption of powder bed fusion (PBF) additive manufacturing is challenged by insufficient reliability and in-process variations. Finite element modeling and control-oriented modeling have been identified fundamental for predicting and engineering part qualities in PBF. This paper first builds a finite element model (FEM) of the thermal fields to look into the convoluted thermal interactions during the PBF process. Using the FEM data, we identify a novel surrogate system model from the laser power to the melt pool width. Linking a linearized model with a memoryless nonlinear submodel, we develop a physics-based Hammerstein model that captures the complex spatiotemporal thermomechanical dynamics. We verify the accuracy of the Hammerstein model using the FEM and prove that the linearized model is only a representation of the Hammerstein model around the equilibrium point. Along the way, we conduct the stability and robustness analyses and formalize the Hammerstein model to facilitate the subsequent control designs.
Type
Publication
Proceedings of ASME Dynamic Systems and Control Conference