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Multi-level data structures

Data are often structured into different “levels”

These levels are often hierarchical, but might also be non-nested

Response variable might be continuous, binary, count, etc.

Three examples:

1. Votes in a presidential election grouped by state

• Two levels; nested

2. Test scores of students grouped by class, school, and district

• Four levels; nested

3. Devolution of authority by country, policy area & policy tool

• Two levels; non-nested



Models of multilevel data

yij = α+ xijβ + εij

Suppose our data are for individuals i nested in groups j

For simplicity, assume yij is Normally distributed, so we could use LS

What problems might the model above pose?
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What about iid? Aren’t members of the same group likely correlated?
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Models of multilevel data

yij = α+ xijβ + εij

Suppose our data are for individuals i nested in groups j

For simplicity, assume yij is Normally distributed, so we could use LS

What problems might the model above pose?

What about iid? Aren’t members of the same group likely correlated?

What do we do?

Simplest solution: let each group have its own intercept



Models of variable intercepts

yij = αi + xijβ + εij

Then there are a range of possibilities for group-specific intercepts:

Let αi be a random variable with no systemic component.
This type of αi known as a random effect:

αi ∼ Normal
(
0, σ2

α

)



Models of variable intercepts

yij = αi + xijβ + εij

Then there are a range of possibilities for group-specific intercepts:

Let αi be a random variable with no systemic component.
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Let αi be a systematic component with no stochastic component.
This type of αi is known as a fixed effect:

αi = α∗
i



Models of variable intercepts

yij = αi + xijβ + εij

Then there are a range of possibilities for group-specific intercepts:

Let αi be a random variable with no systemic component.
This type of αi known as a random effect:

αi ∼ Normal
(
0, σ2

α

)
Let αi be a systematic component with no stochastic component.
This type of αi is known as a fixed effect:

αi = α∗
i

Let αi be a random variable with a unit-specific systematic component
This type of αi known as a mixed effect:

αi ∼ Normal
(
α∗
i , σ

2
α

)



Random effects

αi ∼ N
(
0, σ2

α

)
Intuitive from a maximum likelihood modeling perspective

A unit specific error term

Assumes the units come from a common population,
with an unknown (estimated) variance, σ2

α

In likelihood inference, estimation focuses on this variance, not on particular αi’s

Uncorrelated with xi by design

Need MLE (or Bayes) to estimate



Random effects example

A (contrived) example may help clarify what random effects are.

Suppose that we have data following this true model:

yit = β0 + β1xit + αi + εit

αi ∼ N (0, σ2
α)

εit ∼ N (0, σ2)

with i ∈ {1, . . . N} and t ∈ {1, . . . T}

It may help to pretend that these data have a real world meaning,
though remember throughout we have conjured them from thin air and rnorm()

Let’s pretend these data reflect undergraduate student exam scores over a term for
N = 100 students and T = 5 exams



Random effects example: Student aptitude & effort

Let’s pretend these data reflect undergraduate student exam scores

over a term for N = 100 students and T = 5 exams:

scoreit = β0 + β1hoursit + αi + εit

αi ∼ N (0, σ2
α)

εit ∼ N (0, σ2)

with i ∈ {1, . . . N} and t ∈ {1, . . . T}

The response is the exam score, scoreit

and the covariate is the hours studied before the exam, hoursit

and each student has an unobservable aptitude αi which is Normally distributed

Aptitude has the same (random) effect on each exam by a given student



Random effects example: Student aptitude & effort

Let’s pretend these data reflect undergraduate student exam scores

over a term for N = 100 students and T = 5 exams:

scoreit = 0 + 0.75× hoursit + αi + εit

αi ∼ N (0, 0.72)

εit ∼ N (0, 0.22)

with i ∈ {1, . . . 100} and t ∈ {1, . . . 5}

The above are the true values of the parameters I used to generate the data

Let’s see what role the random effect αi plays here



hours of study

exam

score

The 500 obervations

A relationship between
effort & scores seems
evident



hours of study

exam

score

Let’s summarize the
relationship using the
least squares β̂1

Approximately equal
to the true β1 = 0.75

Haven’t discussed,
used, or estimated the
random effects yet

Do we need them?



hours of study

exam

score

Identified each of the
100 students using
colored dots (we have
8 colors; they repeat)

Clear that each
student’s scores are
tightly clustered

Note the student-level
slopes



hours of study

exam

score

Each student follows
the same regression
line as the whole class,
but with a unique
intercept

That intercept is the
random effect αi

It’s also the average
difference between
student i’s scores and
the class-level
regression line



hours of study

exam

score

The student random
effect is the
student-specific
component of the
error term

After we remove it, a
student’s scores across
exams exhibit white
noise variation around
a student-specific
version of the overall
regression line



hours of study

exam

score

These random effects
αi reflect the portion
of the error term that
results from
unmeasured student
characteristics

I’ve labelled this
random component
“aptitude”

But that’s is just a
word for everything
related to a student’s
ability



hours of study

exam

score

The distribution of the
random effects is
shown at the left

A plot of a marginal
distribution on the side
of a scatterplot is
called a “rug”

NB: tile can make
rugs using rugTile()

traces



hours of study

exam
score

A density plot of the
distribution of random
effects suggests they
are approximately
Normal



hours of study

exam
score

Random effects are a
decomposition of the
error term into

1. a unit-specific part

2. an idiosyncratic
part

Random effects are
determined after we
have the overall
regression slope and
cannot change that
slope



hours of study

exam
score

The model is now
hierarchical or
multilevel

Level 1: Student level

sits above

Level 2: Student ×
exam level

There’s random
variation at both levels

But mainly at the
student level



hours of study

exam
score

Students randomly
vary a lot: σα = 0.7

Exams for a given
student vary little:
σε = 0.2

Student level random
effects comprise
100% ×√

0.72/(0.72 + 0.22) =

96% of the total error
variance



hours of study

exam
score

We haven’t controlled
for any omitted
confounders

What if unmeasured
ability were correlated
with study effort?

Our β̂1 estimate would
be biased

This bias persists even
if we allow for random
effects



Random effects example: Student aptitude & effort

Suppose that ability is correlated with effort

For example, perhaps high ability students rationally choose to study harder
as their best available human capital investment opportunity

We have the same model, but now hoursit is a function of αi:

scoreit = 0 + 0.75× hoursit + αi + εit

hoursit = 0 + 0.5× αi + uniform(−0.7, 0.7)
αi ∼ N (0, 0.72)

εit ∼ N (0, 0.22)

with i ∈ {1, . . . 100} and t ∈ {1, . . . 5}

What happens when we estimate a treat αi as a random effect and estimate β̂1?



hours of study

exam

score I’ve shown only the
first 30 students to
make the graph easier
to read

A stronger relationship
between effort and
grades seems evident



hours of study

exam

score

RE estimateRE estimate

Least squares model
finds β̂1 ≈ 1.6

More than double the
true value of 0.75!

Where’d the bias come
from?



hours of study

exam

score

RE estimateRE estimate

With multilevel data,
it helps to start at the
lowest level

I’ve colored the points
by student

A random effects
model finds the
student specific
intercept after
estimating the slope of
the main regression
line



hours of study

exam

score

RE estimateRE estimateRE estimateRE estimate

The student specific
relationships between
effort and scores as
estimated by a random
effects model

Are these estimates
right?



hours of study

exam

score

Truth

Not even close

The true regression
lines by student and
overall

Random effects
estimates of effort is
biased because the
student-specific effect
is correlated with effort



hours of study

exam

score

Truth

Random effects are an
inadequate model
when the grouping
indicator is correlated
with our covariates

In this case we have
omitted variable bias

We need a different
model of α:
fixed effects



Fixed effects

αi = α∗
i

Easiest to conceptualize in a linear regression framework

Easiest to estimate; just add dummies for each unit, and drop the intercept

Can be correlated with xit:
controls for any group-invariant omitted variable
(ie, controls for all group-specific variables, even unmeasurable ones!)

Indeed, that’s usually the point.
Often included to capture unobserved variance potentially correlated with x.

Irony: we’re actually removing the across-group variation, not modeling it

Instead, we are:

Assuming the same response in each group to changes in covariates

Using only within-group variation in covariates to estimate parameters



Fixed effects

αi = α∗
i

Fixed effects can’t be added to models with perfectly group-invariant covariates
(Causes perfect collinearity of covariates)

Fixed effects specifications also incur an incidental parameters problem:
MLE is consistent as I →∞, but not as J →∞.



Fixed effects

αi = α∗
i

Fixed effects can’t be added to models with perfectly group-invariant covariates
(Causes perfect collinearity of covariates)

Fixed effects specifications also incur an incidental parameters problem:
MLE is consistent as I →∞, but not as J →∞.

Monte Carlo experiments indicate small sample properties of fixed effects pretty
good if I > 5 or so.

Fixed effects are common in studies where N is not a random sample, but a (small)
universe (e.g., the industrialized countries).



Fixed effects

αi = α∗
i

Fixed effects can’t be added to models with perfectly group-invariant covariates
(Causes perfect collinearity of covariates)

Fixed effects specifications also incur an incidental parameters problem:
MLE is consistent as I →∞, but not as J →∞.

Monte Carlo experiments indicate small sample properties of fixed effects pretty
good if I > 5 or so.

Fixed effects are common in studies where N is not a random sample, but a (small)
universe (e.g., the industrialized countries).

Sui generis: Fixed effects basically say “France is different because it’s France,”
“America is different because it’s America,” etc.



Fixed effects example

Another example may help clarify what fixed effects are.

Suppose that we have data following this true model:

yij = β0 + β1xij + β2zi + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

j indexes a set of Mi counties drawn from state i

There are N = 15 states total, and we drew Mj =M = 15 counties from each state



Fixed effects example

Suppose the data represent county level voting patterns for the US

(i.e., let’s illustrate Gelman et al, Red State, Blue State, Rich State, Poor State w/
contrived data)

RVSij = β0 + β1Incomeij + β2ConservativeCulturei + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

j indexes a set of Mi counties drawn from state i

Remember: the data I’m using are fake, and contrived to illustrate a concept simply

Gelman et al investigate this in detail with real data and get similar but more
nuanced findings

We will review the real data later in this lecture



Fixed effects example: What’s the matter with Kansas?

Suppose the data represent county level voting patterns for the US

(I.e., let’s illustrate Gelman et al, Red State, Blue State, Rich State, Poor State
using similar but contrived data)

RVSij = β0 + β1Incomeij + β2Conservatismi + εij

εij ∼ N (0, σ2)

with i ∈ {1, . . . N} and j ∈ {1, . . .Mi}

A problem:
suppose we don’t have (or don’t trust) a measure of state-level Conservatism

If we exclude it, or mismeasure it, we could get omitted variable bias in β̂1

This leads to potentially large misconceptions. . .
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Suppose we observe 15 counties from each of 15 states (225 observations)

Our first cut is to estimate this simple linear regression: yij = β0 + β1Incomeij + εij
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We find that β̂1 is negative:

Poor counties seem to vote more Republican than rich counties!
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But Republican elected officials attempt to represent the affluent

What’s the matter with (poor counties in) Kansas, as Thomas Frank asked?
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Let’s look at which observations come from which states

Clearly, counties from the same state are clustered
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Within each state, there’s a positive relationship
between income & voting Republican
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Suggests we need to control for variation at the state level,

either by collecting the state level variables causing the variation, or. . .
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use brute force: add a dummy for each state to the matrix of covariates

to purge the omitted variable bias
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Controlling for state fixed effects, β̂1 flips signs!

Including fixed effects for each state removes state-level omitted variable bias
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What’s the matter with Kansas? On average, Kansans are more conservative than
other Americans, but within Kansas, the same divide between rich and poor holds
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What’s the matter with Kansas? On average, Kansans are more conservative than
other Americans, but within Kansas, the same divide between rich and poor holds

. . . or at least it did until 2016
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How are fixed effects different from random effects?
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Fixed effects control for omitted variables random effects don’t

Fixed effects don’t follow any particular distribution random effects do
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Aside 1 the above reversal is an example of the ecological fallacy,
which says that aggregate data can mislead us about individual level relationships

Here, the pattern across states mislead us as to the pattern within states
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Aside 2: Above are results on actual data from Gelman et al

This version of their model assume intercepts (but not slopes) vary by state
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Aside 2 When Gelman et al allow slopes β̂1i to vary across states,

they find the rich-poor divide is actually steeper in poor states!



Red state, blue state

Running example from Gelman et al 2007, “Rich State, Poor State, Red State, Blue
State: What’s the Matter with Connecticut?”, QJPS (also a book)

Gelman et al note a paradox:

1. Surveys show richer voters vote more Republican, ceteris paribus

2. Election data shows richer states vote more Democratic

Seek to disentangle relationship between income and party preference both between
and within states

Use National Annenberg Election Study from 2000 and 2004



Red state, blue state

vi measures whether the ith voter chose the Democrat (vi = 1) or Republican
candidate (vi = 0)

But ith voter of what group?

Start at top level of model, states indexed 1, . . . j, . . . J

Within each state, there are voters 1, . . . i, . . . Nj

Total number of observations:
∑J
j=1Nj

Each state may have a different number of voters Nj

ML Estimation difficult if some Nj are small—will need Bayesian methods



Full pooling

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = α+ βIncomeij

• Full pooling

• Assumes all voters regardless of state follow same model

• Intercept α and coefficient β the same regardless of state

• No special estimation issues; just use logit MLE

• Pooling assumption may be unreasonable; voters may vary by state



Full pooling

Assume we have several variables in memory in R:

vote stacked vector of vote choices for all voters in all states
income stacked vector of income for all voters in all states
state stacked vector state indexes for all voters in all states

R code to estimate the full pooling model:

res <- glm(vote ~ income, family=binomial)



No pooling

vi1 ∼ Bernoulli(πi1)

πi1 = logit−1(µi1)

µi1 = α+ βIncomei1

. . .

viJ ∼ Bernoulli(πiJ)

πiJ = logit−1(µiJ)

µiJ = α+ βIncomeiJ

• No pooling

• Estimate J separate logits



No pooling

vi1 ∼ Bernoulli(πi1)

πi1 = logit−1(µi1)

µi1 = α+ βIncomei1

. . .

viJ ∼ Bernoulli(πiJ)

πiJ = logit−1(µiJ)

µiJ = α+ βIncomeiJ

• Assumes each state is sui generis

• No common distribution governs voters in different states



No pooling

vi1 ∼ Bernoulli(πi1)

πi1 = logit−1(µi1)

µi1 = α+ βIncomei1

. . .

viJ ∼ Bernoulli(πiJ)

πiJ = logit−1(µiJ)

µiJ = α+ βIncomeiJ

• No special estimation issues; just use logit MLE repeatedly

May not be able to estimate all J equations if some Nj are small



No pooling

vi1 ∼ Bernoulli(πi1)

πi1 = logit−1(µi1)

µi1 = α+ βIncomei1

. . .

viJ ∼ Bernoulli(πiJ)

πiJ = logit−1(µiJ)

µiJ = α+ βIncomeiJ

• No pooling assumption may be very inefficient if relationship between income and
vote is somehow similar across states



No pooling

vi1 ∼ Bernoulli(πi1)

πi1 = logit−1(µi1)

µi1 = α+ βIncomei1

. . .

viJ ∼ Bernoulli(πiJ)

πiJ = logit−1(µiJ)

µiJ = α+ βIncomeiJ

R code to estimate the equation-by-equation “model”:

res <- vector("list",J)

for (j in 1:J)

res[j] <- glm(vote[state==j] ~ income[state==j], family=binomial)



Fixed effects regression

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βIncomeij

• Blend of full pooling for β and no pooling for α

• Note that α now indexed by j: J parameters to estimate

• Assumes different states have different baseline tendencies to vote Democratic,
but the relationship between voting and income is identical everywhere

• Fixed effects: Each state has a unique, sui generis intercept



Fixed effects regression

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βIncomeij

• Purges omitted variable bias at the state level

• Can estimate using MLE (aside on consistency)

R code to estimate the fixed effects model:

stateFE <- makeFEdummies(state) # in simcf package

res <- glm(vote ~ income + stateFE - 1, family=binomial)



Random effects regression

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βIncomeij

αj ∼ Normal(µα, σ
2
α)

• Partial pooling of intercepts, full pooling of coefficients

• Still assumes different states have different baseline tendencies to vote Democratic,
but the relationship between voting and income is identical everywhere

• But αj now includes a random effect.



Random effects regression

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βIncomeij

αj ∼ Normal(µα, σ
2
α)

• Could rewrite the systematic component to reflect this:

µij = µα + εα,j︸ ︷︷ ︸
RandomIntercept

+βIncomeij

• Estimation by MLE if Nj’s not too small; otherwise Bayesian MCMC



Random effects regression

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βIncomeij

αj ∼ Normal(µα, σ
2
α)

Advantages of partial pooling (also known as “random effects” or “mixed effects”)

• Far less demanding than full fixed effects (estimating J αj’s)

• Still allows (and estimates) degree of heterogeneity

• Can decompose multiple levels of random effects to discern which levels driving
the most variance in voting



Random effects regression

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βIncomeij

αj ∼ Normal(µα, σ
2
α)

R code to estimate the random intercept model:

library(lme4)

res <- lmer(vote ~ income + (1|state), family=binomial)

Note the odd formula notation

In a formula, 1 represents a constant.

This says the model constant is conditioned on (randomly varies by) the grouping
variable state



Random effects
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Random interecept, random coefficient

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βjIncomeij



Random interecept, random coefficient

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βjIncomeij[
αj
βj

]
∼ Multivariate Normal

([
µα
µβ

]
,

[
σ2
α ρσα,β

ρσα,β σ2
β

])

• We can make coefficients (in a linear model, slopes) random too

• Each group has a similar but randomly varying relation between votes & income



Random interecept, random coefficient

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βjIncomeij[
αj
βj

]
∼ Multivariate Normal

([
µα
µβ

]
,

[
σ2
α ρσα,β

ρσα,β σ2
β

])

R code to estimate the random intercept, random coefficients model:

res <- lmer(vote ~ income + (1 + income|state), family=binomial)

Note the odd formula notation

In a formula, 1 represents a constant.

This says the model constant and coefficient for income are both conditioned on
(randomly vary by) the grouping variable state



Fully conditional mixed effects

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βjIncomeij



Fully conditional mixed effects

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βjIncomeij[
αj
βj

]
∼ Multivariate Normal

([
µα,j
µβ,j

]
,

[
σ2
α ρσα,β

ρσα,β σ2
β

])



Fully conditional mixed effects

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij = αj + βjIncomeij[
αj
βj

]
∼ Multivariate Normal

([
µα,j
µβ,j

]
,

[
σ2
α ρσα,β

ρσα,β σ2
β

])
µα,j = γα,0 + γα,1AvgIncj

µβ,j = γβ,0 + γβ,1AvgIncj

Intercepts and/or coefficients could themselves covary with higher level covariates

Here, level two variables, like the average income of the state, help determine
determine level one relationships



Fully conditional mixed effects

Note that we could rewrite αj and βj as a function of a systematic component and
an error term:

αj = γα,0 + γα,1AvgIncj + εα,j

βj = γβ,0 + γβ,1AvgIncj + εβ,j[
εα,j
εβ,j

]
∼ Multivariate Normal

([
0
0

]
,

[
σ2
α ρσα,β

ρσα,β σ2
β

])



Fully conditional mixed effects

Substituting for αj and βj, we can rewrite this model as an interactive specification
with random intercepts and coefficients:

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij =
(
γα,0 + γα,1AvgIncj + εα,j

)
+
(
γβ,0 + γβ,1AvgIncj + εβ,j

)
Incomeij



Fully conditional mixed effects

Substituting for αj and βj, we can rewrite this model as an interactive specification
with random intercepts and coefficients:

vij ∼ Bernoulli(πij)

πij = logit−1(µij)

µij =
(
γα,0 + γα,1AvgIncj + εα,j

)
+
(
γβ,0 + γβ,1AvgIncj + εβ,j

)
Incomeij

= (γα,0 + εα,j) + (γβ,0 + εβ,j)Incomeij

+γα,1AvgIncj + γβ,1Incomeij ×AvgIncj



Fully conditional mixed effects

R code to estimate the conditional intercept, conditional coefficients model:

# Make the second level variable

avg.income <- rep(NA,J)

for (j in 1:J)

avg.income[j] <- mean(income[state==j])

# Create an interaction term at the first level

avg.income.expanded <- avg.income[state]

# Use interactions to mimic conditional coefficients

res <- lmer(vote ~ avg.income.expanded*income

+ (1 + income|state), family=binomial)



Fully conditional mixed effects
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