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Theme of class: analyzing data which do not fit assumptions of the normal model

First considered binary data

Then ordered data

But what about truly categorical data?

How do we analyze data when we can’t make any scaling assumptions at all?

When data are just “names” (hence the data are “nominal”)?

Who did you vote for? {Labor, Conservative, SNP, UKIP, . . . }
Which product did you purchase? {Coke, Pepsi, Dr. Pepper }
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Where to locate a plant? {Seattle, Tokyo, London }
What is the ethnicity of a new hire? {White, Black, Asian, . . . }
and so on . . .



Categorical Variables

Theme of class: analyzing data which do not fit assumptions of the normal model

First considered binary data

Then ordered data

But what about truly categorical data?

How do we analyze data when we can’t make any scaling assumptions at all?

When data are just “names” (hence the data are “nominal”)?

Who did you vote for? {Labor, Conservative, SNP, UKIP, . . . }
Which product did you purchase? {Coke, Pepsi, Dr. Pepper }
What kind of job do you have? {Manual labor, skilled labor, managerial, . . . }
Where to locate a plant? {Seattle, Tokyo, London }
What is the ethnicity of a new hire? {White, Black, Asian, . . . }
and so on . . .

Analyzing “What”, “Which”, “Who”, “Where” questions,
rather than “how much”, or “how many”



Nominal Regression Models

We can build models for nominal data on top of our work on logit, probit, etc.

Potentially more complicated than models so far

Some models for nominal data require massive computing power
(but massive computing power is ubiquitous – even in your pocket. . . )

We will start with a “simple” model, then explore more flexible models

For nominal models, need more elaborate notation than used in earlier weeks
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Notation for Nominal Regression Models

Welcome to subscript hell

Observations: 1, . . . i, . . . N

Unordered Categories: 1, . . . j, . . .M

Category 1 will be the “reference category”,
so we will often speak of the remaining categories 2, . . .M

Covariates: x1, . . . xk, . . . xP

Parameters: There may be a parameter for each combination of a non-reference
category and a covariate, plus an intercept for non-reference category

That is, the systematic component for the jth category of the ith observation is

µij = βj0 +

P∑
k=1

βjk × xik

Note the lack of a j subscript on x . . . this will change later
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Notation for Nominal Regression Models

The systematic component for the jth category of the ith observation is

µij = βj0 +

P∑
k=1

βjk × xik

or, in matrix form,
µj = Xβj

where

µj is an N × 1 vector of systematic components

βj is a (P + 1)× 1 vector of parameters

(there’s a βj for each category j of Y )

X is an N × (P + 1) matrix of covariates

(the same used regardless of the category j)



Notation for Nominal Regression Models

We could also put the parameters in one big matrix, like this:

β = βjk =



β10 β11 . . . β1k . . . β1P

β20 β21 . . . β2k . . . β2P
... . . . ...

βj0 βjk βjP
... . . . ...

βM0 βM1 . . . βMk . . . βMP





Notation for Nominal Regression Models

Each row of the matrix contains the complete set of parameters for a category:

β = βjk =



β10 β11 . . . β1k . . . β1P

β20 β21 . . . β2k . . . β2P
... . . . ...

βj0 βjk βjP
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Notation for Nominal Regression Models

And each column corresponds to a set of parameters for the same covariate:

β = βjk =



β10 β11 . . . β1k . . . β1P

β20 β21 . . . β2k . . . β2P
... . . . ...

βj0 βjk βjP
... . . . ...

βM0 βM1 . . . βMk . . . βMP





Notation for Nominal Regression Models

For identification, we set one row of coefficients to 0:

β = βjk =



0 0 . . . 0 . . . 0

β20 β21 . . . β2k . . . β2P
... . . . ...

βj0 βjk βjP
... . . . ...

βM0 βM1 . . . βMk . . . βMP



That is, we treat one category (here, “1”) as the reference category

That leaves (M − 1)× (P + 1) parameters to estimate
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Notation for Nominal Regression Models

For comparison:

in ordinary logit, we estimate P + 1 parameters

in ordered probit, we estimate P +M − 1 parameters

in multinomial logit, we estimate (M − 1)× (P + 1) parameters

→ MNL gobbles up degrees of freedom fast

→ Compared to ordinary logit, no big deal (we have more data)

→ Compared to ordered probit, or linear regression, MNL is “expensive”

If the assumptions of ordered probit fit your data, use it

But the assumptions don’t always fit . . .
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Likelihood for Multinomial Logit (MNL)

As usual, we start with a probability model What probability do we need?

We need to calculate Pr(yi = j|xi,β2, . . . ,βM),
the probability that yi falls in category j



Likelihood for Multinomial Logit (MNL)

As usual, we start with a probability model What probability do we need?

We need to calculate Pr(yi = j|xi,β2, . . . ,βM),
the probability that yi falls in category j

For a start, we need each Pr(·) to be positive, so we might try

Pr(yi = j|xi,β2, . . . ,βM) ∝ exp(xiβj)



Likelihood for Multinomial Logit (MNL)

As usual, we start with a probability model What probability do we need?

We need to calculate Pr(yi = j|xi,β2, . . . ,βM),
the probability that yi falls in category j

For a start, we need each Pr(·) to be positive, so we might try

Pr(yi = j|xi,β2, . . . ,βM) ∝ exp(xiβj)

But we also need the probabilities to sum to 1 across all the categories j
for a given observation i. . .

The inverse-logit usefully keeps each Pr(·) positive, and their sum = 1:

Pr(yi = j|xi,β2, . . . ,βM) =
exp(xiβj)∑M
`=1 exp(xiβ`)

However, to ensure the β’s are identified, we will need to assume, say, β1k = 0 ∀k.



Likelihood for Multinomial Logit (MNL)

Thus we have for j = 1

Pr(yi = 1|xi,β2, . . . ,βM) =
exp(xi × 0)

exp(xi × 0) +
∑M
`=2 exp(xiβ`)
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Likelihood for Multinomial Logit (MNL)

Thus we have for j = 1

Pr(yi = 1|xi,β2, . . . ,βM) =
exp(xi × 0)

exp(xi × 0) +
∑M
`=2 exp(xiβ`)

=
1

1 +
∑M
`=2 exp(xiβ`)

and for j > 2

Pr(yi = j|xi,β2, . . . ,βM) =
exp(xiβj)

1 +
∑M
`=2 exp(xiβ`)
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By definition, the likelihood is proportional to the probability, pij,
of observing the value of y that is ultimately observed
(the probabilities for all unobserved categories are irrelevant to the likelihood)

L(β2, . . . ,βM |y,X) =

N∏
i=1

M∏
j=1

pij
yij
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Likelihood for Multinomial Logit (MNL)

By definition, the likelihood is proportional to the probability, pij,
of observing the value of y that is ultimately observed
(the probabilities for all unobserved categories are irrelevant to the likelihood)

L(β2, . . . ,βM |y,X) =

N∏
i=1

M∏
j=1

pij
yij

Substituting for pij, we have

L(β2, . . . ,βM |y,X) =

N∏
i=1

M∏
j=1

[
exp(xiβj)

1 +
∑M
`=2 exp(xiβ`)

]yij

Taking logs, we end up with

logL(β2, . . . ,βM |y,X) =

N∑
i=1

M∑
j=1

yij log
exp(xiβj)

1 +
∑M
`=2 exp(xiβ`)

which we can maximize with optim()



Calculating Expected Values in MNL

After estimating an MNL model, calculating expected probabilities is straightforward.

For a given counterfactual level of the explanatory variables, xc,
and a three category multinomial logit, we have

Pr(y = 1|xc, β̂2, β̂3) =
1

1 + exp(xcβ̂2) + exp(xcβ̂3)

Pr(y = 2|xc, β̂2, β̂3) =
exp(xcβ̂2)

1 + exp(xcβ̂2) + exp(xcβ̂3)

Pr(y = 3|xc, β̂2, β̂3) =
exp(xcβ̂3)

1 + exp(xcβ̂2) + exp(xcβ̂3)

Simulating from the MNL is also simple:

Just draw the β̂’s from the multivariate normal,

then plug them into the above equations to get a matrix of simulates



Intepreting MNL Coefficients Directly

So what do the β’s in a multinomial logit mean?

Suppose we write the odds of category m against category n:

Pr(y = m|xc,β2, . . . ,βM)

Pr(y = n|xc,β2, . . . ,βM)
=

exp(xcβm)∑M
`=1 exp(xcβ`)

exp(xcβn)∑M
`=1 exp(xcβ`)
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Intepreting MNL Coefficients Directly

So what do the β’s in a multinomial logit mean?

Suppose we write the odds of category m against category n:

Pr(y = m|xc,β2, . . . ,βM)

Pr(y = n|xc,β2, . . . ,βM)
=

exp(xcβm)∑M
`=1 exp(xcβ`)

exp(xcβn)∑M
`=1 exp(xcβ`)

=
exp(xcβm)

exp(xcβn)

= exp (xc(βm − βn))

log
Pr(y = m|xc,β2, . . . ,βM)

Pr(y = n|xc,β2, . . . ,βM)
= xc(βm − βn)

just as for binary logit, we find that MNL is linear in the logit of y
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log
Pr(y = m|xc,β2, . . . ,βM)

Pr(y = n|xc,β2, . . . ,βM)
= xc(βm − βn)

In words, if the kth covariate xk increases by 1,
then the log of the odds of category m versus n increases by the difference of their
coefficients, βmk − βnk
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If category n is the reference category, βnk = 0 by assumption,
and this reduces to βmk.



Intepreting MNL Coefficients Directly

log
Pr(y = m|xc,β2, . . . ,βM)

Pr(y = n|xc,β2, . . . ,βM)
= xc(βm − βn)

In words, if the kth covariate xk increases by 1,
then the log of the odds of category m versus n increases by the difference of their
coefficients, βmk − βnk

If category n is the reference category, βnk = 0 by assumption,
and this reduces to βmk.

Notice something peculiar:

• If we want to calculate the effect of xk on the shift between two categories, m
and n, the other categories are irrelevant

• This implies that the relative probability of m and n should remain the same even
if a close substitute to m (but not to n) is added to the choice set:
the Independence of Irrelevant Alternatives (IIA) assumption.



An Example: Chomp!

Agresti (2002) offers the following example of nominal data

Alligators in a certain Florida lake were studied, and the following data collected:

Principal Food 1 = Invertebrates,
2 = Fish,
3 = “Other”

Size of alligator in meters

Sex of alligator male or female

The question is how alligator size and sex influences food choice

We fit the model in R using MNL and get . . .
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An Example: Chomp!

Agresti (2002) offers the following example of nominal data

Alligators in a certain Florida lake were studied, and the following data collected:

Principal Food 1 = Invertebrates,
2 = Fish,
3 = “Other” . . . Floridians?

Size of alligator in meters

Sex of alligator male or female

The question is how alligator size and sex influences food choice

We fit the model in R using MNL and get . . .



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

Can you directly interpretation the size coefficients?



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

1. How does size influence the choice of an invertebrate diet vs. a fish diet?

A 1 meter increase in length makes the odds that an alligator will eat invertebrates
rather than fish exp(−2.526− 0) = 0.080 times smaller



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

2. How does size influence the choice of an invertebrate diet vs. an “other” diet?

A 1 meter increase in length makes the odds that an alligator will eat invertebrates
rather than “other” food exp(−2.526− 0.138) = 0.070 times smaller



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

3. How does size influence the choice of a fish diet vs. an “other” diet?

A 1 meter increase in length makes the odds that an alligator will eat fish rather
than “other” food exp(0− 0.138) = 0.871 times smaller



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

Big gators are more likely to eat mostly fish and. . . “other” food,
relative to invertebrates

Really big gators still more likely to favor “other” food, even relative to fish



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

Although odds ratios are invariant to other covariate levels,
they are uninterpretable for most people

There has to be a better way . . .
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Let’s simulate the predicted probability a male gator eats invertebrates, by size

Above are the predicted probabilities with 68% and 95% CIs
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68% (95%) CIs are analogous to ±1 (±2) SE bars

Let’s focus on 68% CIs for now. . .
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The lighter regions and dashed central line indicate extrapolation

The central, observed range of male gator size is emphasized
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We have three categories to predict, and they can behave quite differently

Let’s plot them together
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As gators get bigger, they’re less likely to focus on invertebrates

and more likely to focus on fish
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But as gators get really big, a minority shift to “other” food
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Don’t forget female gators: a pair of plots now shows the full response surface

Possible here because specification so simple – usually need to be more selective

Graphs also usually get messy when you overlap >2 traces – we got lucky here

What should you do if the different categories have move overlapping probabilities?
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Usually, the clearest presentation has at most one or two traces per plot
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Just tile the plots for your scenarios and categories
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Make smaller plots simpler: remove extrapolated regions & now-unnecessary color
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With no overlaps, we can show 95% CIs now without confusion
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A good reminder that model is very uncertain – let’s use 95% CI from here on
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Large male gators (+1sd) compared to small (−1sd)

difference in probability this is gator's primary diet
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We don’t have to show curves to visualize logit

We could just pick interesting scenarios:

like the difference between small and large male gators

Above are first differences between small and large males, by category of food

95% CI are shown as horizontal bars
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Large male gators (+1sd) compared to small (−1sd)

relative likelihood this is gator's primary diet

Invertebrates
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Relative risks are another way to show differences for categorical outcomes

It helps to log scale the axes for relative risks:

Here I’ve also relabeled them to emphasize the broad range of results & CIs

So far, we’ve only considered one scenario – how would we show more than one?
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Let’s focus on just one category of the outcome – the ominous “other food”

Above: relative risks of “other” dietary choices for 5 before-and-after scenarios

What can we say about the relationships among gator’s food, size, and sex?



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

How well does the model fit?



log
(

Pr(invertebrate)
Pr(fish)

)
log
(

Pr(“other”)
Pr(fish)

)
Size −2.526 0.138

(0.848) (0.518)
Female −0.790 0.382

(0.712) (0.908)
Intercept 4.897 −1.947

(1.706) (1.531)

log likelihood -48.3
AIC 108.6
% correctly classified (in-sample) 62.7% (null=52.5%)
% correctly classified (LOO-CV) 55.9% (null=52.5%)
in-sample concordance 0.71 (null=0.50)
LOO-CV concordance 0.59 (null=0.50)
N 59

How well does the model fit?

Not all that well, especially in cross-validation: need a bigger sample!
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Before class today, how might you have tackled nominal data?

Perhaps equation-by-equation logit

Pick two categories, run a logit of the data that fall into one or the other . . .

(e.g., restrict attention to Fish and Invertebrate feeders only)

. . . then repeat with another pair of categories . . .

(next run a logit for Invertebrate and Other feeders only)

. . . and so on until the combinations are exhausted.

(finally, run a logit for Fish and Other feeders only)
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“Equivalence” of MNL and Binary Logit

Drawbacks of equation-by-equation logit:

1. Time consuming, and produces a large pile of parameters

2. More seriously, each regression uses a different subset of observations:

• Inefficient

• Complicates significance tests

MNL is merely a more efficient version of equation-by-equation binary logit.

The same quantities are being estimated.

I.e., the parameters in MNL depend only on binary comparisons.
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Limits of Multinomial Logit: IIA

In one sense a very general, or flexible, model:

No order imposed on y at all

What are the advantages of MNL vs LS for continuous data? disadvantages?

In several other senses somewhat rigid:

Covariates are fixed regardless of category (election example)

“Independence of Irrelevant Alternatives” (IIA) assumed

Next up:

Blue Bus, Red Bus conditional logit multinomial probit
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Notation Review

Consider yourselves advanced to notation purgatory.
Just as bad as notation hell, but it won’t last too much longer.

Observations: 1, . . . , i, . . . , N

Unordered Categories: 1, . . . , j, . . . ,M

Category 1 will be the “reference category”,
so we will often speak of the remaining categories 2, . . . ,M

Covariates: x1, . . . , xk, . . . , xP
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Limits of Multinomial Logit
For many purposes, MNL is a limited model of nominal data.

Several restrictive assumptions with awkward names:

1. No choice-specific variables: xk is fixed for all categories j; there’s no xjk’s

2. Independence of irrelevant alternatives:
Pr(Yi = m|xi,βm)/Pr(Yi = n|xi,βn) is unaffected by changes in the categories
besides m and n

3. Invariant proportion of substitution: Given three categories, m, n, and o, and
a change a covariate xmk, the proportion of substitution from category n to m,
relative to substitution from o to m, is insensitive to k

Goals:

• Develop an intuitive (plain English) understanding of these assumptions

• Understand options for coping with them
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Limits of MNL: Unconditional Covariates

Assumption 1: xk is fixed for all j

Covariates are individual- (or “chooser”-) specific,
Not choice specific.

Example:

Will a person order salmon sashimi, unagi, or California rolls?

One covariate might be xik, squeamishness about raw fish (individual-specific).

Another might be zj, the price of each option (choice specific)

Now suppose our data include choices made in the following cities:

Seattle, Houston, Des Moines, Tokyo
Suggests a new variable:

Local price of each item, zij

→ Both choice and chooser specific!



Limits of MNL: Unconditional Covariates

In MNL we had the following matrices of parameters & covariates

β = βjk =


0 0 . . . 0 . . . 0
β20 β21 . . . β2k . . . β2P

... . . . ...
βj0 βjk βjP

... . . . ...
βM0 βM1 . . . βMk . . . βMP



X = xik =


1 x11 . . . x1k . . . x1P

1 x21 . . . x2k . . . x2P
... . . . ...
1 xik xiP
... . . . ...
1 xN1 . . . xNk . . . xNP


And obtained

µj = Xβj



Adding choice specific variables: Conditional Logit

Now suppose instead we have a covariate Zk. In our sushi example, this is the price
an individual faces for each kind of sushi.

Zk = zij =


z11 . . . z1j . . . z1M

z21 . . . z2j . . . z2M
... . . . ...
zi1 zij zjM
... . . . ...

zN1 . . . zNj . . . zNM


This matrix can viewed as a single covariate, or as the interaction of a covariate with
each outcome.
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That is, if Zk is the price of sushi, the γk might measure our willingness to give up
dollars for sushi.
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Adding Zk to the model makes this a “conditional” logit model.

The trick to conditional logit is that we assume a single parameter, γk links zij to
µij, regardless of the category.

That is, if Zk is the price of sushi, the γk might measure our willingness to give up
dollars for sushi.

Hence, for a model with only choice & chooser specific variables, we have

µij = zijγ

where γ and zij are k-vectors.
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Adding choice specific variables: Conditional Logit

The probability model for conditional logit is analogous to MNL:

Pr(yi = j|zij,γ) =
exp(zijγ)∑M
`=1 exp(zijγ)

but notice there is no warrant for an excluded category (we will want to have a
constant for each category, though). The likelihood should also look familiar:

logL(γ|y,Z) =

N∑
i=1

M∑
j=1

yij log
exp(zijγ)∑M
`=1 exp(zijγ)

A more general form of conditional logit allows the choice to depend on both choice
and individual specific variables; i.e.,

µij = zijγ + xiβj

which leads to an obvious generalization of the above probability and likelihood
equations.
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Adding choice specific variables: Conditional Logit

A subtle point:

We assume all the zij’s for some covariate k are on the same scale. If this
assumption holds, we can estimate fewer parameters.

An alternative is to replace the scalar zijk with the vector

{zijk × (yij = 2), zijk × (yij = 3), . . . , zijk × (yij = j)}
include these variables in an MNL, which adds J − 1 parameters, instead of just 1.

Caution on nomenclature:

The term conditional logit is used to describe many different models. They are all
nested in the model discussed here, but your statistical package may use conditional
logit to describe a less general model.

R does not yet (?) have a multinomial conditional logit procedure capable of
handling Z and X simultaneously.

But, using the techniques we’ve learned so far, I wrote a procedure that works for k
covariates X and 1 covariate z which you could further generalize if you need it . . .



Today’s (Fake) Example: Voting Choice

Because of the complexity and touchiness of today’s models, it will help to have an
example where we know the true parameters.
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Today’s (Fake) Example: Voting Choice

Hence, I generated the following FAKE data on voting behavior.
I’m making all this up.

Vote Choice among a Liberal, a Conservative, and a Populist
Rural Inverse population density for each voter’s locale;

suppose more rural voters really like populists (β = 1.5),
kind of like conservatives (β = 1),
and dislike liberals (the omitted category; β = 0)

Religion Voter religiosity;
More religious voters like conservatives (β = 1),
are tepid about populists (β = 0.5),
and shun liberals (the omitted category, β = 0)

Distance The (absolute) ideological distance between the voter
and the candidate. Voter ideology is distributed standard normal.
Candidate ideology: Liberal = -1, Populist = 0.5, Conservative = 1
γ = −1; voters are less likely to vote for distant candidates

I generate Vote from three latent variables which are distributed multivariate normal.
(Don’t worry about the vc matrix Σ for now). Whichever latent variable is largest is
the person’s vote choice.



Today’s (Fake) Example: Voting Choice

Truth (on Logit coefficients
Covariates probit scale) MNL CL

Constant (Cons vs. Lib) −0.25 −1.15 −2.08
Constant (Pop vs. Lib) −0.50 0.43 −2.05
Ruralness (Cons vs. Lib) 1.00 0.75 1.79
Ruralness (Pop vs. Lib) 1.50 −1.20 2.38
Religion (Con vs. Lib) 1.00 1.39 1.80
Religion (Pop vs Lib) 0.50 0.15 0.94
Ideological distance −1.00 −2.42

N 1000 1000
logL −824.2 −482.0

The estimated parameters are not transparently comparable to the true values
(sorry). However, recalling that logit parameters tend to be about 1.6x as big as
probit paramters, the CL estimates look pretty good, while the MNL estimates are
lousy.

Notice the large difference in the maximum likelihood.



Today’s (Fake) Example: Voting Choice

A more readable presentation of the results is to plot the expected values against size.

0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3

P
ro

b
ab

ili
ty

 o
f 
vo

ti
n
g 

fo
r 

...

Ruralness

Liberal

Conservative

Populist

MNL

0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3

Ruralness

Liberal

Conservative

Populist

CL

MNL estimates are on the left; CL estimates on the right. All other variables
(including, for CL, the ideological distances) are held at their mean values.

Notice that the results are quite dependent on the model/omission of ideological
distance.



Today’s (Fake) Example: Voting Choice

Now vary voter-candidate distance, holding other voter characteristics constant
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Need three separate sets of counterfactuals: each varying the distance to a different
candidate.

Bottom line: If you have choice-specific covariates, CL is a practical alternative to
MNL that is as easy to estimate, and nearly as “easy” to interpret.



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.

In MNL and CL, the odds of selecting option A versus B do not depend on the
presence or characteristics of option C.



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.

In MNL and CL, the odds of selecting option A versus B do not depend on the
presence or characteristics of option C.

Hence, if transportation options are initially red bus, car, train, and each is equally
probable (1/3), then the model predicts that adding a blue bus will lower each
category to probability 1/4. A coat of paint increases bus ridership by 17 percent!



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.

In MNL and CL, the odds of selecting option A versus B do not depend on the
presence or characteristics of option C.

Hence, if transportation options are initially red bus, car, train, and each is equally
probable (1/3), then the model predicts that adding a blue bus will lower each
category to probability 1/4. A coat of paint increases bus ridership by 17 percent!

For a model containing all possible categories, IIA is innocuous.



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.

In MNL and CL, the odds of selecting option A versus B do not depend on the
presence or characteristics of option C.

Hence, if transportation options are initially red bus, car, train, and each is equally
probable (1/3), then the model predicts that adding a blue bus will lower each
category to probability 1/4. A coat of paint increases bus ridership by 17 percent!

For a model containing all possible categories, IIA is innocuous.

For a model of classification, IIA may be plausible.



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.

In MNL and CL, the odds of selecting option A versus B do not depend on the
presence or characteristics of option C.

Hence, if transportation options are initially red bus, car, train, and each is equally
probable (1/3), then the model predicts that adding a blue bus will lower each
category to probability 1/4. A coat of paint increases bus ridership by 17 percent!

For a model containing all possible categories, IIA is innocuous.

For a model of classification, IIA may be plausible.

For a model of choice, and especially one with choice-specific variables, IIA is very
difficult to swallow. (Any counterfactual choice of Zk should violate it).



Limits of MNL and conditional logit: IIA

The famous “blue bus”/”red bus” paradox illustrates a limitation of MNL and CL.

In MNL and CL, the odds of selecting option A versus B do not depend on the
presence or characteristics of option C.

Hence, if transportation options are initially red bus, car, train, and each is equally
probable (1/3), then the model predicts that adding a blue bus will lower each
category to probability 1/4. A coat of paint increases bus ridership by 17 percent!

For a model containing all possible categories, IIA is innocuous.

For a model of classification, IIA may be plausible.

For a model of choice, and especially one with choice-specific variables, IIA is very
difficult to swallow. (Any counterfactual choice of Zk should violate it).

IIA violations are a big concern in the study of voting and transportation –
as you might guess from the examples used here
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Latent Variables, again

To relax the IIA property, we return to the latent variables framework.

Assume there is a latent variable y∗ij for every observed yij.

Further suppose that the latent variables are (potentially) jointly distributed.

Finally, suppose y∗ij > y∗i` ∀j 6= ` ⇒ yij = 1, yi` = 0.

We could interpret the MNL or CL model in this way by assuming iid extreme value
distributions for y∗ij.

But the (multivariate) normal turns out to be a much more flexible choice.

The reason is that the MVN allows us to estimate or assume non-zero covariances
among the latent variables.

This breaks the IIA restriction – now a new category can change the ratio of
probabilities of two other categories with respect to each other.
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As in multinomial logit, we will restrict the β parameters of the first category to 0

Why?

As usual, we don’t know the true location or scale of the latent variables

That’s okay: we only need to know which is largest

For convenience,
and to avoid the impossible problem of estimating the true location of the latent
variables,
we set one category to 0 to anchor the scale

We do this by setting β1 = 0, which implies E(y∗i1) = 0

And by setting var(y∗i1) = 0 also, so y∗i1 = 0 ∀i

This implies that to “get out of category 1,” one of the other y∗i`, ` 6= 1 must be > 0
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But what makes multinomial probit special is that the latent variables are assumed
to be distributed jointly with covariance matrix Σ

Σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


Identification of the elements of Σ = σmn is hard.
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Multinomial Probit

But what makes multinomial probit special is that the latent variables are assumed
to be distributed jointly with covariance matrix Σ.

Σ =

 0 0 0
0 1 σ23

0 σ32 σ33


Identification of the elements of Σ = σmn is hard.

We will assume the first row and column of Σ are all 0 – this is part of treating
category 1 as the reference category

We need one more restriction for identification; conventionally, we set σ22 = 1

Why? Only the non-reference latent variables are allowed to vary,
but we still don’t have true scales for them

To make relative comparisons among the latent variables, we need to anchor one
scale by choosing its variance



Multinomial Probit

But what makes multinomial probit special is that the latent variables are assumed
to be distributed jointly with covariance matrix Σ

Σ =

 0 0 0
0 1 σ32

0 σ32 σ33


Identification of the elements of Σ = σmn is hard

We will assume the first row and column of Σ are all 0

We need one more restriction for identification; conventionally, we set σ22 = 1

In the 3 category MNP, this leaves 2 covariances to estimate (σ32 and σ33)

As J increases, the number of free σ’s grows rapidly

In real data, the likelihood over these σ’s may be (almost) flat,
and additional restrictions may be necessary to get usable estimates
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But identification is the lesser difficulty with MNP.
The likelihood for MNP, as for MNL, takes the form:
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M∏
j=1

pij
yij

But pij now contains potentially high order integrals than cannot be solved
analytically, and which remain difficult to solve computationally. For example, in a
three category MNP, the probability that Yi = 1 is:

pi1 =

∫ µi1−µi2√
σ11+σ22−2σ12

−∞

∫ µi1−µi3√
σ11+σ33−2σ13

−∞
Φ (vec[εi2 − εi1, εi3 − εi1], cov[εi2 − εi1, εi3 − εi1])

This likelihood is extremely difficult to maximize for “large” J (like 4 or 5).
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But identification is the lesser difficulty with MNP.
The likelihood for MNP, as for MNL, takes the form:

L(β2, . . . ,βM ,Σ|y,X) =

N∏
i=1

M∏
j=1

pij
yij

But pij now contains potentially high order integrals than cannot be solved
analytically, and which remain difficult to solve computationally. For example, in a
three category MNP, the probability that Yi = 1 is:

pi1 =

∫ µi1−µi2√
σ11+σ22−2σ12

−∞

∫ µi1−µi3√
σ11+σ33−2σ13

−∞
Φ (vec[εi2 − εi1, εi3 − εi1], cov[εi2 − εi1, εi3 − εi1])

This likelihood is extremely difficult to maximize for “large” J (like 4 or 5).

Serious processing power and clever techniques help cope.
For example, Imai and van Dyk (2005) offer a Bayesian MCMC approach to MNP
that may dominate past estimation strategies

Still isn’t easy; plus there is the added necessity of assessing MCMC convergence . . .



Multinomial Probit: Example

We return to our FAKE voting example,
though we will now drop the choice specific variable to make things simpler.

Truth (on Multinomial Probit
Covariates probit scale) mean 95% credibility

Constant (Cons vs. Lib) −0.25 −0.17 [ -0.38, 0.05 ]
Constant (Pop vs. Lib) −0.50 −0.45 [ -0.81, -0.20 ]
Ruralness (Cons vs. Lib) 1.00 1.05 [ 0.82, 1.27 ]
Ruralness (Pop vs. Lib) 1.50 1.56 [ 1.12, 1.98 ]
Religion (Con vs. Lib) 1.00 0.95 [ 0.80, 1.11 ]
Religion (Pop vs Lib) 0.50 0.54 [ 0.33, 0.76 ]
σCons,Pop 0.50 0.82 [ 0.26, 1.32 ]
σPop,Pop 2.00 2.00 [ 0.85, 3.51 ]

Estimated by Imai & van Dyk (2005) data augmentation MNP procedure

Warning: This was not a typical run . . .



Multinomial Probit: Example

As with every other model in this class, we can calculate EVs and simulate
confidence intervals . . .
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[Why are these the same? No zk is the likely reason. But the non-zero covariance
estimate tells us that things would change if we added more categories]



Limits of MNL, MNP, etc.: the IPS property

Consider the following example from Steenburgh (2004).
Imagine you are looking for a new laptop, and can choose among three alternatives.

Choice Weight Speed

Laptop A 3 lb. 2.0 GHz
Laptop B 5 lb. 2.7 GHz
Laptop C 7 lb. 3.4 GHz



Limits of MNL, MNP, etc.: the IPS property

Let’s make the example (a little) more concrete:

Ex ante
Choice Weight Speed Pr()

Laptop A 3 lb. 2.0 GHz 0.30
Laptop B 5 lb. 2.7 GHz 0.40
Laptop C 7 lb. 3.4 GHz 0.30

Imagine a small (read, infinitesimal) improvement in the speed of B.

This will increase the probability of buying Laptop B.

It will reduce the probability of buying Laptops A and C.

The reduction in the latter probabilities can be stated formally

∂Pr(y = m)/∂xnk
∂Pr(y = n)/∂xnk

= ψm,n

where Invariant Proportion of Substitution (IPS) implies ψm,n is a constant for all k



Limits of MNL, MNP, etc.: the IPS property

Ex ante
Choice Weight Speed Pr()

Laptop A 3 lb. 2.0 GHz 0.30
Laptop B 5 lb. 2.7 GHz 0.40
Laptop C 7 lb. 3.4 GHz 0.30

IPS means that if a small increase in speed increases the probability of purchasing B
by 10 “units” (where units are small), while laptop A decreases by 4 units and C by
6 units,

then

if a small change decrease in weight increases the probability of purchasing B by 10
units, IPS models constrain decrease in A to be 4 units, and the decrease in C to be
6 units.



Limits of MNL, MNP, etc.: the IPS property

Ex ante
Choice Weight Speed Pr()

Laptop A 3 lb. 2.0 GHz 0.30
Laptop B 5 lb. 2.7 GHz 0.40
Laptop C 7 lb. 3.4 GHz 0.30

But wait! Shouldn’t a drop in B’s weight hurt A more than C?

People who compromised on speed to get a light laptop may think “the weight
benefit is getting small; I’m going for the bigger processor.”

But many C buyers probably went large for the processor, and will ignore fluctuations
in the weight of smaller laptops, so long as they are slower.



Limits of MNL, MNP, etc.: the IPS property

Ex ante
Choice Weight Speed Pr()

Laptop A 3 lb. 2.0 GHz 0.30
Laptop B 5 lb. 2.7 GHz 0.40
Laptop C 7 lb. 3.4 GHz 0.30

A similar logic led us to assume that a speed increase in B would hurt the speed
leader, C, more than it would hurt A.

But in the models we have studied—MNL, CL, MNP—we can’t have it both ways.

IPS prevents a model from estimating theoretically reasonable asymetries in
substitution.



Limits of MNL, MNP, etc.: the IPS property

IPS is a new idea (surprisingly?)

Few existing models generalize out of it

One that does is the “mother logit” (not my name)

The “mother logit” includes all (possible) categories; moreover, any variable
enetering any equation enters the every other categories’ equation.

This “complete” specification obviates all concerns discussed today

But you will probably never see this method used ever. . .



So which method do I use for nominal data?

As usual, a model isn’t right or wrong, but more or less useful.

If your data are non-ordered, you will probably want a multinomial model,
or your results won’t make much sense
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So which method do I use for nominal data?

As usual, a model isn’t right or wrong, but more or less useful.

If your data are non-ordered, you will probably want a multinomial model,
or your results won’t make much sense

But sometimes an ordering is arguable for a particular instance.

Candidate for multinomial logit:
“What is your favorite color?”

Candidate for ordered probit:
“What is the shortest wavelength of color a species can see?”

This is up to the modeler, and her substantive knowledge to decide



So which method do I use for nominal data?

Once we’ve decided to use a model for nominal data, we need to make more
decisions:

1. Do my data depend on choice specific variables?
Notice the word choice

2. Would some of my categories shrink proportionally more than others is a
particular alternative were added
Notice the hypothetical addition of a new option

3. Would some changes in choice m make n relative less appealing compared to
some other changes in m?
Notice the focus on categories substituted from, rather than to



So which method do I use for nominal data?

1. Do my data depend on choice specific variables?

2. Would some of my categories shrink proportionally more than others is a
particular alternative were added

3. Would some changes in choice m make n relative less appealing compared to
some other changes in m?

If the answer to all three is “no”, then MNL is a good option.

Another way of putting this:
The (relatively) restrictive assumptions of MNL may be appropriate;
if so, why choose a more complicated model?

This is especially likely in classification problems, but not so tenable in choice
problems.



So which method do I use for nominal data?

1. Do my data depend on choice-specific variables?

2. Would some of my categories shrink proportionally more than others is a
particular alternative were added

3. Would some changes in choice m make n relative less appealing compared to
some other changes in m?

If the answers are “yes, no, no”, you have two simple options:

1. Include charactistics of every choice in every equation (as in the “mother” logit).
Very demanding specification

2. Impose some structure:
Assume the choice-specific variables operate on a common metric,
and estimate a single parameter for each: conditional logit.



So which method do I use for nominal data?

1. Do my data depend on choice-specific variables?

2. Would some of my categories shrink proportionally more than others is a
particular alternative were added

3. Would some changes in choice m make n relative less appealing compared to
some other changes in m?

If your answers are “yes, yes, no”, the question arises: Could there be an omitted
option?

If every conceivable option is in the model, Red Bus/Blue Bus paradoxes won’t arise
(no one can add a Blue Bus!) In this case, logit is fine.

But new choices might emerge
(e.g., new candidates will join a race, or new products will enter a market)
→ in this case, MNP will provide useful information about which options are close
substitutes, helping understand likely responses to new options

A warning: in some sense, saying CL is adequate is
tantamount to saying unobserved values of Z are nonsensical and/or
the covariances in Σ, or some analogous matrix, are 0.



So which method do I use for nominal data?

1. Do my data depend on choice-specific variables?

2. Would some of my categories shrink proportionally more than others is a
particular alternative were added

3. Would some changes in choice m make n relative less appealing compared to
some other changes in m?

Worried about all three? You may need a very flexible model, approaching the
“mother logit” specification.

Clever specification could deal with limited violations of IPS (the property violated in
3.)

The IPS property is a new idea. . . so maybe we’ll get (or make) some new methods
to deal with it.
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Censored data: Tobit

What do we mean by censored data?

Recall the latent variable justification for the probit model.

Suppose the latent variable y∗ is partially observed,
so that above the cutpoint, we have y∗.

If the data are below the cutpoint, all we know is that fact.

These are censored data (contrast with truncated and latent)

Examples of censored data:

Survey questions on income that end with “100k or above”

Desired contribution to an 401(k) above the cap

Demand for tickets to (sometimes) sold-out concerts

Note that we are in much better shape than in regular probit:
we can identify the scale and location of the latent variable
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Censored data: Tobit

How do we analyze censored data?

1. We could use linear regression on the whole dataset

→ this turns out to be inconsistent

i.e., filling in values for the censored data isn’t kosher

2. We could use linear regression on the fully observed data

→ this introduces sample selection bias

i.e., the xs and error terms are now correlated

3. We could model the censoring explicitly, using a probit style model

→ under certain assumptions, this is unbiased and efficient

if we had thought of this ourselves, we’d be part-way to a Nobel. . .
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Censored data: Tobit

Tobin’s Probit = Tobit

Assume the censored variable is normally distributed

y∗i = fN
(
µi, σ

2
)

and assume a deterministic observation (or censoring) mechanism

yi =

{
c if −∞ < y∗i ≤ τ
y∗i if τ < y∗i ≤ ∞

Note that c is an mostly-arbitrary constant, i.e., the label we attach to censored
cases; τ is the threshold below which we always have censoring.

We could flip this around to have censoring above τ .

We could have censoring in multiple regions
(e.g., above and below, as in “two-limit” tobit)

Overall, this is very like probit below τ , and very like linear regression above τ
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The tobit likelihood is formed in two parts:

Part 1: Observed cases.

The probability for observed cases is simply the normal pmf, hence

L1(µ, σ2|y, τ) =
∏
yi>τ

fN
(
y∗i |µi, σ2
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= FN (τ |µi, σ2)



Censored data: Tobit

The tobit likelihood is formed in two parts:

Part 1: Observed cases.

The probability for observed cases is simply the normal pmf, hence

L1(µ, σ2|y, τ) =
∏
yi>τ

fN
(
y∗i |µi, σ2

)
Part 2: Unobserved cases.

The probability for an unobserved case is just like probit

Pr(yi ≤ τ) =

∫ τ

−∞
fN
(
y∗i |µi, σ2

)
dy∗

= FN (τ |µi, σ2)

so
L2(µ, σ2|y, τ) =

∏
yi≤τ

FN (τ |µi, σ2)



Censored data: Tobit

The full likelihood is just the product of the likelihoods for the censored and
uncensored portions of the data

L(µ, σ2|y, τ) =
∏
yi>τ

fN
(
y∗i |µi, σ2

) ∏
yi≤τ

FN (τ |µi, σ2)

Tobit can be estimated by ML as usual, using optim().

Survival analysis packages somtimes have tobit or “censored regression”

Tobit is also available in the VGAM package using:

vglm(..., family=tobit(Upper=K))

where K is the censoring limit. You could also/instead have Lower=M.

Finally, very flexible censoring (with many limits) is available in the censReg package
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Parameters can be interpreted as linear regression coefficients (Yay!)

Could also calculated fitted values for unobserved cases—nifty



Censored data: Tobit

Interpretation:

Parameters can be interpreted as linear regression coefficients (Yay!)

Could also calculated fitted values for unobserved cases—nifty

Extensions:

Tobit is the tip of the iceberg

Beyond are methods for truncated data, and for stochastically censored data

The latter are sample selection models and widely used in econometrics



Rare events data: relogit

(The following is based on King and Zheng (2001, Political Analysis)

Often logit is used to study rare events:

• Whether an individual randomly selected from the population has AIDS

• Whether a given dyad of countries are at war

It turns out that logit is biased to the extent ȳ << 0.5

Assume that 1s indicate the rare event, and 0s the common alternative.

We are interested in unbiased estimation of a parameter β



Rare events data: relogit

Suppose that x indeed helps classify events as 1s or 0s.

In our war example, x might be whether two countries share a border.

This indeed makes war more likely,
but most neighboring countries are nevertheless at peace most of the time



Rare events data: relogit

Suppose that if we had an infinite amount of data, we would uncover the following
conditional distributions

cutpoint
correctly estimated

Y=0 Y=1

X

In this case, we would correctly set place the cutpoint between 0s and 1s at the
indicated location

This placement of this cutpoint is related to the estimate β̂, and is made to minimize
incorrect classifications.

With an infinite amount of data, the consistency of logit (as an MLE) ensures β̂ = β



Rare events data: relogit

Now suppose we have a few thousand observations, of which only a handful are 1s.
The distribution of 0s remains clear, but the distribution of 1s is sketchy

cutpoint

Y=0 Y=1

true estimated
cutpoint

X

Logit will once again choose a cut point to min(incorrect classifications).

But with few 1s, it will place the cutpoint too far to the right, because the true
cutpoint would misclassify many 0s.

(Recall ROC curves—the small sample logit is doing well at the lower part of the
ROC, but very badly on the top part)
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1. Data collection: Collect every 1 you can; randomly sample an equal number of 0s;
correct for sampling bias.
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Rare events data: relogit

King and Zheng offer several pieces of advice:

1. Data collection: Collect every 1 you can; randomly sample an equal number of 0s;
correct for sampling bias.

2. Estimation: when analyzing data with ȳ 6= 0.5, apply a bias correction for
rare-events.

I leave the details of these bias corrections to interested readers

Implementation:

rare-events logit is part of the R package Zelig, which also contains functions for
simulating quantities of interest eeriely similar to those we’ve been producing . . .
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