My favorite coffee house at Harvard
Sawyer Buckminster Fuller
Assistant Professor, University of Washington, Seattle

Department of Mechanical Engineering
Room MEB 321
minster@uw.edu

Thanks for visiting! I direct the Autonomous Insect Robotics Laboratory at the University of Washington, which works to advance insect-scale robotics engineering and better understand the capabilities of insects. We are affiliated with NIFTI and UWIN.

How can you create a fully autonomous robot as small as a fly? This is an open challenge because scaling physics makes traditional approaches impractical. My research takes inspiration from insects to overcome this, producing operational insect-scale prototypes.

Exceptionally-qualified students interested in research at the intersection of robot design, control, and animal locomotion at insect scale are invited to join the laboratory. Applications are due to the UW Department of Mechanical Engineering (here) in December. Please make sure indicate your interest in the Fuller group in your application. Students in Aeronauts & Astronautics, Electrical Engineering, and Computer Science and Engineering are also invited to contact Prof. Fuller. Exceptional candidates seeking external postdoctoral fellowships (e.g. uWIN , NSF PFB, ICPRFP, McDonnell, WRF) are welcome to contact Prof. Fuller to discuss opportunities. Please include a resume in email correspondence. I may not be able to respond individually to all requests.

Both robots and animals find niches that exploit their specific strengths. For example, a giraffe's long neck may be cumbersome, but with it she can reach higher than any other animal. Our group is interested in the niches that will be occupied by insect-scale robots, measuring a few centimeters across. These robots' small size, low weight, agility, and low materials cost give them an advantage over larger robots for many tasks. For example, they could perform sensing in confined spaces, operate safely in close proximity to humans, or be deployed where mass is at a premium such as in outer space. But to realize these capabilities will require solving a number of miniaturization challenges. Many conventional robot and aircraft technologies like electromagnetic motors, GPS sensing, gliding flight, and even general-purpose microprocessors, cannot operate efficiently or effectively at insect scale. This is because dominant physical effects change as scale reduces.

The Autonomous Insect Robotics Laboratory's approach to solve these scaling problems is to look to solutions used by biology. For example, rather than gliding like birds, flies and bees continually flap their wings as an adaptation to the greater effect of viscous drag at small scale. More than that, insects have superlative capabilities that outclass current robots. Watch as a honeybee navigates to a flower and then deftly lands on it while buffeted by wind to get a sense of their abilities. These animals point the way toward future insect robotics that are not only small, but are additionally capable of navigating with speed and agility through complex, uncertain environments.

Basic flight mechanics and simple sensing systems have been demonstrated on insect robot prototypes, but there remain many unsolved problems. In particular, solutions to the following do not yet exist: performing control computations onboard, achieving sensor autonomy (no external sensors), and incorporating the power source onboard. Rivaling the performance of insects remains a distant target. I strongly believe that progress will be fastest by combining forward-engineering in robotics with reverse-engineering in biology. The results will extend beyond insect robots to anywhere there is a need for miniaturized and power-efficient sensing, power-efficient control systems, and more dynamic, robust, and lifelike robots. The effort may also give unique insights into the operation of the brain. Areas of particular interest to me are computation-constrained visual navigation, power sources, chemical plume localization, and the interplay of control and mechanics.

Outside of this area, my research has produced a frog-inspired hopping rover for interplanetary exploration for NASA with Paolo Fiorini and Joel Burdick and an ink-jet printer that can pattern nerve cells with Sebastian Seung and Shuguang Zhang at MIT. I also built the first ink-jet printer capable of fabricating electronic circuits and and 3D metal machines with Joseph Jacobson, inventor of E-ink electronic paper in the Amazon Kindle. I also have pages about past engineering projects and art.

About

  • A sub-page with a brief background and biography

Teaching What's New
robobee with ocelli Using insect-inspired vision to fly
We mounted a four-pixel sensor inspired by insect ocelli to the top of a fly-sized flying robot. This enabled the first flights at this scale stabilized using feedback only from sensors carried onboard. Without this sensor, the robot quickly tumbles because of dynamic instability.
Fuller, Karpelson, Censi, Ma, and Wood, J. Royal Society Interface, June 2014.
[PDF | video | Press: The Scientist Motherboard Science News]
flies Flies sense wind to stabilize flight
We used cameras to record how fruit flies respond to impulsive wind gusts while in flight. This revealed a multi-sensory mechanism to regulate groundspeed that combines vision and airspeed-sensing antennae.
Fuller, Straw, Peek, Murray, and Dickinson, Proc. Nat. Acad. Sci., April 2014.
[PDF | Press: Phys.org RedOrbit, Caltech News, Homepage PNAS Featured image]
flying robobee Free-flight of a fly-sized robot
As aircraft scale diminishes to that of insects, new effects begin to dominate because of scaling physics. We developed unconventional, scale-appropriate fabrication, aerodynamics, actuation, and control technology to realize the first controlled flight of a vehicle the size of a fly.
Ma, Chirarattananon, Fuller, and Wood, Science, May 2013.
[pdf,SI | video | Press: Wired New York Times Economist]
biomimetic antenna

Biomimetic wind sensing
A flight-weight sensor (yellow appendage at right) measures airspeed on a fly-sized flapping-wing robot, with Andreas Haggerty.
Fuller, Sands, Haggerty, Karpelson, Ma, and Wood, Int. Conf. on Robotics and Automation, 2013. [PDF]
robot Computation-limited visual motion control
Without GPS, tiny aerial vehicles will use vision to navigate confined spaces. Yet vision is typically computation intensive. We showed how a hovercraft robot can visually navigate a narrow corridor using only 20,000 multiply operations per second, compatible with the 10 mW avionics power budget of a fly-sized robot.
Fuller and Murray, Int. Conf. on Robotics and Biomimetics, 2011. [PDF | video]
ink-jet printed MEMS Ink-jet fabricated micro-machines
I developed the first ink-jet printer capable of building metal machines. Using a nanoparticle ink, I printed electrostatic motors (above, tip of a mechanical pencil shown for scale), cantilever actuators with hundreds of layers, and a high-conductivity resonant electric coil.
Fuller, Wilhelm, and Jacobson, J. Micro-electromechanical Systems, 2002. [PDF | video | Press: MIT Technology Review (cover)]