
The Python Control Systems Library (python-control)

Sawyer Fuller, Ben Greiner, Jason Moore, Richard Murray, René van Paassen, Rory Yorke
https://python-control.org

Abstract— The Python Control Systems Library (python-
control) is an open source set of Python classes and functions
that implement common operations for the analysis and design
of feedback control systems. In addition to support for standard
LTI control systems (including time and frequency response,
block diagram algebra, stability and robustness analysis, and
control system synthesis), the package provides support for
nonlinear input/output systems, including system interconnec-
tion, simulation, and describing function analysis. A MATLAB
compatibility layer provides an many of the common functions
corresponding to commands available in the MATLAB Control
Systems Toolbox. The library takes advantage of the Python
“scientific stack” of Numpy, Matplotlib, and Jupyter Notebooks
and offers easy interoperation with other category-leading
software systems in data science, machine learning, and robotics
that have largely been built on Python.

I. INTRODUCTION

The Python Control Systems Library (python-control) is a
Python package that implements basic operations for analysis
and design of feedback control systems. The package was
created in 2009, shortly after the publication of Feedback
Systems (FBS) by Åström and Murray [1]. The initial goal of
the project was to implement the operations needed to carry
out all the examples in FBS. A primary motivation for the
creation of the python-control library was the need for open-
source control design software built on the Python general-
purpose programming language. The “scientific stack” of
NumPy, SciPy, and Matplotlib provide fast and efficient array
operations, linear algebra and other numerical functions,
and plotting capabilities to Python users. Python-control
has benefited from this foundation, using, e.g., optimization
routines from SciPy in its optimal control methods, and
Matplotlib for Bode diagrams.

The scientific stack is fast-moving, however, and the
python-control package has had to keep up with changes.
One example is Matplotlib moving away from a 1990s
MATLAB-like plotting paradigm, characterized by global
state (e.g., the current figure) to one in which Matplotlib
library users are encouraged to more directly manage the
figures, axes, etc., currently in use. Another example is the
“soft” deprecation of NumPy’s matrix class, which was used
in python-control’s linear-algebra-heavy code.

The Python Control Systems Library is one of many open
source tools that are available on different platforms. The
GNU Octave application [3] is mainly compatible with MAT-
LAB’s command line interface, allowing rapid conversion of
code from MATLAB to an open source alternative. Scilab [7]
is a free and open source software for engineers and scien-
tists, also mainly compatible with MATLAB and provides

a rich, graphical interface. JuliaControl [4] is an emerging
open source effort that builds on the numerically robust Julia
language. The primary difference between these libraries is
the underlying programming language. Several other Python-
based packages were under development around the same
time as python-control was started, including packages by
Roberto Bucher [2] and Ryan Krauss [5], both of whom have
contributed ideas and code to the python-control library.

An early decision in developing the package was to make
use of the SLICOT library of functions [8], which provides a
set of FORTRAN subroutines for carrying out control com-
putations. The use of SLICOT was enabled by the existence
of the slycot library created by Enrico Avventi [9], which
provided a set of Python wrappers around the FORTRAN
code. By making use of slycot, it was possible to implement
many standard control functions quickly and easily. SLICOT
was designed to be highly efficient, numerically stable, and
accurate, allowing many python-control functions to inherit
these properties. As of 2019, slycot is available on Windows,
Mac, and Linux in binary form through the Anaconda soft-
ware distribution system and conda-forge [10]. This removes
the need to install and run a FORTRAN compiler, broadening
accessibility by simplifying the installation process for most
users.

We are encouraged by growing usage numbers and world-
wide adoption. According to pypistats.org, downloads
using pip were 47,302/month in May 2021. The condastats

tool provides historical download numbers for Anaconda;
they were 3686, 1969, 987, 315, and 71 for python-control
during the month of June the past five years, indicating
a download rate that is approximately doubling each year.
This growth is partially attributable to being open source,
which makes python-control accessible to people in industry,
hobbyists, and educators who may not want to pay for propri-
etary software. Users are also freely able to modify the code
to suit specific “long-tail” uses. But perhaps more important
to its success is that python-control is written in Python,
a general-purpose language that has become a de facto
language for science. Leading libraries in machine learning
and data science, e.g. Pandas, TensorFlow, and PyTorch, and
in robotics, e.g. Robot Operating System and the Robotics
Toolkit, are written in Python. This is complemented by wide
availability of purpose-built libraries for graphics and user
interfaces, to name a few. This facilitates easy migration
and interoperation between libraries and domains if desired.
Integration with Jupyter notebooks leverages elements of
the broader open source software community to allow for
a simple and intuitive design environment.

The remainder of this article provides a brief overview
of the python-control package. While we indicate the calling
structure of the code and include a few simple examples, our
intent here is not to provide a complete guide or tutorial to
using python-control, but rather to give a high level overview
that provides a flavor of what is available and documents
some of our design decisions. More detailed documentation
is available at http://python-control.org.

II. PACKAGE STRUCTURE AND BASIC
FUNCTIONALITY

The python-control package implements an inheritance
hierarchy of dynamical system objects. For the most part,
when two systems are combined in some way through a
mathematical operation, one will be promoted to the type
that is the highest of the two. Arranged in order from most
to least general, they are:
• InputOutputSystem: Input/output system that may be

nonlinear and time-varying
– InterconnectedSystem: Interconnected I/O system

consisting of multiple subsystems
– NonlinearIOSystem: Nonlinear I/O system
– LinearICSystem: Linear interconnected I/O sys-

tems
– LinearIOSystem: Linear I/O system

• LTI: Linear, time-invariant system
– FrequencyResponseData: Frequency response data

systems
– StateSpace: State space systems
– TransferFunction: Transfer functions

Each can be either discrete-time, that is, x(k + 1) =
f (x(k),u(k)); y(k) = g(x(k),u(k)) or continuous time, that
is, ẋ = f (x,u); y = g(x,u). A discrete-time system is created
by specifying a nonzero ‘timebase’ dt when the system is
constructed:
• dt = 0: continuous time system (default)
• dt > 0: discrete time system with sampling period dt
• dt = True: discrete time with unspecified sampling

period
• dt = None: no timebase specified

Linear, time-invariant systems can be interconnected using
mathematical operations +, -, *, and /, as well as the domain-
specific functions feedback, parallel (+), and series (*).
Some important functions for LTI systems and their descrip-
tions are given in Table I. Other categories of tools that are
available include model simplification and reduction tools,
matrix computations (Lyapunov and Ricatti equations), and
a variety of system creation, interconnection and conversion
tools. A MATLAB compatibility layer is provided that has
functions and calling conventions that are equivalent to
their MATLAB counterparts, e.g. tf, ss, step, impulse,

bode, margin, nyquist and so on. A complete list is avail-
able at http://python-control.org.

III. EXAMPLE
To illustrate the use of the package, we present an example

of the design of an inner/outer loop control architecture for

the planar vertical takeoff and landing (PVTOL) example
in FBS [1]. A slightly different version of this example is
available in the python-control GitHub repository.

We begin by initializing the Python environment with the
packages that we will use in the example:

pvtol-nested.py - inner/outer design for

vectored thrust aircraft

RMM, 5 Sep 2009 (updated 11 May 2021)

#

This file works through a control design and

analysis for the planar vertical takeoff and

landing (PVTOL) aircraft in Astrom and Murray.

import control as ct

import matplotlib.pyplot as plt

import numpy as np

We next define the system that we plan to control (see [1]
for a more complete description of these dynamics):

System parameters

m = 4 # mass of aircraft

J = 0.0475 # inertia around pitch axis

r = 0.25 # distance to center of force

g = 9.8 # gravitational constant

c = 0.05 # damping factor (estimated)

Transfer functions for dynamics

Pi = ct.tf([r], [J, 0, 0]) # inner loop (roll)

Po = ct.tf([1], [m, c, 0]) # outer loop (posn)

The control design is performed by using a lead compen-
sator to control the inner loop (roll axis):

Inner loop control design

#

Controller for the pitch dynamics: the goal is

to have a fast response so that we can use this

as a simplified process for the lateral dynamics

Design a simple lead controller for the system

k_i, a_i, b_i = 200, 2, 50

Ci = k_i * ct.tf([1, a_i], [1, b_i])

Li = Pi * Ci

We can now analyze the results by plotting the frequency
response as well as the Gang of 4:

Loop transfer function Bode plot, with margins

plt.figure(); ct.bode_plot(Li, margins=True)

plt.savefig(’pvtol-inner-ltf.pdf’)

Make sure inner loop specification is met

plt.figure(); ct.gangof4_plot(Pi, Ci)

plt.savefig(’pvtol-gangof4.pdf’)

Figures 1a and b show the outputs from these commands.
The outer loop (lateral position) is designed using a second

lead compensator, using the roll angle as the input:

Design lateral control system (lead compensator)

TABLE I: Sample functions available in the python-control package.
Frequency domain analysis:
sys(x[, squeeze]) Evaluate frequency response of an LTI system at complex frequenc(ies) x
sys.frequency_response(omega[, squeeze]) Evaluate frequency response of an LTI system at real angular frequenc(ies) omega
stability_margins(sysdata[, returnall, ...]) Calculate stability margins and associated crossover frequencies
phase_crossover_frequencies(sys) Compute frequencies and gains at intersections with the real axis in a Nyquist plot
bode_plot(syslist[, omega, plot, ...]) Bode plot for a system
nyquist_plot(syslist[, omega, plot, ...]) Nyquist plot for a system
gangof4_plot(P, C[, omega]) Plot the “Gang of 4” transfer functions for a system
nichols_plot(sys_list[, omega, grid]) Nichols plot for a system

Time domain analysis:
forced_response(sys[, T, U, X0, transpose, ...]) Simulated response of a linear system to a general input
impulse_response(sys[, T, X0, input, ...]) Compute the impulse response for a linear system
initial_response(sys[, T, X0, input, ...]) Initial condition response of a linear system
step_response(sys[, T, X0, input, output, ...]) Compute the step response for a linear system
step_info(sys[, T, X0, input, output, ...]) Compute step response characteristics
phase_plot(odefun[, X, Y, scale, X0, T, ...]) Phase plot for 2D dynamical systems

Other analysis functions and methods:
sys.dcgain() Return the zero-frequency (or DC) gain of an LTI system
sys.pole() Compute poles of an LTI system
sys.zero() Compute zeros of an LTI system
sys.damp() Compute natural frequency and damping ratio of LTI system poles
pzmap(sys[, plot, grid, title]) Plot a pole/zero map for a linear system
root_locus(sys[, kvect, xlim, ylim, ...]) Root locus plot
sisotool(sys[, kvect, xlim_rlocus, ...]) Sisotool style collection of plots inspired by MATLAB

Synthesis tools:
acker(A, B, poles) Pole placement using the Ackermann method
h2syn(P, nmeas, ncon) H2 control synthesis for plant P
hinfsyn(P, nmeas, ncon) H∞ control synthesis for plant P
lqr(A, B, Q, R[, N]) Linear quadratic regulator design
lqe(A, G, C, QN, RN, [, N]) Linear quadratic estimator design (Kalman filter) for continuous-time systems
mixsyn(g[, w1, w2, w3]) Mixed-sensitivity H-infinity synthesis
place(A, B, p) Place closed-loop poles

a_o, b_o, k_o = 0.3, 10, 2

Co = -k_o * ct.tf([1, a_o], [1, b_o])

Lo = -m * g * Po * Co

Compute real outer-loop loop transfer function

L = Co * Hi * Po

We can analyze the results using Bode plots, Nyquist plots
and time domain simulations:

Compute stability margins

gm, pm, wgc, wpc = ct.margin(L)

Check to make sure that the specification is met

plt.figure(); ct.gangof4_plot(-m * g * Po, Co)

Nyquist plot for complete design

plt.figure(); ct.nyquist_plot(L)

plt.savefig(’pvtol-nyquist.pdf’)

Step response

t, y = ct.step_response(T, np.linspace(0, 20))

plt.figure(); plt.plot(t, y)

plt.savefig(’pvtol-step.pdf’)

Figures 1c and d show the outputs from the nyquist_plot

and step_response commands (note that the step_response

command only computes the response, unlike MATLAB).

IV. SPECIALIZED FUNCTIONALITY

In addition to basic control functions and MATLAB com-
patibility, the Python Control Systems Library has some spe-
cialized functions that allow analysis of nonlinear feedback
control systems.

A. Input/output systems

Python-control supports the notion of an input/output sys-
tem in a manner that is similar to the MATLAB “S-function”
implementation. Input/output systems can be combined using
standard block diagram manipulation functions (including
overloaded operators), simulated to obtain input/output and
initial condition responses, and linearized about an oper-
ating point to obtain a new linear system that is both an
input/output and an LTI system.

An input/output system is defined as a dynamical system
that has a system state as well as inputs and outputs (either
inputs or states can be empty). The dynamics of the system
can be in continuous or discrete time. To simulate an
input/output system, the input_output_response() function
is used:

t, y = input_output_response(io_sys, T, U,

X0, params)

Here, the variable T is an array of times and the variable
U is the corresponding inputs at those times. The output
will be evaluated at those times, though the NumPy interp

10−1 100 101 102 103

10−2

100

102

M
ag

ni
tu

de

10−1 100 101 102 103

Frequency (rad/sec)

−180

−135

Ph
as

e
(d

eg
)

Gm = inf (at nan rad/s), Pm = 62.71 deg (at 19.69 rad/s)

(a) Inner loop, with margins

10−3

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

10−1 100 101 102 103

Frequency (rad/sec)

10−2

10−1

100

101

102

10−1 100 101 102 103

Frequency (rad/sec)

10−3

10−2

10−1

100

(b) Gang of 4 for inner loop

−60 −40 −20 0 20 40 60
Real axis

−60

−40

−20

0

20

40

60

Im
ag

in
ar

y
ax

is

(c) Nyquist plot for full system

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Step response for full system

Fig. 1: Sample outputs for PVTOL example.

function can be used to interpolate inputs at a finer timescale,
if desired.

An input/output system can be linearized around an equi-
librium point to obtain a state space linear system. The
find_eqpt() function can be used to obtain an equilibrium
point and the linearize() function to linearize about that
equilibrium point:

xeq, ueq = find_eqpt(io_sys, X0, U0)

ss_sys = linearize(io_sys, xeq, ueq)

The resulting ss_sys object is a LinearIOSystem object,
which is both an I/O system and an LTI system, allowing
it to be used for further operations available to either class.

Input/output systems can be created from state space LTI
systems by using the LinearIOSystem class:

io_sys = LinearIOSystem(ss_sys)

Nonlinear input/output systems can be created using the
NonlinearIOSystem class, which requires the definition of
an update function (for the right-hand side of the differential
or difference equation) and output function (computes the
outputs from the state):

io_sys = NonlinearIOSystem(updfcn, outfcn,

inputs=M, outputs=P, states=N)

More complex input/output systems can be constructed
by using the interconnect() function, which allows a

collection of input/output subsystems to be combined with
internal connections between the subsystems and a set of
overall system inputs and outputs that link to the subsystems:
steering = ct.interconnect(

[plant, controller], name=’system’,

connections=[[’controller.e’, ’-plant.y’]],

inplist=[’controller.e’], inputs=’r’,

outlist=[’plant.y’], outputs=’y’)
In addition to explicit interconnections, signals can also be
interconnected automatically using signal names by simply
omitting the connections parameter.

Interconnected systems can also be created using block
diagram manipulations such as the series(), parallel(),
and feedback() functions. The InputOutputSystem class
also supports various algebraic operations such as * (series
interconnection) and + (parallel interconnection).

B. Describing functions

For nonlinear systems consisting of a feedback connection
between a linear system and a static nonlinearity, it is possi-
ble to obtain a generalization of Nyquist’s stability criterion
based on the idea of describing functions. The basic concept
involves approximating the response of a static nonlinearity
to an input u = Ae jωt as an output y = N(A)(Ae jωt), where
N(A) ∈ C represents the (amplitude-dependent) gain and
phase associated with the nonlinearity.

Stability analysis of a linear system H(s) with a feedback
nonlinearity F(x) is done by looking for amplitudes A and

−4 −3 −2 −1 0 1 2 3 4
Real axis

−4

−3

−2

−1

0

1

2

3

4
Im

ag
in

ar
y

ax
is

 0.63 @ 0.31

 0.87 @ 1.2

Fig. 2: Polar plot of the frequency response of a describing
function

frequencies ω such that

H(jω)N(A) =−1

If such an intersection exists, it indicates that there may be a
limit cycle of amplitude A with frequency ω . An example is
shown in Figure 2. Describing function analysis is a simple
method, but it is approximate because it assumes that higher
harmonics can be neglected. For more information, see [1].

C. Optimization-based control

The optimal module provides support for optimization-
based controllers for nonlinear systems with state and input
constraints.

The optimal control module provides a means of com-
puting optimal trajectories for nonlinear systems and im-
plementing optimization-based controllers, including model
predictive control. The basic optimal control problem is to
solve the optimization

min
u(·)

∫ T

0
L(x,u)dt +V

(
x(T)

)
subject to the constraint

ẋ = f (x,u), x ∈ Rn, u ∈ Rm.

Constraints on the states and inputs along the trajectory and
at the end of the trajectory can also be specified:

lbi ≤ gi(x,u)≤ ubi, i = 1, . . . ,k
ψi(x(T)) = 0, i = 1, . . . ,q.

The python-control implementation of optimal control fol-
lows the basic problem setup described here, but carries out
all computations in discrete time (so that integrals become
sums) and over a finite horizon.

To describe an optimal control problem we need an
input/output system, a time horizon, a cost function, and
(optionally) a set of constraints on the state and/or input,
either along the trajectory and at the terminal time. The

optimal control module operates by converting the optimal
control problem into a standard optimization problem that
can be solved by scipy.optimize.minimize(). The optimal
control problem can be solved by using the solve_ocp()

function:

res = obc.solve_ocp(sys, horizon, X0,

cost, constraints)

The sys parameter should be an InputOutputSystem and the
horizon parameter should represent a time vector that gives
the list of times at which the cost and constraints should be
evaluated.

The cost function has call signature cost(t, x, u) and
should return the (incremental) cost at the given time, state,
and input. It will be evaluated at each point in the horizon
vector. The terminal_cost parameter can be used to specify
a cost function for the final point in the trajectory.

The constraints parameter is a list of constraints similar
to that used by the scipy.optimize.minimize() function.
Each constraint is a tuple of one of the following forms:

(LinearConstraint, A, lb, ub)

(NonlinearConstraint, f, lb, ub)

For a linear constraint, the 2D array A is multiplied by a
vector consisting of the current state x and current input u

stacked vertically, then compared with the upper and lower
bound. This constraint is satisfied if

lb <= A @ np.hstack([x, u]) <= ub

A nonlinear constraint is satisfied if

lb <= f(x, u) <= ub

By default, constraints are taken to be trajectory con-
straints holding at all points on the trajectory. The
terminal_constraint parameter can be used to specify a
constraint that only holds at the final point of the trajectory.

The return value for solve_ocp() is a bundle object that
has the following elements:

res.success: True if solved successfully
res.inputs: optimal input
res.states: state trajectory (if return_x == True)
res.time: copy of the time horizon vector

In addition, the results from scipy.optimize.minimize()

are also available.

D. Differentially flat systems

A nonlinear differential equation of the form

ẋ = f (x,u), x ∈ Rn, u ∈ Rm

is differentially flat if there exists a function α such that

z = α(x,u, u̇ . . . ,u(p))

and we can write the solutions of the nonlinear system as
functions of z and a finite number of derivatives

x = β (z, ż, . . . ,z(q))

u = γ(z, ż, . . . ,z(q)).
(1)

For a differentially flat system, all of the feasible trajectories
for the system can be written as functions of a flat output
z(·) and its derivatives. The number of flat outputs is always
equal to the number of system inputs. See FBS [1] for a
slightly longer (but still brief) description of differentially
flat systems.

Differentially flat systems are useful in situations where
explicit trajectory generation is required. Since the behavior
of a flat system is determined by the flat outputs, we can
plan trajectories in output space, and then map these to
appropriate inputs. Suppose we wish to generate a feasible
trajectory for the nonlinear system

ẋ = f (x,u), x(0) = x0, x(T) = x f .

If the system is differentially flat then

x(0) = β
(
z(0), ż(0), . . . ,z(q)(0)

)
= x0,

x(T) = γ
(
z(T), ż(T), . . . ,z(q)(T)

)
= x f ,

and we see that the initial and final condition in the full state
space depends on just the output z and its derivatives at the
initial and final times. Thus, any trajectory for z that satisfies
these boundary conditions will be a feasible trajectory for the
system, using equation (1) to determine the full state space
and input trajectories.

The control.flatsys package contains a set of classes
and functions that can be used to compute trajectories for
differentially flat systems. It allows both “simple” trajectory
generation (no constraints, no cost function) as well as
constrained, optimal trajectory generation (with the same
basic structure as the optimal control problems described
in the previous section). The primary advantage of solving
trajectory generation problems using differentially flat struc-
ture, when it applies, is that the all operations are algebraic
in nature, with no need to integrate the differential equations
describing the dynamics of the system. This can substantially
speed up the computation of trajectories.

A differentially flat system is defined by creating an object
using the FlatSystem class, which has member functions
for mapping the system state and input into and out of flat
coordinates. The point_to_point() function can be used to
create a trajectory between two endpoints, written in terms of
a set of basis functions defined using the BasisFamily class.
The resulting trajectory is returned as a SystemTrajectory

object and can be evaluated using the eval() member
function.

To create a trajectory for a differentially flat system,
a FlatSystem object must be created. This is done by
specifying the forward and reverse mappings between the
system state/input and the differentially flat outputs and their
derivatives (“flat flag”).

The forward() method computes the flat flag given a state
and input:

zflag = sys.forward(x, u)

The reverse() method computes the state and input given the
flat flag:

0 5 10 15 20 25 30 35 40
x [m]

−2.5
0.0
2.5

y
[m

]

0.0 2.5
Time t [sec]

−2

0

2

y
[m

]

0.0 2.5
Time t [sec]

0.0

0.1

0.2

th
et

a
[ra

d]

0.0 2.5
Time t [sec]

9.0

9.5

10.0

10.5

11.0

v
[m

/s
]

0.0 2.5
Ttime t [sec]

−0.05

0.00

0.05

0.10

δ
[ra

d]

Fig. 3: Trajectory generation using differential flatness.

x, u = sys.reverse(zflag)

The flag z̄ is implemented as a list of flat outputs zi and their
derivatives up to order qi:

zflag[i][j]= z(j)
i

The number of flat outputs must match the number of system
inputs.

For a linear system, a flat system representation can be
generated using the LinearFlatSystem class:

sys = control.flatsys.LinearFlatSystem(linsys)

For more general systems, the FlatSystem object must be
created manually:

sys = control.flatsys.FlatSystem(nstate, ninputs,

forward, reverse)

In addition to the flat system description, a set of basis
functions φi(t) must be chosen. The FlatBasis class is used
to represent the basis functions. A polynomial basis function
of the form 1, t, t2, . . . can be computed using the PolyBasis

class, which is initialized by passing the desired order of the
polynomial basis set:

polybasis = control.flatsys.PolyBasis(N)

Once the system and basis function have been defined,
the point_to_point() function can be used to compute a
trajectory between initial and final states and inputs:

traj = control.flatsys.point_to_point(

sys, Tf, x0, u0, xf, uf, basis=polybasis)

The returned object has class SystemTrajectory and can
be used to compute the state and input trajectory between
the initial and final condition:

xd, ud = traj.eval(T)

where T is a list of times on which the trajectory should be
evaluated (e.g., T = numpy.linspace(0, Tf, M)).

The point_to_point() function also allows the specifica-
tion of a cost function and/or constraints, in the same format
as solve_ocp(). An example is shown in Figure 3.

V. DISCUSSION

The python-control package provides a variety of opera-
tions for the analysis and design of feedback control systems.
In this section we discuss some of the issues, uses, and future
directions for the library.

A. Experience using python-control in education

In 2013, the Aerospace Engineering department at the
Delft University of Technology transitioned to teaching
Python in the first bachelor year. The second-year course
in control theory, taught by Dr. René van Paassen, had
been using MATLAB for control system design. To provide
students with an opportunity to continue their use of Python,
provisions were made to accommodate the python-control
package in the course. The primary difficulty at the time was
installation of python-control and Slycot, which was needed
for introducing state space systems. This was initially solved
by creating and providing a Windows package to students
using Windows, and build and installation instructions for
students who wished to use other operating systems. Students
had, and still have, the option to choose between using
MATLAB and Python; initial adoption of Python and python-
control was in the order of 25%. However, in later years, with
an increasing number of other courses and assignments in the
Bachelor program also transitioning to Python from a variety
of programming options (such as spreadsheets and Visual
Basic), and the increased ease of installation by integration
of python-control and slycot in the conda-forge ecosystem,
has led to Python and python-control becoming the de facto
choice for most students.

In 2021, Python-control’s support for discrete-time sys-
tems became sufficient to offer it as an alternative to
MATLAB in the University of Washington’s Digital Control
Systems Design course taught by Dr. Sawyer B. Fuller. Of 29
enrolled students, 11 responded to an anonymous survey at
the middle of the quarter. Six of the respondents (55%) opted
to use Python-control rather than MATLAB where possible.
Student satisfaction with the software was encouraging: of
the six Python-control users, five indicated they would either
“definitely” or “probably” use it for their next control design
project if the option was available. Reasons given by these
students for using Python-control included that “Python is
more versatile and free,” and “python can be used more easily
with [the Robot Operating System], which is used in most
things I am interested in.” One student was positive about
the package’s usability: “The error messages for python were
more helpful and well-explained than I thought they would
be.” A key limiting factor for Python-control was the lack
of an alternative to Simulink for simulating interconnected
systems. PysimCoder [6], introduced in 2019, is one open-
source graphical interface that may satisfy this deficiency.

B. Python versus compiled languages for control design

The interpreted nature of Python has facilitated the sci-
entific Python stack (NumPy, SciPy, Matplotlib, and Jupyter
Notebooks), which are well-suited to a control design library.
It is natural to ask whether a compiled language could be

better. Compiled languages like C can execute as much as
100 times faster than Python. Currently, however, the flexi-
bility and fast iteration afforded by an interpreted language
provide distinct advantages. Many control design tasks, such
as PID design, can be simulated in less than a second
and therefore are more limited by the speed of the user
interface than computation time. In fact, the task of executing
Python itself and the python-control is also completed within
that second. This short period, which is characteristic of
interpreted languages, facilitates rapid, exploratory cross-
domain investigations that are the cornerstone of design.
No compilation also greatly aids development of the library
itself. Furthermore, execution speed is faster than a 100-fold
reduction because most numerical computation is performed
in low-level compiled libraries such as Numpy. Further
speedups are possible by compiling heavily-executed sec-
tions using Cython or Numba. Julia is an emerging numerical
language that includes a just-in-time (JIT) compiler. This
requires compiling at startup, requiring 10–30 seconds to
plot a system step response in ControlSystems.jl [4], after
which execution runs at the speed of a compiled language. As
compilation time reduces and functionality expands in Julia,
this tradeoff may become more advantageous, especially for
compute-heavy nonlinear control (Section IV).

C. Future plans
Desired future functionality includes support for time

delays and a SIMULINK-like graphical user environment
(building on pysimCoder [6]) available on platforms other
than Linux. There is also a nascent effort to build a symbolic
version of the library that will work with SymPy.

Acknowledgements. The following individuals have con-
tributed to the python-control package (individuals with 10
or more commits to the repository, ordered by the number
of commits): Richard Murray, Ben Greiner, Sawyer Fuller,
Clancy Rowley, René van Paassen, Rory Yorke, David de
Jong, Anthony De Bortoli, [gonmolina], Mikhail Pak, James
Goppert, Arnold Braker, and Scott Livingston.

REFERENCES

[1] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008. Available
at http://fbsbook.org.

[2] R. Bucher. Practical experiences with Python and Linux RT at the
SUPSI laboratory. IFAC-PapersOnLine, 52(9):133–138, 2019.

[3] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave
version 6.2.0 manual: a high-level interactive language for numerical
computations, 2021.

[4] Controlsystems.jl. http://juliacontrol.github.io/
ControlSystems.jl/latest/. Accessed: 2021-05-14.

[5] R. W. Krauss and W. J. Book. A Python module for modeling
and control design of flexible robots. Computing in Science and
Engineering, 9(3):41–45, 2007.

[6] PysimCoder – SIMULINK like editor for Python. http://
robertobucher.dti.supsi.ch/python/pysimcoder. Accessed: 2021-
05-14.

[7] Scilab. https://www.scilab.org. Accessed: 2021-05-13.
[8] SLICOT – A subroutine library in control and systems theory. http:

//slicot.org. Accessed: 2021-05-14.
[9] Slycot – Python wrapper for SLICOT. https://github.com/

python-control/Slycot. Accessed: 2021-05-14.
[10] Slycot conda-forge distribution. https://anaconda.org/

conda-forge/slycot. Accessed: 2021-05-14.

