Lectures Click on lecture titles to view slides or the buttons to download them as PDFs. Topic 1 Introduction to the Course, Probability, and R You may want to read through Kevin Quinn’s matrix algebra and probability distribution reviews, or consult my undergrad lectures on discrete and continuous distributions. Topic 2 Introduction to Maximum Likelihood The R code to simulate heteroskedastic data and model that data using a heteroskedastic normal maximum likelihood is here. Topic 3 There are separate R scripts for interpreting and selecting binary logit models, as well as an example dataset. The goodness of fit code also relies on R functions for computing the percent correctly predicted and making predicted-versus-actual plots and ROC plots, which you should place in your working directory. An example trio of plots showing actual versus predicted probabilities, error versus predicted probabilities, and the ROC curve can be seen here. Topic 4 R code and data for an ordered probit, which produces graphics for expected value plots and first difference plots. Topic 5 R code for a multinomial logit, which produces a variety of graphical summaries of a multinomial logit model: for expected values plotted together, expected values plotted separately in a tiled format, first difference plotted for a single scenario and all categories, relative risks plotted for a single scenario and all categories, and relative risks plotted for many scenarios at once. Topic 6 Two code examples are discussed in this lecture. - The main R script to run the models, cross-validation, and graphics
- Data (csv format) from the Washington Secretary of State & US Census
- An R helper file with cross-validation functions
The second example analyzes unbounded counts using Poisson, Negative Binomial, Quasipoisson, Zero-inflated Poisson, and Zero-inflated Negative Binomial models of foreclosure filings by Houston, Texas area Home Owner Associations (HOAs). Example output includes this plot of expected values from a zero-inflated negative binomial model. You will need: - The main R script to run the models and graphics
- Data (csv format) from HOAdata.org
Advanced Topic 1 Missing Data and Multiple Imputation See the Topic 6 example on turnout for an R code using multiple imputation of missing data. Also available is an example (R script, data, plot) showing the use of overimputation to compute coverage of multiple imputation prediction intervals for real data. Advanced Topic 2 Introduction to Multilevel Models For the curious, the R script used to construct the example plots in the first half of this lecture is here. Self-Study Lecture 1 Introduction to Contingency Tables This lecture and the two below it introduce log-linear models of tabular data, and will not be presented as part of POLS/CSSS 510. They are posted here for interested students, especially for the use of mosaic plots to investigate cross-tabulated data (in this lecture, and in the third lecture on multidimensional tables). Students interested in a CSSS course on log-linear models should investigate CSSS 536. Self-Study Lecture 2 Log-linear Models of Contingency Tables: 2D tables Self-Study Lecture 3 Log-linear Models of Contingency Tables: 3D+ tables Student Assignments Due in Canvas by start of class Wednesday 9 October 2024 Due in Canvas by start of class Monday 21 October 2024 Due in Canvas by start of class Wednesday 6 November 2024 Data for problem 1 in comma-separated variable format. Due in Canvas by start of class Wednesday 20 November 2024 Data for problem 1 in comma-separated variable format. Due in Canvas by start of class Monday 2 December 2024 Data for problem 1 in comma-separated variable format; data for problem 2 in R data format. Poster Presentations 2 to 6 December 2024 Requirements and suggestions for poster presentations will be presented in class. Final Paper Due Tuesday 10 December 2024, 3:00 pm by email See the syllabus for paper requirements, and see my guidelines and recommendations for quantitative research papers. Labs Lab 1 R Review + Intro to RMarkdown and Overleaf Supplementary material: Find our Slack channel here, and the recurring Zoom lab sessions, held every Friday, here. For today's lab, you will need to download the following review_script.R and RMarkdownSample.Rmd files. Furthermore, you will need to load the following datasets: pop.csv and gapminder.csv. As an optional homework for next week, you can download the files Lab1_practice.Rmd and lab1_data.csv. You can download all the materials in the following ZIP file. You can access to the lab recording in this link. Lab 2 Probability Distributions and Statistical Inference Supplementary material: For today's lab, we will go over this .Rmd file. We will also work with Lab2_practice.Rmd. Find also the answer key from last week's code practice file. You can download all the materials in the following ZIP file. You can access to the lab recording in this link. Lab 3 Supplementary material: For today's lab, we will go over this .Rmd file. We will also work with Lab3_practice.Rmd. Find also the answer key from last week's code practice file. You can download all the materials in the following ZIP file. |

Designed by |