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From 2D to 3D tables

The move from 2D to 3D tables adds several issues for loglinear models

• Tables are harder to visualize

• A plethora of interactions are estimable

• New notation is used to cope with growing complexity

• New concepts: conditional independence, conditional association, collapsibility

• Estimation may become difficult if tables have many zeros (curse of dimensionality)

Today, we’ll discuss these challenges, but only scratch the surface of the literature



Log-linear models for 3D tables

Let’s start with the model under independence,

E(µijk) = nπ̂i··π̂·j·π̂··k

Take logs

ln E(µijk) = lnn + ln π̂i·· + ln π̂·j· + ln π̂··k

Rewriting in log-linear form

ln E(µijk) = λ + λX
i + λY

j + λZ
k



Log-linear models for 3D tables

The saturated model for a 3D table has every two-way and three-way interaction

ln E(µijk) = λ + λX
i + λY

j + λZ
k

+λXY
ij + λXZ

ik + λY Z
jk + λXY Z

ijk

(How can we think intuitively about these terms? What is a three-way interaction?)

As before, the saturated model perfectly fits the data, and has 0 degrees of freedom



Identifying constraints

As in the I ×K case, the parameters of the marginals must sum to 0 for

identification ∑
i

λX
i = 0∑

j

λY
j = 0

∑
k

λZ
k = 0

Alternatively, we drop one element of each set of parameters from the model

That would leave I − 1 λX’s, J − 1 λY ’s, and K − 1 λZ’s

The actual parameter estimates would look different,
but all quantities of interest would stay the same



Identifying constraints

We also need to put identifying constraints on the interactions.

The interactions must sum to 0 over each index :∑
i

λX
i =

∑
i

λXY
ij =

∑
i

λXZ
ik =

∑
i

λXY Z
ijk = 0∑

j

λY
j =

∑
j

λXY
ij =

∑
j

λY Z
jk =

∑
j

λXY Z
ijk = 0

∑
k

λZ
k =

∑
k

λXZ
ik =

∑
i

λY Z
jk =

∑
k

λXY Z
ijk = 0

A different way of saying this is that λXY Z
·jk = 0, λXY Z

i·k = 0, etc.



Identifying constraints

Once again, there are alternative identifying assumptions.

We could drop one row and column from each set of interactions, leaving:

(I − 1)× (J − 1) λXY terms

(I − 1)× (K − 1) λXZ terms

(J − 1)× (K − 1) λY Z terms

(I − 1)× (J − 1)× (K − 1) λXY Z terms

As before, this parameterization yields superficially different estimates,
but identical quantities of interest



Concepts for 3D tables: Conditional independence

To wrap our minds around the implications of interaction effects, we define

Conditional independence:

X and Y are conditionally independent given Z if they are independent
within any partial table where Z is fixed

We write this X ⊥ Y |Z

Note this is a weaker condition than joint independence (which is written X ⊥ Y )



Concepts for 3D tables: Collapsibility

If a variable X is jointly or conditionally independent of all other variables,
we say the table is collapsible over X

• Partial tables that sum over X will preserve all conditional relationships
among other variables

• Put another way, we don’t introduces Simpson’s paradoxes by collapsing over X

Once again, we can understand this as omitted variable bias,
which is harmless when the omitted variable is uncorrelated with other covariates

Collapsibility is very helpful in high dimensional and/or large tables

In a moment, we’ll introduce a useful tool for investigating collapsibility



Concepts for 3D tables: Conditional association

When two variables are not conditionally independent, they are conditionally
associated

→ That is, for fixed Z = k, X and Y are not independent

If the association between X and Y is the same for all Z = k, then we have
homogenous association

There are tests for both conditional and homogenous association; see Agresti



Concepts for 3D tables: Association Diagrams
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1.  Independence 2.  An XY interaction only

3.  An XZ and XY interaction 4.  XY, YZ, and XZ interactions

It helps to draw diagrams of which 2-way interactions are present

Variables are

• jointly independent if no path connects them

• conditionally associated if directly linked

• conditionally independent if linked by a chain



Concepts for 3D tables: Association Diagrams
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1.  Independence 2.  An XY interaction only

3.  An XZ and XY interaction 4.  XY, YZ, and XZ interactions

Several models can have the same association diagram

(4) gives both the saturated model,
and the saturated model minus the 3-way interaction

If there are multiple paths between two variables,
the variables are conditionally independent given any of the paths



Concepts for 3D tables: Association Diagrams
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1.  Independence 2.  An XY interaction only

3.  An XZ and XY interaction 4.  XY, YZ, and XZ interactions

Association diagrams are an easy way to check for collapsibility

• Obviously, singletons are collapsible (joint independence)

• So are variables at the ends of chains (conditional independence)

• But not variables between other variables in a chain (cond. assoc.)



Concepts for 3D tables: Sufficient marginals

Under independence, we have the model

ln E(µijk) = λ + λX
i + λY

j + λZ
k

and the fitted cell probabilities are

E(πijk) = π̂i··π̂·j·π̂··k

Now suppose that X ⊥ Z and Y ⊥ Z, but X and Y are not independent. Then

ln E(µijk) = λ + λX
i + λY

j + λZ
k + λXY

ij

and the fitted cell probabilities are

E(πijk) = π̂ij·π̂··k



Concepts for 3D tables: Sufficient marginals

If X and Y are conditionally independent given Z, we write the LLM

ln E(µijk) = λ + λX
i + λY

j + λZ
k + λXZ

ik + λY Z
jk

and the fitted cell probabilities are

E(πijk) = π̂i·kπ̂·jk

Finally, in the saturated model, the fitted cell probabilities are the observed

probabilities,

E(πijk) = π̂ijk



Concepts for 3D tables: Sufficient marginals

In each of the above examples,
the probabilities on the right-hand-side are the “sufficient marginals”

They are the only proportions we need to observe to estimate the model

We could throw the other cells away, as we did in our 2× 2 example of independence

As the model gets more complicated,
the sufficient marginals include more and more of the actual cells



Notation for 3D tables

It helps to define a more compact notation for multidimensional LLMs

Model (ln E(µijk) = . . .) Notation Assumptions

λ + λX
i + λY

j + λZ
k (X, Y, Z) X ⊥ Y ⊥ Z

λ + λX
i + λY

j + λZ
k + λXY

ij (XY,Z) X ⊥ Z, Y ⊥ Z

λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik (XY,XZ) Y ⊥ Z|X

λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λXY Z

ijk (XY Z)

Note this notation assumes lower level terms are included

Models that nest all lower order terms sometimes referred to as “hierarchical”

This is a helpful simplifying assumption, but not logically required



Fussy points on interaction terms

There is a case where you could omit a lower order term:

1. Theoretically, it should be zero

2. Empirically, it is zero

3. Omitting it improves precision a worthwhile amount

4. You show (1–3) to the referees’ satisfaction. . .

A common example from linear regression, if we think fertility depends on
GDP/population, but not GDP, we don’t insist on including 1/GDP as a “main
effect”

Omitting a relevant lower order term will badly bias your result

So will omitting an interaction, though not as badly

(Sidenote: “main effect” is a misleading term. If interactions are present, they are
part of the effect)



Estimating LLM for 3D tables

Estimation of 3+ dimensional tables uses the same MLE as 2D tables

We could use loglm on the table directly

Or rewrite as a series of observations with categorical explanatory variables, and
estimate with optim

Practically, high dimensional tables can be hard to estimate well, because the data
are spread out over more parameters (sparseness)

If any marginal statistics have zero sum, the corresponding parameters are not
estimable

What does this mean? Under independence, the row totals must all be positive

Given an interaction, some cells may need to be positive as well

Why? Although Poisson counts can be 0,
fitted values from exp(λ), λ > −∞ must be positive



Fitting LLM for 3D tables

As with 2D tables, we could run every specification and compare deviances or BICs

This quickly becomes tedious. We could automate the search (usually unwise). . .

Or start with a reasonable complex specification and see what terms can be
discarded cheaply

But don’t be too credulous of p-values when stepping through specifications

As with 2D tables, you can often code creative new variables that are potentially
more enlightening



Interpreting parameters

Interpreting the parameters of LLMs with interactions is more difficult

As with 2D tables, we could interpret the parameters as changes in log odds

(See Agresti for examples and discussion)

I would prefer fitted values, first differences, and graphical displays

Key step in modelling a high dimensional data set:
reducing the patterns in the data to simple, mostly accurate statements.

Just fitting an LLM is usually not sufficient;
you also need to extract summary results from it



Example: Military Deaths

We examine the deaths of US military personnel in 1999 (the example is from
Simonoff 2003)

The data come in a 5× 4× 2 table:

Gender Manner of death Army Navy Air Force Marines

Male Accident 158 96 54 69
Illness 56 30 21 6
Homicide 11 7 2 6
Suicide 51 32 13 7
Unknown 24 9 13 27

Female Accident 15 9 7 3
Illness 5 4 4 0
Homicide 5 2 0 1
Suicide 3 3 1 0
Unknown 1 2 2 2

Note there is no row for combat deaths (there weren’t any).
Extrapolating from this table to, say, 2004 would be dangerous.



Example: Military Deaths

We want to know if there are any service or gender related patterns in the different
death rates

Clearly, we need the base terms (more men than women in the data, and more Army
than Marines)

But what interactions should we include? Let’s explore combinations of

(S = Service, G = Gender, M = Manner of death)

Note: Simonoff judged models using a corrected AICc test
I’m taking his published AICs at face value

We’ll also look at BIC



Example: Military Deaths

The most complicated feasible model is

Model df G2 BIC AICc

(SM ,SG,MG) 12 5.5 −74.1 1.93

Can we simplify this?



Example: Military Deaths

The next step is to drop each two-way interaction in turn

Model df G2 BIC AICc

(SM ,SG,MG) 12 5.5 −74.1 1.93
(SM ,SG) 16 14.2 −92.0 1.99
(SM ,MG) 15 10.7 −88.8 0.63
(SG,MG) 24 61.4 −97.8 32.25

(What do these models mean substantively?)

Our atheoretical exploration has hit a snag:

AICc and BIC disagree about the best choice.

Simonoff was using AICc, and proceeded with (SM ,MG)

(He made the substantive conclusion that Gender was conditionally indep of Service)

We will follow his path for now



Example: Military Deaths

Next, we try making one of the variables jointly independent

Model df G2 BIC AICc

(M ,SG) 28 69.2 31.83 −116.6
(G,SM) 19 18.6 0.00 −107.5
(S,MG) 27 65.7 30.40 −113.4

Once again, AIC and BIC disagree.

Simonoff concluded (G,SM) was the best model. Implications:

• Men die more often than women, but of the same causes and in similar ratios by
service

• Cause of death varies by service (less suicide but more accidents in Marines)

BIC picks (M ,SG) by a hair. Were Simonoff’s conclusions wrong?

Or do the data even allow us to reject any of the options?



Example: Military Deaths

Neither: we’ve made two (related) common mistakes.

1. We’ve confused statistical and substantive significance

2. We’ve dichotomized results into “effect/no effect”

Effects could be confined to particular categories, or be very small but “significant”

Only way to tell is to look at the model predictions



Military deaths data (Females in Blue)

Army Navy Air Force Marines

Unknown

Suicide

Homicide

Illness

Accident

These are the observed counts. We’d like to reproduce interesting patterns here
or convince ourselves they were spurious



Military deaths: Fitted proportions under independence

Army Navy Air Force Marines

Unknown

Suicide

Homicide

Illness

Accident

This is the model under independence. It’s not horrible (interactions must be weak)
but maybe those weak interactions are still non-zero



Military deaths: Fitted proportions under (G,SM)

Army Navy Air Force Marines

Unknown

Suicide

Homicide

Illness

Accident

Simonoff’s preferred model: Holding Gender independent, we see the Marines have a
different pattern of deaths



Military deaths: Fitted proportions under (S,GM)

Army Navy Air Force Marines

Unknown

Suicide

Homicide

Illness

Accident

Looks like (G,SM) missed something important: Holding Service independent, we
see that women are at higher risk of homicide



Military deaths: Fitted proportions under (M ,GS)

Army Navy Air Force Marines

Unknown

Suicide

Homicide

Illness

Accident

Holding manner of death independent, we see women are at lower risk in the Marines
Note that no Marine women were victims of homicide



Example: Military deaths

The fitted models reveal two interesting interactions:

1. gender × manner: women are relatively more likely to be homicide victims

2. manner × service: fewer suicides in Marines, and more accidents

Otherwise, gender and service made little difference wrt manner of death

So substantively, (SM ,GM) may be the best model, or best place to start

Interestingly, this was the model BIC pushed for in round 2

Probably best to view this exercise as exploratory.

Follow up with models of homicide, accidents, etc,
perhaps getting data by subunits, or time series data

(Elephant in the middle of the room: “Unknown deaths”?
If these are mostly suicides, MS interaction mostly vanishes)



Concluding thoughts on tabular data

Advantages of tabular presentation:

• Compact presentation of data

• FWIW, allows stepwise investigation of all interactive models

• Compact presentation of result

• Sometimes, ambiguity b/w independent and dependent variables helps

Disadvantages of tabular presentation:

• Not all data fit. Never shoehorn continuous variables in (throwing away data)

• May discourage transformation of data/clear presentation of effect sizes

• Language of LLMs is increasingly unfamiliar in many fields

Remember there is always an equivalent approach using the standard Poisson or
NegBin setup

Remember to check for overdispersion


