
Introduction to the
Course, Probability, and R

Christopher Adolph

Political Science and CSSS

University of Washington, Seattle

POLS 510 � CSSS 510

 Electrovista

Maximum Likelihood Methods
for the Social Sciences

Welcome

Class goals

Go beyond the linear model to develop models for real-world data

messy data with substantively interesting quirks

Consider broad principles for selecting and deriving models

make and estimate any new model you want

Learn to present the result of any estimation to a broad audience

visuals anyone can understand, not just statistics experts

Gateway to CSSS and other classes

Bayesian inference

Hierarchical/multilevel modeling

Event history analysis

Panel data analysis

Social network analysis

. . .

Challenges

1. Hard new concepts

2. A fair bit of math

3. Statistical programming rather than point-and-click

Payoff

1. Hard new concepts

• Develop a more intuitive understanding of statistics
• Less “trust me;” more “show me”
• Get ready for advanced classes and independent study

2. A fair bit of math

• Unavoidable: we need the precision of mathematics
• You won’t be required to do proofs – but you may need to derive a new model
• Numerical and visual alternatives where available

3. Statistical programming rather than point-and-click

• Steep learning curve, but in the end far more powerful
• Great for applied research: bring the methods and data to the question
• Empowering for any research involving data:

you’ll be surprised how many problems can be simplified by programming

MLE for Categorical & Count Data

First half of course focuses on inference about discrete data: categories & counts

Foundational quantitative methods classes focus on the linear regression model

• Assume data consist of a systematic component xiβ and
a continuous, Normally distributed disturbance εi

• Easy to implement, estimate, and interpret

• A reasonable starting place for many analyses, with some robust features

But do the assumptions of linear regression (aka least squares) always fit?

Do they fit with discrete data?

Limits of the linear regression model

What about these possible response variables?

• A voter’s choice between a Democrat or a Republican?

• A voter’s choice among Labour, Lib Dem, SNP, UKIP, and Conservative?

• Whether a person rides the bus, drives, or walks to work?

• The number of tests a student fails in a given year?

• The number of wars fought per decade?

• Whether someone taunted in a bar ignores it, argues back, or throws a punch

Beyond linear regresion

No. All of these variables violate basic linear regression assumptions

Beyond linear regresion

No. All of these variables violate basic linear regression assumptions

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Ignore

Argue

Punch

Treat categories as interval

alcohol consumption

β̂1 = 0.25 (p = 0.22)

Beyond linear regresion

No. All of these variables violate basic linear regression assumptions

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Ignore

Argue

Punch

Treat categories as interval

alcohol consumption

Ignore
Argue

Punch

True intervals between categories

alcohol consumption

β̂1 = 0.25 (p = 0.22)

Beyond linear regresion

No. All of these variables violate basic linear regression assumptions

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Ignore

Argue

Punch

Treat categories as interval

alcohol consumption

Ignore
Argue

Punch

True intervals between categories

alcohol consumption

β̂1 = 0.25 (p = 0.22) β̂1 = 0.34 (p = 0.11)

Beyond linear regresion

No. All of these variables violate basic linear regression assumptions

Let’s take a closer look the last example . . .

To ignore, argue, or punch – does this escalation follow a uniform pattern?

Problems for linear regression in this case?

Ignore

Argue

Punch

Treat categories as interval

alcohol consumption

Ignore
Argue

Punch

True intervals between categories

alcohol consumption

β̂1 = 0.25 (p = 0.22) β̂1 = 0.34 (p = 0.11)

Beyond linear regression

In this class, you’ll learn three things:

Theory: Probability models to deal with discrete and categorical data

Application: Selecting and presenting models to uncover substantive relationships

Practice: Programming skills to implement, fit, and interpret these models

Getting started

In particular, we’ll follow a four step procedure:

1. Identify a probability model for a dependent variable

2. Derive an estimator for it

3. Fit the model and check the goodness of fit

4. Interpret the results, usually graphically

We’ll start on Step 1 today . . .

Outline for today

1. Course administration

2. Review basic probability

3. Review some fundamental probability distributions

Course administration

1. Syllabus

2. Paper requirements

3. Survey

4. Introductions

Lightning course in basic probability: Sets

Define a set as a collection of elements. These could be numbers

A = {23, 5.3, 1000, 4}

But they need not be quantitative at all,

A = {Democrat,Republican, Independent}

And we will for now leave them as mathematical objects

A = {a1, a2, a3}

a1 is an element of A, which we write a1 ∈ A

A set may also be empty, e.g., B = ∅ = {}

Lightning course in basic probability: Sets

We define 3 basic set operators:

subset ⊂ union ∪ intersection ∩

Lightning course in basic probability: Sets

We define 3 basic set operators:

subset ⊂ union ∪ intersection ∩

(Remember Venn Diagrams?)

Universe

A B

C

An important definition:

If A ∩ C = ∅, then A and C are disjoint.

Lightning course in basic probability: Probability

Sets will help us define probability

Suppose we toss a coin twice and record the results.

The universe of possible results is the sample space. It is a set of sets:

Ω = {{H,H}, {H,T}, {T,H}, {T, T}}

Each subset of Ω is an event.

A probability function is defined over all the events in Ω such that

• Pr(A) ≥ 0 ∀A

• Pr(Ω) = 1

• A ∩B = ∅ ⇐⇒ Pr(
⋃

(A,B)) = Pr(A) + Pr(B)

Lightning course in basic probability: Probability

We’ll use these terms a lot:

Pr of a single event Pr(A) marginal probability

Pr of several events Pr(A ∩B) = Pr(AB) joint probability

Pr of an event given another event Pr(A|B) conditional probability

These concepts are linked by a simple identity:

conditional probability =
joint probability

marginal probability

Pr(A|B) =
Pr(A ∩B)

Pr(B)

Lightning course in basic probability: Probability

An example. Suppose Pr(B) = 0.5, Pr(A ∩B) = 0.4.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
0.4

0.5
= 0.8

Lightning course in basic probability: Probability

An example. Suppose Pr(B) = 0.5, Pr(A ∩B) = 0.4.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
0.4

0.5
= 0.8

If this doesn’t seem intuitive, verify with a Venn diagram

Universe

A B

C

Lightning course in basic probability: Probability

An example. Suppose Pr(B) = 0.5, Pr(A ∩B) = 0.4.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
0.4

0.5
= 0.8

If this doesn’t seem intuitive, verify with a Venn diagram

Universe

A B

C Let’s adjust our
diagram to better fit
our example.

Lightning course in basic probability: Probability

An example. Suppose Pr(B) = 0.5, Pr(A ∩B) = 0.4.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
0.4

0.5
= 0.8

If this doesn’t seem intuitive, verify with a Venn diagram

Universe

A B

C We know event B
will happen so the
set of possible
outcomes is limited
to those in B’s circle.

Lightning course in basic probability: Probability

An example. Suppose Pr(B) = 0.5, Pr(A ∩B) = 0.4.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
0.4

0.5
= 0.8

If this doesn’t seem intuitive, verify with a Venn diagram

Universe

A B

C If B definitely occurs,
what fraction of the
time does A also
occur?
The ratio of the
intersection of A and
B to the circle B.

Lightning course in basic probability: Probability

An example. Suppose Pr(B) = 0.5, Pr(A ∩B) = 0.4.

Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
0.4

0.5
= 0.8

Note that we can re-arrange to find other useful identities:

Pr(A ∩B) = Pr(A|B)Pr(B)

Pr(B) =
Pr(A ∩B)

Pr(A|B)

Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then Pr(A ∪B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then Pr(A ∪B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Again, we verify with a Venn diagram

Universe

A B

C The probability that
A or C occurs is just
the sum of their
marginal probabili-
ties because they are
disjoint.

Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then Pr(A ∪B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Again, we verify with a Venn diagram

Universe

A B

C If we try the same
trick to find the
probability of A or B,
we’ll double count
their intersection.

Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then Pr(A ∪B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Again, we verify with a Venn diagram

Universe

A B

C In general, to find
the probability of A
or B we should add
their marginal
probabilities and
subtract their
intersection.

Lightning course in basic probability: Probability

More rules and definitions:

We assumed that if A and B are disjoint, then Pr(A ∪B) = Pr(A) + Pr(B).

The following holds regardless of whether A and B are disjoint:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Finally, define independence as holding if Pr(A ∩B) = Pr(A)Pr(B)

Note that when independence holds,

Pr(A|B) =
Pr(A ∩B)

Pr(B)

Pr(A|B) =
Pr(A)Pr(B)

Pr(B)

Pr(A|B) = Pr(A)

From probability to random variables

We could view social processes such as. . .

wars, education outcomes, policy choices, public opinion. . .

as sets of random events (ie, all possible outcomes) in a sample space

The sample space will generally be HUGE

How can we reduce the space to something manageable?

→ map the space to one or more random variables.

Map:

Ω for coins → X = # of heads
Ω for military casualties → D = # of deaths
Ω for presidential popularity → S = support pres? yes or no
Ω for economic activity → Y = $GDP

This mapping can produce discrete or continous variables

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For discrete distributions: F (x) =
∑
∀z≤x

f(z)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Two functions summarize the distribution of a random variable

pdf - probability density function, f(x) cdf - cumulative density function, F (x)

For continuous distributions: F (x) =

∫ x

−∞
f(z)dz

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Example probability distributions

1000s of probability distributions are described in the statistical literature

They are mathematical descriptions of RVs based on different assumptions

Choose a probability distribution with assumptions that
match the substance of the social process under study

Let’s look at a few distributions to see how this might work

Bear in mind the key distinction between continuous and discrete distributions

Let’s start with the simplest and most fundamental discrete distribution,
the Bernoulli

The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of “success,” labelled π

Without loss of generality, let x ∈ {0, 1} where 1 = success

The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of “success,” labelled π

Without loss of generality, let x ∈ {0, 1} where 1 = success

These assumptions create the Bernoulli distribution (pdf and cdf below):

0
tails

1
heads

Pr(outcome)
Bernoulli pdf

11

0
tails

1
heads

Bernoulli cdf

x x

π

π1–

π

π1–

The Bernoulli distribution

Consider a random variable x with 2 mutually exclusive & exhaustive outcomes

Let there be one parameter, the probability of “success,” labelled π

Without loss of generality, let x ∈ {0, 1} where 1 = success

How do we capture the Bernoulli pdf as an equation?

fBern(x|π) =

{
1− π if x = 0
π if x = 1

If we are clever, we can write it much more conveniently:

fBern(x|π) = πx(1− π)1−x

The Bernoulli distribution

The first two “moments” of a distribution are the expected value and variance:

E(x) =
∑
∀i

xifBern(xi|π)

= 0× fBern(0|π) + 1× fBern(1|π)

= 0 + π = π

Var(x) = E
[
(x− E(x))2

]
= E

[
(x− π)2

]
=

∑
∀i

(xi − π)2fBern(xi|π)

= (0− π)2 × fBern(0|π) + (1− π)2 × fBern(1|π)

= π2(1− π) + (1− π)2π

= π(1− π)

The binomial distribution

Suppose we observe several Bernoulli random variables and count the successes
(we might imagine that the underlying 1s and 0s are lost)

Examples:

• number of days in a month that a person was ill

• votes from a fixed population of voters
(each Washington county’s total votes for Referendum 74)

Key assumption: each trial is iid Bernoulli

For the moment, take this to mean (1) that each trial has the same π of success
and (2) that the outcome of different trials have no effect on each other’s π’s

(Later we will relax this)

How do we come up with a pdf for these assumptions?

Let’s model the sum of our unobserved trials as a new random variable, Xi,

Xi =

M∑
j=1

xij

where i’s are observations and j’s are iid Bernoulli trials within an observation

fBin(Xi|M,π) = # of ways to get Xi × Pr(getting Xi)

=

(
M

Xi

)
×

M∏
j=1

fBern(xij|π)

=

(
M

Xi

)
× πxi1(1− π)1−xi1 × πxi2(1− π)1−xi2 × · · ·

×πxiM(1− π)1−xiM

=

(
M

Xi

)
× πxi1 × πxi2 × · · · × πxiM × (1− π)1−xi1

× (1− π)1−xi2 × · · · × (1− π)1−xiM

=

(
M

Xi

)
× π

∑
j xij(1− π)M−

∑
j xij

=
M !

Xi!(M −Xi)!
πXi(1− π)M−Xi

The binomial distribution

fBin(Xi|M,π) =
M !

Xi!(M −Xi)!
πXi(1− π)M−Xi

Similarity to the Bernoulli evident, especially in the moments:

E(X) = Mπ Var(X) = Mπ(1− π)

Indeed, the Bernoulli is a special case of the binomial where M = 1

The binomial distribution

We’ve already seen the binomial, as our example discrete distribution

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

f(x) Binomial PDF

x

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

F(x) Binomial CDF

x

This binomial sums over 10 trials, with each trial having an 0.5 probability of success

The Poisson distribution

Suppose we count # of events occurring in a period of continuous time
This gives us a single observation in the form of a count
Then we repeat this for another (equal?) period, and so on

To create a distribution for these data, make 3 assumptions:

1. Starting count is zero (trivial)

2. Only 1 event can occur at a time (almost trivial)

3. Pr(an event happens at time t = T) is constant
and independent of Pr(an event happens at time t < T)

Assumption 3 is not trivial

Sometimes assumption 3 is fulfilled exactly (e.g., cosmic radiation)

But often it’s not even close to correct (e.g., phone calls per hour)

The Poisson distribution

Accepting these asumptions leads to the following distribution
(we’ll derive later)

fPois(x|λ) =
exp(−λ)λx

x!
∀x ∈ {0, 1, . . .}, 0 otherwise

(Note: exp(a) = ea = 2.71828 . . .a and is known as the exponential function;
e is Euler’s number, the only number such that dex/dx = ex)

Interesting properties:

1. E(x) = var(x) = λ

2. If x1, x2, x3,. . . xK are independent Poisson variables such that xk ∼ fPois(xk|λk),

then
∑K
k=1 xk ∼ fPois(

∑K
k=1 xk|

∑K
k=1 λk)

3. We can relax the “equal periods” assumption: just replace λi with tiλi,
where i indexes observations and t measures their relative length

Examples of the Poisson distribution

0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

f(x) Poisson PDF

x
0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

F(x) Poisson CDF

x

λ=1
E(x)=1

var(x)=1

Examples of the Poisson distribution

0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

f(x) Poisson PDF

x
0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

F(x) Poisson CDF

x

λ=1
E(x)=1

var(x)=1

Examples of the Poisson distribution

0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

f(x) Poisson PDF

x
0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

F(x) Poisson CDF

x

λ=1
E(x)=1

var(x)=1

Examples of the Poisson distribution

0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

f(x) Poisson PDF

x
0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

F(x) Poisson CDF

x

λ=2
E(x)=2

var(x)=2

Examples of the Poisson distribution

0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

f(x) Poisson PDF

x
0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

F(x) Poisson CDF

x

λ=5
E(x)=5

var(x)=5

Examples of the Poisson distribution

0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

f(x) Poisson PDF

x
0 1 2 5 10 15 20

0

0.2

0.4

0.6

0.8

1

F(x) Poisson CDF

x

λ=10
E(x)=10

var(x)=10

The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

a=−1 b=1

0

0.2

0.4

0.6

0.8

1

f(x) Uniform PDF

x
a=−1 b=1

0

0.2

0.4

0.6

0.8

1

F(x) Uniform CDF

x

The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

a=−1 b=1

0

0.2

0.4

0.6

0.8

1

f(x) Uniform PDF

x
a=−1 b=1

0

0.2

0.4

0.6

0.8

1

F(x) Uniform CDF

x

The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

a=−1 b=1

0

0.2

0.4

0.6

0.8

1

f(x) Uniform PDF

x
a=−1 b=1

0

0.2

0.4

0.6

0.8

1

F(x) Uniform CDF

x

The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

a=−1 b=1

0

0.2

0.4

0.6

0.8

1

f(x) Uniform PDF

x
a=−1 b=1

0

0.2

0.4

0.6

0.8

1

F(x) Uniform CDF

x

The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

a=−1 b=1

0

0.2

0.4

0.6

0.8

1

f(x) Uniform PDF

x
a=−1 b=1

0

0.2

0.4

0.6

0.8

1

F(x) Uniform CDF

x

The Uniform distribution

The Uniform distribution is the simplest continuous distribution

Assumes all members of a real interval [a, b] are equally likely

a=−1 b=1

0

0.2

0.4

0.6

0.8

1

f(x) Uniform PDF

x
a=−1 b=1

0

0.2

0.4

0.6

0.8

1

F(x) Uniform CDF

x

The uniform distribution

Moments of the Uniform distribution

E(x) =
1

2
(a+ b)

Var(x) =
1

12
(b− a)2

• Not useful as a model of data

• Useful in computing to take random draws from other distributions
(e.g., all others seen today)

• Often used in Bayesian statistics as a “prior” distribution

• Hidden assumption (scale): Uniform is not scale invariant

• Why? Because the choice of a, b is arbitrary and important

The Normal (or Gaussian) distribution

The Central Limit Theorem holds that the sum of a “large” (N →∞)
number of independently distributed random variables is distributed as

fN (x|µ, σ2) = (2πσ2)−1/2 exp

[
−(x− µ)2

2σ2

]
The Normal distribution is continuous and symmetric,
with positive probability everywhere from −∞ to ∞

Many analysts implicitly or explicitly appeal to the central limit theorem
to justify assuming their data is Normally distributed

Moments: E(x) = µ Var(x) = σ2

The cdf of the Normal has no closed form representation (hard integral):

FN =

∫
fN = Φ(x|µ, σ2)

When we need the cdf, we will rely on numerical approximations (quadrature)

The Normal (Gaussian) distribution

We’ve already seen the Normal, as our example of a continuous distribution

This special case is known as the Standard Normal distribution

The Standard Normal has mean 0 and variance 1

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

The Normal (Gaussian) distribution

We’ve already seen the Normal, as our example of a continuous distribution

Changing the mean shifts curve’s location, but preserves its shape

This Normal has mean 1 and variance 1

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

The Normal (Gaussian) distribution

We’ve already seen the Normal, as our example of a continuous distribution

Changing the mean shifts curve’s location, but preserves its shape

This Normal has mean -1 and variance 1

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

The Normal (Gaussian) distribution

We’ve already seen the Normal, as our example of a continuous distribution

Changing the variance shifts curve’s shape, but preserves its location

This Normal has mean 1 and variance 2

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

The Normal (Gaussian) distribution

We’ve already seen the Normal, as our example of a continuous distribution

Changing the variance shifts curve’s shape, but preserves its location

This Normal has mean 1 and variance 0.2

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

f(x) Normal PDF

x
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

F(x) Normal CDF

x

Why R?

Real question: Why programming?

Non-programmers are stuck with package defaults

For your substantive problem, these default settings may be

• inappropriate (not quite the right model, but “close”)

• unintelligible (reams of non-linear coefficients and stars)

Programming allows you to match the methods to the data & question

Get better, more easily explained results.

Why R?

Many side benefits:

1. Never forget what you did: The code can be re-run.

2. Repeating an analysis n times? Write a loop!

3. Programming makes data processing/reshaping easy.

4. Programming makes replication easy.

Why R?

R is

• free

• open source

• growing fast

• widely used

• the future for most fields

But once you learn one language, the others are much easier

Introduction to R

R is a calculator that can store lots of information in memory

R stores information as “objects”

> x <- 2

> print(x)

[1] 2

> y <- "hello"

> print(y)

[1] "hello"

> z <- c(15, -3, 8.2)

> print(z)

[1] 15.0 -3.0 8.2

Introduction to R

> w <- c("gdp", "pop", "income")

> print(w)

[1] "gdp" "pop" "income"

>

Note the assignment operator, <-, not =

An object in memory can be called to make new objects

> a <- x^2

> print(x)

[1] 2

> print(a)

[1] 4

> b <- z + 10

> print(z)

[1] 15.0 -3.0 8.2

> print(b)

[1] 25.0 7.0 18.2

Introduction to R

> c <- c(w,y)

> print(w)

[1] "gdp" "pop" "income"

> print(y)

[1] "hello"

> print(c)

[1] "gdp" "pop" "income" "hello"

Commands (or “functions”) in R are always written command()

The usual way to use a command is:

output <- command(input)

We’ve already seen that c() pastes together variables.

A simple example:

> z <- c(15, -3, 8.2)

> mz <- mean(z)

> print(mz)

[1] 6.733333

Introduction to R

Some commands have multiple inputs. Separate them by commas:

plot(var1,var2) plots var1 against var2

Some commands have optional inputs. If omitted, they have default values.

plot(var1) plots var1 against the sequence {1,2,3,. . . }

Inputs can be identified by their position or by name.

plot(x=var1,y=var2) plots var2 against var1

Entering code

You can enter code by typing at the prompt, by cutting or pasting, or from a file

If you haven’t closed the parenthesis, and hit enter, R let’s you continue with this
prompt +

You can copy and paste multiple commands at once

You can run a text file containing a program using source(), with the name of the
file as input (ie, in ””)

I prefer the source() approach. Leads to good habits of retaining code.

Data types

R has three important data types to learn now

Numeric y <- 4.3

Character y <- "hello"

Logical y <- TRUE

We can always check a variable’s type, and sometimes change it:

population <- c("1276", "562", "8903")

print(population)

is.numeric(population)

is.character(population)

Oops! The data have been read in as characters, or “strings”. R does not know they
are numbers.

population <- as.numeric(population)

Some special values

Missing data NA

A “blank” NULL

Infinity Inf

Not a number NaN

Data structures

All R objects have a data type and a data structure

Data structures can contain numeric, character, or logical entries

Important structures:

Vector

Matrix

Dataframe

List (to be covered later)

Vectors in R

Vector is R are simply 1-dimensional lists of numbers or strings

Let’s make a vector of random numbers:

x <- rnorm(1000)

x contains 1000 random normal variates drawn from a Normal distribution with
mean 0 and standard deviation 1.

What if we wanted the mean of this vector?

mean(x)

What if we wanted the standard deviation?

sd(x)

Vectors in R

What if we wanted just the first element?

x[1]

or the 10th through 20th elements?

x[10:20]

what if we wanted the 10th percentile?

sort(x)[100]

Indexing a vector can be very powerful. Can apply to any vector object.

What if we want a histogram?

hist(x)

Vectors in R

Useful commands for vectors:

seq(from, to, by) generates a sequence
rep(x,times) repeats x

sort() sorts a vector from least to greatest
rev() reverses the order of a vector
rev(sort()) sorts a vector from greatest to least

Matrices in R

Vector are the standard way to store and manipulate variables in R

But usually our datasets have several variables measured on the same observations

Several variables collected together form a matrix with one row for each observation
and one column for each variable

Matrices in R

Many ways to make a matrix in R

a <- matrix(data=NA, nrow, ncol, byrow=FALSE)

This makes a matrix of nrow × ncol, and fills it with missing values.

To fill it with data, substitute a vector of data for NA in the command. It will fill up
the matrix column by column.

We could also paste together vectors, binding them by column or by row:

b <- cbind(var1, var2, var3)

c <- rbind(obs1, obs2)

Matrices in R

Optionally, R can remember names of the rows and columns of a matrix

To assign names, use the commands:

colnames(a) <- c("Var1", "Var2")

rownames(a) <- c("Case1", "Case2")

Substituting the actual names of your variables and observations (and making sure
there is one name for each variable & observation)

Matrices in R

Matrices are indexed by row and column.

We can subset matrices into vectors or smaller matrices

a[1,1] Gets the first element of a
a[1:10,1] Gets the first ten rows of the first column
a[,5] Gets every row of the fifth column
a[4:6,] Gets every column of the 4th through 6th rows

To make a vector into a matrix, use as.matrix()

R defaults to treating one-dimensional arrays as vectors, not matrices

Useful matrix commands:

nrow() Gives the number of rows of the matrix
ncol() Gives the number of columns
t() Transposes the matrix

Much more on matrices next week.

Dataframes in R

Dataframes are a special kind of matrix used to store datasets

To turn a matrix into a dataframe (note the extra .):

a <- as.data.frame(a)

Dataframes always have columns names, and these are set or retrieved using the
names() command

names(a) <- c("Var1","Var2")

You can access a variable from a dataframe directly using $:

a$Var1

Dataframes can also be “attached”, which makes each column into a vector with the
appropriate name

attach(a)

Loading data

There are many ways to load data to R.

I prefer using comma-separated variable files, which can be loaded with read.csv()

You can also check the foreign library for other data file types

Suppose you load a dataset using

data <- read.csv("mydata.csv")

You can check out the names of the variables using names(data)

And access any variables, such as gdp, using data$gdp

Benefits and dangers of attach()

If your data have variable names, you can also “attach” the dataset like so:

data <- read.csv("mydata.csv")

attach(data)

to access all the variables directly through newly created vectors.

Be careful! attach() is tricky.

1. If you attach a variable data$x in data and then modify x,
the original data$x is unchanged.

2. If you have more than one dataset with the same variable names,
attach() is a bad idea: only one dataset can be attached!

Sometimes attach() is handy, but be careful!

Missing data

When loading a dataset, you can often tell R what symbol that file uses for missing
data using the option na.strings=

So if your dataset codes missings as ., set na.strings="."

If your dataset codes missings as a blank, set na.strings=""

If your dataset codes missings in multiple ways, you could set, e.g.,
na.strings=c(".","","NA")

Missing data

Many R commands will not work properly on vectors, matrices, or dataframes
containing missing data (NAs)

To check if a variables contains missings, use is.na(x)

To create a new variable with missings listwise deleted, use na.omit

If we have a dataset data with NAs at data[15,5] and data[17,3]

dataomitted <- na.omit(data)

will create a new dataset with the 15th and 17th rows left out

Be careful! If you have a variable with lots of NAs you are not using in your analysis,
remove it from the dataset before using na.omit()

Mathematical Operations

R can do all the basic math you need

Binary operators:

+ - * / ^

Binary comparisions:

< <= > >= == !=

Logical operators (and, or, not, control-flow and, control-flow not; use parentheses!):

& | ! && ||

Math/stat fns:

log exp mean median min max sd var cov cor

Set functions (see help(sets)), Trigonometry (see help(Trig)),

R follows the usual order of operations; if it doubt, use parentheses

Example 1: US Economic growth

Let’s investigate an old question in political economy:

Are there partisan cycles, or tendencies, in economic performance?

Does one party tend to produce higher growth on average?

(Theory: Left cares more about growth vis-a-vis inflation than the Right

If there is partisan control of the economy,
then Left should have higher growth ceteris paribus)

Data from the Penn World Tables (Annual growth rate of GDP in percent)

Two variables:

grgdpch The per capita GDP growth rate
party The party of the president (Dem = -1, Rep = 1)

Example 1: US Economic growth

Load data

data <- read.csv("gdp.csv", na.strings="")

attach(data)

Construct party specific variables

gdp.dem <- grgdpch[party==-1]

gdp.rep <- grgdpch[party==1]

Make the histogram

hist(grgdpch,

breaks=seq(-5,8,1),

main="Histogram of US GDP Growth, 1951--2000",

xlab="GDP Growth")

Histogram of US GDP Growth, 1951−−2000

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8
10

GDP Growth under Democratic Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
1

2
3

4
5

6

GDP Growth under Republican Presidents

GDP Growth

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
2

4
6

8

Make a box plot

boxplot(grgdpch~as.factor(party),

boxwex=0.3,

range=0.5,

names=c("Democratic\n Presidents",

"Republican\n Presidents"),

ylab="GDP growth",

main="Economic performance of partisan governments")

Note the unusual first input: this is an R formula

y~x1+x2+x3

In this case, grgdpch is being “modelled” as a function of party

boxplot() needs party to be a “factor” or an explicitly categorical variable

Hence we pass boxplot as.factor(party),
which turns the numeric variable into a factor

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

mean 3.1

mean 1.7

75th 4.5

25th 2.1
median 2.4

75th 3.2

25th --0.5

median 3.4

std dev 1.7 std dev 3.0

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Reagan 1984

Reagan 1982

Carter 1980

JFK 1961

mean 3.1

mean 1.7

75th 4.5

25th 2.1
median 2.4

75th 3.2

25th --0.5

median 3.4

std dev 1.7 std dev 3.0

Box plots: Annual US GDP growth, 1951–2000

Democratic
 President

Republican
 President

−
4

−
2

0
2

4
6

Economic performance of partisan governments

Annual GDP
growth
(percent)

Reagan 1984

Reagan 1982

Carter 1980

JFK 1961

Help!

To get help on a known command x, type help(x) or ?x

To search the help files using a keyword string s, type help.search(s)

Note that this implies to search on the word regression, you should type
help.search("regression")

but to get help for the command lm, you should type help(lm)

Hard to use Google directly for R help (“r” is kind of a common letter)

Easiest way to get help from the web: rseek.org

Rseek tries to limit results to R topics (not wholly successful)

Installing R on a PC

• Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

• Under the heading “Download and Install R”, click on “Download R for Windows”

• Click on “base”

• Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.1-win.exe”

• Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu

Installing R on a Mac

• Go to the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/

• Under the heading “Download and Install R”, click on “Download R for MacOS
X”

• Download and run the R setup program.
The name changes as R gets updated;
the current version is “R-3.4.1.pkg”

• Once you have R running on your computer,
you can add new libraries from inside R by selecting
“Install packages” from the Packages menu

Editing scripts

Don’t use Microsoft Word to edit R code!

Word adds lots of “stuff” to text; R needs the script in a plain text file.

Some text editors:

• Notepad: Free, and comes with Windows (under Start→ Programs→ Accessories).
Gets the job done; not powerful.

• TextEdit: Free, and comes with Mac OS X. Gets the job done; not powerful.

• TINN-R: Free and powerful. Windows only.
http://www.sciviews.org/Tinn-R/

• Emacs: Free and very powerful (my preference). Can use for R, Latex, and any
other language. Available for Mac, PC, and Linux.

For Mac (easy installation): http://aquamacs.org/

For Windows (see the README): http://ftp.gnu.org/gnu/emacs/windows/

Editing data

R can load many other packages’ data files

See the foreign library for commands

For simplicity & universality, I prefer Comma-Separated Variable (CSV) files

Microsoft Excel can edit and export CSV files (under Save As)

R can read them using read.csv()

OpenOffice free alternative to Excel (for Windows and Unix):
http://www.openoffice.org/

My detailed guide to installing social science software on the Mac:
http://thewastebook.com/?post=social-science-computing-for-mac

Focus on steps 1.1 and 1.3 for now; come back later for Latex in step 1.2

Example 2: A simple linear regression

Let’s investigate a bivariate relationship

Cross-national data on fertility (children born per adult female) and the percentage
of women practicing contraception.

Data are from 50 developing countries.

Source: Robey, B., Shea, M. A., Rutstein, O. and Morris, L. (1992) “The
reproductive revolution: New survey findings.” Population Reports. Technical Report
M-11.

Example 2: A simple linear regression

Load data

data <- read.csv("robeymore.csv", na.strings="")

completedata <- na.omit(data)

attach(completedata)

Transform variables

contraceptors <- contraceptors/100

Run linear regression

res.lm <- lm(tfr~contraceptors)

print(summary(res.lm))

Get predicted values

pred.lm <- predict(res.lm)

Example 2: A simple linear regression

Make a plot of the data

plot(x=contraceptors,

y=tfr,

ylab="Fertility Rate",

xlab="% of women using contraception",

main="Average fertility rates & contraception; \n

50 developing countries",

xaxp=c(0,1,5)

)

Add predicted values to the plot

points(x=contraceptors,y=pred.lm,pch=16,col="red")

Example 2: A simple linear regression

> summary(res.lm)

Call:

lm(formula = tfr ~ contraceptors)

Residuals:

Min 1Q Median 3Q Max

-1.54934 -0.30133 0.02540 0.39570 1.20214

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8751 0.1569 43.83 <2e-16 ***

contraceptors -5.8416 0.3584 -16.30 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5745 on 48 degrees of freedom

Multiple R-Squared: 0.847, Adjusted R-squared: 0.8438

F-statistic: 265.7 on 1 and 48 DF, p-value: < 2.2e-16

Data and Prediction

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6

2
3

4
5

6
7

Average fertility rates & contraception;
 50 developing countries

% of women using contraception

F
er

til
ity

 R
at

e

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

Matrix Algebra in R

det(a) Computes the determinant of matrix a

solve(a) Computes the inverse of matrix a

t(a) Takes the transpose of a

a%*%b Matrix multiplication of a by b

a*b Element by element multiplication

An R list is a basket containing many other variables

> x <- list(a=1, b=c(2,15), giraffe="hello")

> x$a

[1] 1

> x$b

[1] 2 15

> x$b[2]

[1] 15

> x$giraffe

[1] "hello"

> x[3]

$giraffe

[1] "hello"

> x[["giraffe"]]

[1] "hello"

R lists

Things to remember about lists

• Lists can contain any number of variables of any type

• Lists can contain other lists

• Contents of a list can be accessed by name or by position

• Allow us to move lots of variables in and out of functions

• Functions often return lists (only way to have multiple outputs)

lm() basics

To run a regression

res <- lm(y~x1+x2+x3, # A model formula

data # A dataframe (optional)

)

To print a summary

summary(res)

To get the coefficients

res$coefficients

or

coef(res)

#To get residuals

res$residuals

#or

resid(res)

lm() basics

To get the variance-covariance matrix of the regressors

vcov(res)

To get the standard errors

sqrt(diag(vcov(res)))

To get the fitted values

predict(res)

To get expected values for a new observation or dataset

predict(res,

newdata, # a dataframe with same x vars

as data, but new values

interval = "confidence", # alternative: "prediction"

level = 0.95

)

R lists & Object Oriented Programming

A list object in R can be given a special “class” using the class() function

This is just a metatag telling other R functions that this list object conforms to a
certain format

So when we run a linear regression like this:

res <- lm(y~x1+x2+x3, data)

The result res is a list object of class ‘‘lm’’

Other functions like plot() and predict() will react to res in a special way
because of this class designation

Specifically, they will run functions called plot.lm() and predict.lm()

Object-oriented programming:
a function does different things depending on class of input object

Example 3: Party systems & Redistribution

Example 3: Party systems & Redistribution

Cross sectional data on industrial democracies:

povertyReduction Percent of citizens lifted out of poverty
by taxes and transfers

effectiveParties Effective number of parties
partySystem Whether the party system is Majoritarian,

Proportional, or Unanimity (Switzerland)

Source of data & plot: Torben Iversen and David Soskice, 2002, “Why do some
democracies redistribute more than others?” Harvard University.

Considerations:

1. The marginal effect of each extra party is probably diminishing,
so we want to log the effective number of parties

2. The party system variable needs to be “dummied out;”
there are several ways to do this

Example 3: Party systems & Redistribution

Clear memory of all objects

rm(list=ls())

Load libraries

library(RColorBrewer) # For nice colors

Load data

file <- "iverRevised.csv"

iversen <- read.csv(file,header=TRUE)

Create dummy variables for each party system

iversen$majoritarian <- as.numeric(iversen$partySystem=="Majoritarian")

iversen$proportional <- as.numeric(iversen$partySystem=="Proportional")

iversen$unanimity <- as.numeric(iversen$partySystem=="Unanimity")

A bivariate model, using a formula to log transform a variable

model1 <- povertyReduction ~ log(effectiveParties)

lm.res1 <- lm(model1, data=iversen)

summary(lm.res1)

Example 3: Party systems & Redistribution

Call:

lm(formula = model1, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-48.907 -4.115 8.377 11.873 18.101

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.80 16.15 1.349 0.2021

log(effectiveParties) 24.17 12.75 1.896 0.0823 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 19.34 on 12 degrees of freedom

Multiple R-squared: 0.2305,Adjusted R-squared: 0.1664

F-statistic: 3.595 on 1 and 12 DF, p-value: 0.08229

Example 3: Party systems & Redistribution

A new model with multiple regressors

model2 <- povertyReduction ~ log(effectiveParties) + majoritarian

+ proportional

lm.res2 <- lm(model2, data=iversen)

summary(lm.res2)

Example 3: Party systems & Redistribution

Call:

lm(formula = model2, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -31.29 26.55 -1.178 0.26588

log(effectiveParties) 26.69 14.15 1.886 0.08867 .

majoritarian 48.95 17.86 2.740 0.02082 *

proportional 58.17 13.52 4.302 0.00156 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom

Multiple R-squared: 0.7378,Adjusted R-squared: 0.6592

F-statistic: 9.381 on 3 and 10 DF, p-value: 0.002964

Example 3: Party systems & Redistribution

A new model with multiple regressors and no constant

model3 <- povertyReduction ~ log(effectiveParties) + majoritarian

+ proportional + unanimity - 1

lm.res3 <- lm(model3, data=iversen)

summary(lm.res3)

Example 3: Party systems & Redistribution

Call:

lm(formula = model3, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-23.3843 -1.4903 0.6783 6.2687 13.9376

Coefficients:

Estimate Std. Error t value Pr(>|t|)

log(effectiveParties) 26.69 14.15 1.886 0.0887 .

majoritarian 17.66 12.69 1.392 0.1941

proportional 26.88 21.18 1.269 0.2331

unanimity -31.29 26.55 -1.178 0.2659

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.37 on 10 degrees of freedom

Multiple R-squared: 0.9636,Adjusted R-squared: 0.949

F-statistic: 66.13 on 4 and 10 DF, p-value: 3.731e-07

Example 3: Party systems & Redistribution

A new model with multiple regressors and an interaction

model4 <- povertyReduction ~ log(effectiveParties) + majoritarian

+ proportional + log(effectiveParties):majoritarian

lm.res4 <- lm(model4, data=iversen)

summary(lm.res4)

Example 3: Party systems & Redistribution

Call:

lm(formula = model4, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-22.2513 0.0668 2.8532 4.7318 12.9948

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.83 31.42 -0.472 0.64813

log(effectiveParties) 16.78 17.39 0.965 0.35994

majoritarian 16.34 37.65 0.434 0.67445

proportional 56.18 13.70 4.102 0.00267 **

log(effectiveParties):majoritarian 29.55 30.02 0.984 0.35065

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-squared: 0.7633,Adjusted R-squared: 0.6581

F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772

Example 3: Party systems & Redistribution

A more efficient way to specify an interaction

model5 <- povertyReduction ~ log(effectiveParties)*majoritarian +

proportional

lm.res5 <- lm(model5, data=iversen)

summary(lm.res5)

Example 3: Party systems & Redistribution

Call:

lm(formula = model5, data = iversen)

Residuals:

Min 1Q Median 3Q Max

-22.2513 0.0668 2.8532 4.7318 12.9948

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.83 31.42 -0.472 0.64813

log(effectiveParties) 16.78 17.39 0.965 0.35994

majoritarian 16.34 37.65 0.434 0.67445

proportional 56.18 13.70 4.102 0.00267 **

log(effectiveParties):majoritarian 29.55 30.02 0.984 0.35065

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.39 on 9 degrees of freedom

Multiple R-squared: 0.7633,Adjusted R-squared: 0.6581

F-statistic: 7.256 on 4 and 9 DF, p-value: 0.006772

Plotting a best fit line

2 3 4 5 6 7

0
10

20
30

40
50

60
70

80
90

10
0

Effective Number of Parties

P
ov

er
ty

 R
ed

uc
tio

n

Australia

Canada

France

Germany
United Kingdom

United States

Belgium

Denmark
Finland

Italy

NetherlandsNorway
Sweden

●

Switzerland

Let’s turn to the code to see how we can make this plot using R base graphics

R Graphics

R has several graphics systems.

The base system

The grid system

(grid is more powerful, but has a steeper learning curve.
See Paul Murrel’s book on R Graphics for an introduction.)

Focus here on base

R Graphics: Devices

Everything you draw in R must be drawn on a canvas

Must create the canvas before you draw anything

Computer canvasses are devices you draw to

Devices save graphical input in different ways

Sometimes to the disk, sometimes to the screen

Most important distinction: raster vs. vector devices

Vector vs. raster

Pointalism = raster graphics. Plot each pixel on an n by m grid.

Vector vs. raster
Pixel = Point = Raster

Good for pictures. Bad for drawings/graphics/cartoons.

(Puzzle: isn’t everything raster? In display, yes. Not in storage)

Advantages of vector:

• Easily manipulable/modifiable groupings of objects

• Easy to scale objects larger or smaller/ Arbitrary precision

• Much smaller file sizes

• Can always convert to raster (but not the other way round, at least not well)

Disadvantages:

• A photograph would be really hard to show (and huge file size)

• Not web accessible. Convert to PNG or PDF.

Some common graphics file formats

Lossy Lossless

Raster .gif, .jpeg .wmf, .png, .bmp

Vector – .ps, .eps, .pdf, .ai, .wmf

Lossy means during file compression, some data is (intentionally) lost

Avoid lossy formats whenever possible

Some common graphics file formats

In R, have access to several formats:

win.metafile() wmf, Windows media file
pdf() pdf, Adobe portable data file
postscript() postscript file (printer language)

quartz() opens a screen; Mac only
windows() opens a screen; PC only
x11() opens a screen; works on all machines

Latex, Mac or Unix users can’t use wmf

windows(record=TRUE) let’s you cycle thru old graphs with arrow keys

High-level graphics commands

In R, High level graphics commands:

• produce a standard graphic type

• fill in lots of details (axes, titles, annotation)

• have many configurable parameters

• have varied flexibility

You don’t need to use HLCs to make R graphics.

Could use primitive commands to do each task above

Using low levels commands gives more control but takes more time

Some major high-level graphics commands

Graphic Base command Lattice command
scatterplot plot() xyplot()
line plot plot(. . . ,type=”l”) xyplot(. . . ,type=”l”)
Bar chart barplot() barchart()
Histogram hist() histogram()
Smoothed histograms plot() after density() densityplot()
boxplot boxplot() bwplot()
Dot plot dotchart() dotplot()
Contour plots contour() contourplot()
image plot image() levelplot()
3D surface persp() wireframe()
3D scatter scatterplot3d()* cloud()
conditional plots coplot() xyplot()
Scatterplot matrix splom()
Parallel coordinates parallel()
Star plot stars()
Stem-and-leaf plots stem()
ternary plot ternaryplot() in vcd
Fourfold plot fourfoldplot() in vcd
Mosaic plots mosaicplot() in vcd

Scatterplot: plot()

●

●

●●

●●
●

●

●●●●●

●●

●●●●●●●●●●●●●●●
●●

●●●●

●●
●●

●

●●●●●
●

0 10 20 30 40

−
3

−
2

−
1

0
1

2

plot(x, type = "p")

Index

x
<

−
 s

or
t(

rn
or

m
(4

7)
)

Line plot: plot(...,type="l")

0 10 20 30 40

−
2

−
1

0
1

plot(x, type = "l")

Index

x
<

−
 s

or
t(

rn
or

m
(4

7)
)

(Smoothed) Histograms: densityplot() & others

Height (inches)

D
en

si
ty

60 65 70 75

0.00

0.05

0.10

0.15

0.20

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0.00

0.05

0.10

0.15

0.20

Alto 1
0.00

0.05

0.10

0.15

0.20

Soprano 2

60 65 70 75

Soprano 1

Dot plot: dotplot()

Barley Yield (bushels/acre)

20 30 40 50 60

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crookston
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Waseca

1932
1931

●

●

Contour plot: contour()

0 200 400 600 800

0
10

0
20

0
30

0
40

0
50

0
60

0

100 300 500 700

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

Image plot: image()

x

y

100 200 300 400 500 600 700 800

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

Image plot with contours: contour(...,add=TRUE)

x

y

100 200 300 400 500 600 700 800

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

3D surface: persp()

x

y
z

3D surface: wireframe()

row
column

volcano

Conditional plots: coplot()

●

●
●

68
70

72

●

●

●
●

●
●●

●●

3000 4500 6000

●
●

●
●●

●

● ● ●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

68
70

72

●

●

●●

●

●

●

● ●

●

●
●

68
70

72

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

3000 4500 6000

●

●
●●

●

●

●

●

●

●

●

●

●

●

3000 4500 6000

68
70

72

Income

Li
fe

.E
xp

0.5 1.0 1.5 2.0 2.5

Given : Illiteracy

N
or

th
ea

st
S

ou
th

N
or

th
 C

en
tr

al
W

es
t

G
iv

en
 :

st
at

e.
re

gi
on

3D scatter: scatterplot3d() in own library

scatterplot3d − 5

 8 10 12 14 16 18 20 22

10
20

30
40

50
60

70
80

60
65

70
75

80
85

90

Girth

H
ei

gh
t

V
ol

um
e

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scatterplot matrix: splom()

Scatter Plot Matrix

Sepal
Length ●●●●

●
●

●
●

●
●

●
●●

●

● ●
●

●
●
●

●
●

●
●
●● ●●●

●●
● ●

●
●●

●
●

●

●●
● ●

●●
●

●
●

●
● ●●●●

●
●

●
●
●
●
●
●●

●

●●
●
●
●
●
●
●

●
●
●●●

●●
●●
●●
●
●●
●
●
●

●●
●●
●●●
●
●

●
●

●

●
●●

●
●

●●

●
●

●
●
●●

●
●

●
●

●●
●

●●
●●
●
●●●

●●
●

●●

●●
●●

●
●●

●

●
●
●

●

●

●

●
●

Sepal
Width

●

●
●●

●
●

●●

●
●

●
●
●●

●
●

●
●
●●
●
●●
●●
●
●●●
●●
●

●●

●●
●●

●
●●

●

●
●
●

●

●

●

●
●

●●●●●●●●● ● ●●●● ●●●● ●●●●
●

●●●●●●●● ●●●●● ●●● ●●●● ●●●●● ●● ●●●● ●●●●●● ●●●● ● ●●●●●●●
●

●●● ●●●●●● ●●●●●●● ●●● ●●●
● ●● ●●

Petal
Length

setosa

Sepal
Length

●
●

●

●

●

●
●

●

●

●●

●● ●
●

●

●●
●

●
●●●●

●●
●●

●
●●●
●●

●
●

●
●

●●●
●

●

●
●●●

●

●
●

●
●
●

●

●

●
●

●

●

●●

●●●
●

●

●●
●

●
●● ●●

●●
●●

●
●●●
● ●

●
●

●
●

●●●
●

●

●
●●●
●

●
●

●● ●

●

●●

●

●

●
●

●

●

●

●●
●●

●

●
●

●
●
●

●●●●
●●

●
●●

●●
●

●
●

●

●

●●
●

●
●

●
●● ●

●
●

Sepal
Width

●●●

●

●●

●

●

●
●

●

●

●

●●
●●

●

●
●

●
●

●
●●●●
●●

●
●●
● ●

●
●
●

●

●

●●
●

●
●

●
●●●

●
●

●●
●

●
●● ●

●

●
●

●
●●
●

●
●●

●
●

●
●
●
●●
●●

●●●

●●●
●

●
● ● ●●●●
● ●

●
●

●●● ●

●

●
●●

●
●

●● ●

●

●
●

●
●●

●

●
●●●

●
●

●
●

●●
●●

●●
●

●●●●

●
● ●●● ●●

● ●
●

●
●●●●

●

●
Petal

Length

versicolor

Sepal
Length

●
●

●

●●

●

●

●
●

●

●●
●

●●
●●

●●

●

●

●

●

●
●

●

●●
●

●●
●

●●●

●

●●
●

●●●

●

●●●
● ●

●
●

●
●

●

●●

●

●

●
●
●

●●
●

●●
●●

●●

●

●

●

●

●
●
●

●●
●

●●
●

●●●

●

●●
●

●●●

●

●●●
●●●
●

●

●
●●● ●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
● ●●

● ●
●
●

●
●
●

●

●●
●

●
●
●● ●●●

●

●●
●

●

●
●

●

Sepal
Width

●

●
●●● ●

●
●

●

●
●

●
●

●
●
●
●

●

●
●

●
● ●●

●●
●
●

●
●
●

●

●●
●

●
●
●●●●●

●

●●
●

●

●
●

●

●
●

●●●
●

●

●
● ●

●●
●

●● ●●

●●

●
●

●

●

●
● ●

●●
● ●●

●
●
●

●
●

●●
●

●●●●
●●
●●●

●●
●

●
●●●
●

●

●
● ●

●●●
●● ●●

●●

●
●

●

●

●
●●

●●
●●● ●
●
●

●
●

●●
●
●●●●
●●

●● ● ●● Petal
Length

virginica

Three

Varieties

of

Iris

Ternary plot: ternaryplot() in vcd

liberal conservative

other

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

Star plot: stars()

Motor Trend Cars : full stars()

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant

Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE

Merc 450SL Merc 450SLC Cadillac FleetwoodLincoln Continental Chrysler Imperial Fiat 128

Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28

Pontiac Firebird Fiat X1−9 Porsche 914−2 Lotus Europa Ford Pantera L Ferrari Dino

Maserati Bora Volvo 142E
mpg

cyl
disp

hp

drat

wt
qsec

Stem-and-leaf plot

stem> stem(log10(islands))

The decimal point is at the |

1 | 1111112222233444

1 | 5555556666667899999

2 | 3344

2 | 59

3 |

3 | 5678

4 | 012

Basic customization

For any given high-level plotting command, there are many options listed in help

barplot(height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,

horiz = FALSE, density = NULL, angle = 45,

col = NULL, border = par("fg"),

main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

xlim = NULL, ylim = NULL, xpd = TRUE,

axes = TRUE, axisnames = TRUE,

cex.axis = par("cex.axis"), cex.names = par("cex.axis"),

inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0, ...)

Just the tip of the iceberg: notice the ...

This means you can pass other, unspecified commands throough barplot

Basic customization

The most important (semi-) documented parameters to send through ... are
settings to par()

Most base (traditional) graphics options are set through par()

par() has no effect on lattice or grid graphics

Consult help(par) for the full list of options

Some key examples, grouped functionally

par() settings

Customizing text size:

cex Text size (a multiplier)
cex.axis Text size of tick numbers
cex.lab Text size of axes labels
cex.main Text size of plot title
cex.sub Text size of plot subtitle

note the latter will multiply off the basic cex

par() settings

More text specific formatting

font Font face (bold, italic)
font.axis etc

srt Rotation of text in plot (degrees)
las Rotation of text in margin (degrees)

Note the distinction between text in the plot and outside.

Text in the plot is plotted with text()

Text outside the plot is plotted with mtext(), which was designed to put on titles,
etc.

par() settings

Formatting for most any object

bg background color
col Color of lines, symbols in plot
col.axis Color of tick numbers, etc

The above expect colors (see colors() for a list of names

par() settings

Formatting for lines and symbols

lty Line type (solid, dashed, etc)
lwd Line width (default too large; try really small, e.g., 0)
pch Data symbol type; see example(points)

You will very often need to set the above

More par() settings

Formatting for axes

lab Number of ticks
xaxp Number of ticks for xaxis
tck,tcl Length of ticks relative to plot/text
mgp Axis spacing: axis title, tick labels, axis line

These may seem trivial, but affect the aesthetics of the plot & effective use of space

R defaults to excessive mgp, which looks ugly & wastes space

par() settings

More formating for axes

The following commands are special:
they are primitives in par() that can’t be set inside the ... of high-level commands

You must set them with par() first

usr Ranges of axes, (xmin, xmax, ymin, ymax)
xlog Log scale for x axis?
ylog Log scale for y axis?

You can also make a logged axis by hand, as we will do now

Scatterplot: Occupational Prestige & Income

Classic data from sociology. Three variables

• Prestige of occupations, as rated by surveys

• Income of occupations (averaged across males)

• Type of occupation (blue collar, white collar, professional)

Data is in R. Look for Duncan.

0 20 40 60 80 100

0

20

40

60

80

100

accountant

pilot

architect
author

chemist
minister

professor

dentist

reporter engineer

undertaker

lawyer physician

welfare.worker

teacher

conductor

contractor

factory.owner

store.manager

banker

bookkeeper

mail.carrier

insurance.agent

store.clerk

carpenter

electrician

RR.engineer
machinist

auto.repairman
plumber

gas.stn.attendant

coal.miner

streetcar.motorman

taxi.driver
truck.driver

machine.operator

barber
bartender

shoe.shiner

cook

soda.clerk

watchman

janitor

policeman

waiter

1950 US Occupations (Duncan, 1961)

Professional
White collar
Blue collar

Prestige (% rated good or excellent by survey takers)

In
co

m
e

(%
 o

f m
al

es
 m

ak
in

g
 >

 $
35

00
 in

 $
19

50
)

> lm.res <- lm(prestige~income+education)

> summary(lm.res)

Call:

lm(formula = prestige ~ income + education)

Residuals:

Min 1Q Median 3Q Max

-29.5380 -6.4174 0.6546 6.6051 34.6412

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.06466 4.27194 -1.420 0.163

income 0.59873 0.11967 5.003 1.05e-05 ***

education 0.54583 0.09825 5.555 1.73e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.37 on 42 degrees of freedom

Multiple R-Squared: 0.8282, Adjusted R-squared: 0.82

F-statistic: 101.2 on 2 and 42 DF, p-value: < 2.2e-16

To find the t-statistics & p-values, use the summary() command.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.06466 4.27194 -1.420 0.163

income 0.59873 0.11967 5.003 1.05e-05 ***

education 0.54583 0.09825 5.555 1.73e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note 1.05e-05 = 0.0000105

Or, you could calculate yourself:

lm.out <- lm(prestige~income+education) # run linear regression

betas <- lm.out$coefficients # retrive the of betas

vcmat <- vcov(lm.out) # retrieve the var-cov matrix

ses <- sqrt(diag(vcmat)) # calc a vector of ses

tstats <- betas/ses # calc vector of tstats

pvalues <- 2*(1-pt(tstats,42)) # calc p-values

Confidence intervals for regression coefficients

Standard errors, t-tests, and p-values take expertise to read

They are also subject to misinterpretation

(E.g., smaller p-values do not imply a bigger substantive effect)

CIs turn the standard errors into something everyone can easily understand

To get the 100(1− α)% confidence interval for β̂1,

β̂lower
1 = β̂1 − tα/2,n−k−1σ̂β̂1

β̂upper
1 = β̂1 + tα/2,n−k−1σ̂β̂1

Confidence intervals for regression coefficients

How to calculate CIs for coefficients in R

By hand:

lower.95 <- betas - qt(0.025,42)*ses

upper.95 <- betas + qt(0.025,42)*ses

Why are we using qt? Why 0.025?

The easy way:

library(stats)

confint(lm.out,level=0.95)

2.5 % 97.5 %

(Intercept) -14.6857892 2.5564634

education 0.3475521 0.7441158

income 0.3572343 0.8402313

Confidence intervals for regression coefficients

Using confidence intervals, we can improve the initial summary table:

95% Conf Interval

Variable Estimate Lower Upper
Income 0.60 [0.36, 0.84]
Education 0.55 [0.38, 0.74]
Intercept −6.06 [-14.69, 2.46]

N 45
s.e.r. 13.4 (this is σ̂ε)
R2 0.83 (this line optional)

Table 1: Determinants of occupational prestige. Entries are linear regression
parameters and their 95 percent confidence intervals.

Think about everything you put in these tables:

• what readers need to see to fully understand your results

• what superfluous R output you can delete

• how to make the results clear for as large an audience as possible

Substantive & statistical significance

Don’t over interpret p-values

They only show statistical significance

Statistical and substantive significance can interact

A look at some hypothetical distributions of β̂1 helps frame the possibilities

Perils of stargazing

−1 0 1 2

yesStatistically Significant?
Substantively Significant? no

yes
yes

Perils of stargazing

−1 0 1 2

yesStatistically Significant?
Substantively Significant? no

yes
yes

Unhelpful tabular form:

X 0.1*

 (0.05)

X 1.5***

 (0.05)

These estimated β’s will both be starred in regression output.

Often, only the estimate to the right will be significant in a substantive sense

The estimate on the left is a precise zero

Perils of stargazing

−1 0 1 2

yes Statistically Significant?
Substantively Significant? yes, but imprecise

yes
yes, and precise

Perils of stargazing

−1 0 1 2

yes Statistically Significant?
Substantively Significant? yes, but imprecise

yes
yes, and precise

X 1.5***

 (0.05)

X 1.5***

 (0.5)

These estimated β’s will both be heavily starred in regression output.

They are both substantively significant as well, with identical point estimates

But the orange curve is much more precisely estimated

The blue estimate may be much smaller or larger. Best shown with a CI

Perils of stargazing

−1 0 1 2

A precisely estimated zero

An insignificant, probably small effect of

0.1***

0.1
unknown sign

(0.05)

(0.5)

How do you verify a null effect? Precise zeros

Sometimes, researchers mistake the precise zero for a positive effect

Confidence interval for expected values

We can calculate the CIs around Ŷ as well.

For example, what is the 95% CI around ̂Prestigec in:

̂Prestigec = β̂0 + β̂1Incomec + β̂2Educationc

The uncertainty in each estimate will “combine” to form the uncertainty in ̂Prestigec.

In this example,

̂Prestigec = −6.1 0.60× Incomec + 0.55× Educationc
[−14.7, 2.6] [0.36, 0.84] [0.35, 0.74]

47.7 = −6.1 0.60× 41.9 + 0.55× 52.6
[43.7, 51.7] [−14.7, 2.6] [0.36, 0.84] [0.35, 0.74]

In words, when income and education are held at their means, we expect that
presitge will equal 47.7 with a 95 % CI of 43.7 to 51.7.

Confidence interval for expected values

How do we calculate confidence intervals around ŷ in R?

1. Estimate the model

2. Choose hypothetical values of the covariate at which you want to calculate ŷ and
it’s CI.

3. Use the predict() function to obtain the expected y and it’s CI

Some examples:

To get CIs around all the fitted values

res <- lm(y~x+z)

pred <- predict(res,interval="confidence",level=0.95)

yhat <- pred[,1]

yhat.lower <- pred[,2]

yhat.upper <- pred[,3]

Confidence interval for expected values

To get CIs for yhat given a set of hypothetical x & z values

res <- lm(y~x+z)

xhyp <- seq(min(x),max(x),0.01)

zhyp <- rep(mean(z),length(xhyp))

hypo <- data.frame(x=xhyp,z=zhyp)

pred <- predict(res,newdata=hypo,interval="confidence",level=0.95)

yhat <- pred[,1]

yhat.lower <- pred[,2]

yhat.upper <- pred[,3]

The code above is very useful for adding confidence intervals to a plot.

We can run through a sequence of possible x values, holding z constant,
and predict y and it’s confidence interval,
then plot the confidence interval as an envolpe around y

The just add the upper and lower bounds:

lines(x=xhyp,y=yhat.lower,lty="dashed")

lines(x=xhyp,y=yhat.upper,lty="dashed")

Confidence interval for expected values

20 40 60 80

0
20

40
60

80
10

0

income

pr
es

tig
e

Confidence interval for expected values

Interpretation:
All we can say with 95 percent confidence is that the line
– the relation b/w prestige and income –
lies in this envelope

Very useful to show, especially if the relationship is curved in some way

I prefer shaded regions to dotted lines. (lots of lines gets confusing)

You can make shaded regions using the polygon() command

Just be sure to plot the polygon before you add any points or lines, so it shows up
behind them

Complete code for above figure
Load the occupation data

library(car)

data(Duncan)

attach(Duncan)

Regress prestige on education & income

lm.out <- lm(prestige~education+income)

To get CIs for yhat given a set of hypothetical income & education

xhyp <- seq(min(income),max(income),1)

zhyp <- rep(mean(education),length(xhyp))

hypo <- data.frame(income=xhyp,education=zhyp)

pred <- predict(lm.out,

newdata=hypo,

interval="confidence",

level=0.95)

yhat <- pred[,1]

yhat.lower <- pred[,2]

yhat.upper <- pred[,3]

pdf("yhatexample.pdf",horizontal=FALSE,width=5,height=4.5)

plot(y=prestige,x=income,type="n")

Make the x-coord of a confidence envelope polygon

xpoly <- c(xhyp,

rev(xhyp),

xhyp[1])

Make the y-coord of a confidence envelope polygon

ypoly <- c(yhat.lower,

rev(yhat.upper),

yhat.lower[1])

Choose the color of the polygon

col <- "gray"

Plot the polygon first, before the points & lines

polygon(x=xpoly,

y=ypoly,

col=col,

border=FALSE

)

Plot the fitted line

lines(x=xhyp,y=yhat)

dev.off()

