
Rotating the heading angle of underactuated flapping-wing flyers by
wriggle-steering

Sawyer B. Fuller⇤, John P. Whitney†, and Robert J. Wood⇤

Abstract— The Harvard Robobee is a fly-sized aerial vehicle
that can perform controlled flight maneuvers. But this robot
is unable to control its yaw or heading angle to a desired
value. Motivated by this deficiency, we propose a new method to
produce yaw-axis rotations. Termed wriggle-steering, it consists
of driving body oscillations around its two other rotational axes.
Because no torque is applied directly around the controlled
axis, it therefore constitutes an alternative control method for
under-actuated designs. Oscillations are driven around pitch
and roll axes at the same frequency but 90 degrees out of
phase, resulting in a small change in yaw angle after each
cycle because of nonlinearity in attitude dynamics. We propose
two wing kinematics perturbations that produce the necessary
actuation. The predictions are validated with a quasi-steady
aerodynamics model, free-body simulations, and flight tests on a
fly-sized hovering aerial robot. The results suggest that wriggle-
steering can save mass and reduce complexity by eliminating the
need for additional actuators in flapping-wing robots or other
aircraft.

I. INTRODUCTION

Flapping-wing hovering flight, as performed by humming-
birds and flies, requires the wings to undergo a complicated
trajectory, moving forward and backward while rotating at the
correct time to optimize lift [1]. As the wings move, typically
with a steep angle of attack, a vortex appears at the leading
edge that adds lift [2]. During translatory motion, this vortex
eventually detaches from the wing, causing a loss in lift that
is known as stall. But in flapping-wing flight, the wings rotate
around a vertical axis, causing the vortex to remain attached,
maintaining lift [3]. The resulting unsteady, time-varying
fluid flow patterns contrast with the typically steady-state
flows assumed by fixed-wing aircraft and rotorcraft. To drive
these motions, intricate mechanisms are required, both in
biological organisms [4] and their man-made counterparts [5],
[6], [7]. Flapping-wing flight therefore imposes a burden of
mechanical complexity relative to fixed-wing or propellor
driven craft, which has limited their application. But in return,
flapping wings can produce an expanded repertoire of forces
and torques for use in flight control. Theoretical studies
indicate that, in addition to torques about three orthogonal
axes, flapping wings can additionally produce thrusts along
these axes as well [8], [9], permitting fully actuated flight
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Fig. 1. A microrobotic fly such as the Harvard Robobee (top, U.S. Quarter
coin shown in background for scale), or other flapping-wing or hovering
flying robots may not be able to directly actuate heading or yaw angle. We
propose that motion can be controlled around this axis by using cyclic body
motions about other axes termed wriggle-steering. (middle) Illustration of
sequence of motions. The body of the robot is represented as a rectangular
solid, with wings shown in the leftmost image. Starting from the left, the
vehicle rotates by an angle ✓e1 around its x- or roll-axis (dashed line), then
by ✓e2 around its new (rotated) y- or pitch axis, and then reverses these two
rotations about its x- and y-axes. (bottom) As shown in the projection of its
base, this sequence results in a small rotation ✓e3 around its body z- or yaw
axis (the initial orientation of its axes are shown as dashed lines).

motions. Flapping wings may therefore enable new types
of aircraft that have an expanded flight envelope relative to
existent fixed-wing vehicles and rotorcraft.

By measuring wing kinematics, studies have shown that
insects employ a number of different perturbations to their
baseline wing kinematics to control flight. For example,
fruit flies structure their flight into bouts of forward motion
punctuated by rapid yaw turns known as body saccades. The
saccades are produced by a combination of changing the angle
of stroke deviation as well as wing stroke amplitude [11]
(For a definition of wing stroke parameters and body axis
conventions, see Figures 1 and 2). Flies can also produce
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Fig. 2. Kinematic description of wing motion for hovering flapping-wing
animals and robots. Definitions: ' is the wing stroke angle, ✓ is the stroke
deviation angle, and  is the angle of attack. Figure used with permission
from [10].

forward thrust through a “paddling” mode that consists of
altering the angle of attack on the upstroke relative to the
downstroke [12]. And the precise timing of angle of attack
rotation at stroke reversal can alter forces as well [1].

These wing stroke strategies have inspired robotic counter-
parts at similar scales. As a robot’s scale diminishes, machine
elements such as motors, bearings, and fixed-wing airfoils
become inefficient as they get smaller due to the physics
of scaling: surface effects increasingly dominate Newtonian
forces [13] and viscous friction increases. Thus the mecha-
nisms in flapping-wing flight becomes more favorable than
rotor-powered flight as scale diminishes. For example, the
smallest robot to demonstrate controlled flight, the 80 mg
RoboBee [6], is powered by a pair of flapping wings. This
robot actuates its flight using independently-actuated wings:
roll torque is produced by altering the amplitude of the left
wing stroke relative to the right wing; pitch torque is produced
by moving the mean wing stroke angle forward or backward
of the center of mass (CM) [14], [6]. A larger flyer, the 19 g
Nano Hummingbird, used a different approach, moving the
location of a boom at the base of the wing to alter its angle
of attack, thereby producing control torques about all three
axes [5]. Other strategies have included moving the location
of wing pivot points [15], actuating the stroke deviation
angle [10], and altering the neutral angle of the flexure hinge
governing the wing’s neutral angle of attack [7].

As the space of design and control strategies is further
explored, it may be either difficult or impossible for a given
design to actuate certain degrees of freedom using available
mechanisms. For example, the robotic fly presented in [14],
when tethered to a sensitive torque meter, was able to produce
measurable yaw or z-axis torques by driving the wings with a
“split-cycle” signal. This produced wing kinematics in which

the downstroke was faster or slower than the upstroke, altering
the relative strength of aerodynamic drag during each of these
phases, producing a net torque. However, later flight tests
revealed that the magnitude of torque that could be achieved
was insufficient to overcome the disturbance effects of air
currents in the room and the uncertain conformation of the
wire tether. Accordingly, the controller implemented in [6]
was designed to be able to hover regardless of the robot’s
orientation and yaw angular velocity. It included a component
that applied a yaw-axis torque using the split-cycle driving
signal to add a damping effect to reduce yaw angular velocity,
but the absolute heading or yaw angle was not regulated
to a specific value. But for many reasons, it is desirable to
control the heading or yaw angle of the robot. For example,
landing may be facilitated by having the legs in a certain
orientation, or a sensor must be aimed in a certain direction,
or computational complexity of the flight controller may be
reduced if the yaw rate is low.

In this work we propose a new mechanism to perform
rotations about the yaw or heading angle of a hovering vehicle
or animal. The basic principle is that instead of directly
applying a torque about the actuated axis, the entire body
of the robot is rotated by a small amount (⌧ 90

�) around the
other two orthogonal axes in a cyclical fashion. The sequence
of rotations is as follows: the body first rotates around its
roll or x-axis by a small angle, then about its new pitch
or y-axis by a similarly-sized small angle, followed by a
negative x-axis roll rotation of equal magnitude, and then
a negative y-axis pitch rotation. After this sequence, the body
has returned to an upright orientation, but its rotation about
its yaw axis has changed by a small amount (Figure 1). One
can get an intuitive sense of this process in computer aided
design software (CAD) by engaging the “rotate view” mode,
and moving the mouse in circles on the screen: in addition
to wobbling, the object in view slowly rotates around an axis
intersecting near the center of the circular motions.

To our knowledge, the approach described here has not
previously been proposed. A key differentiating factor is that
here we rely on the ability of the body to rotate feely in space
around other axes in order to perform the desired rotation.
This was inspired by [16], [17] which suggested a general
process for deriving trajectories for nonlinear systems with
nonholonomic constraints by driving them with sinusoids. A
cyclic sequence of motions is known as a Lie bracket, and
can be used to drive a nonlinear system infinitesimally along a
desired path. We use the term wriggle because of its similarity
to the actuation mode of the same name proposed in that work
to steer a car model.

In Section II we describe the theoretical kinematic motions
of the vehicle necessary to produce the desired motion. We
use a numerical model of attitude dynamics to compare yaw
turning rates for different frequencies and amplitudes. In
Section III we use a quasi-steady aerodynamic model of wing
forces on the Robobee to simulate two proposed types of
wing kinematics that could produce the necessary pitch and
roll torques. The first occurs at the flapping frequency, while



the second operates at a lower frequency, producing forces on
a stroke-averaged basis to produce pitch and roll torques. In
Section IV, we describe the 6 degree-of-freedom (DOF) free-
body model of the Robobee’s body dynamics, and in Section
V simulate the results of the aerodynamic torques acting on it.
The results show that yaw rotation is produced as predicted.
In Section VI we validate the findings with free-flight tests of
a hovering Robobee, finding that the mean yaw rate closely
matches the prediction of the model. We conclude with design
implications for future flapping-wing robotic prototypes.

II. KINEMATICS MODEL

The basic principle is purely kinematic and is illustrated
in Figure 1. A series of small roll (x-axis) and pitch (y-
axis) motions are made to steer motion around yaw (z-axis).
Analytically, we can describe the result of a single cycle using
a rotation matrix R 2 R3⇥3 to represent orientation. For a
vector v0 given in body-attached coordinates, v = Rv0 is the
vector given in world coordinates. For infinitesimal rotations
✏1 and ✏2 around x and y axes, respectively, the result is R =2

4
1 �✏1✏2 0

✏1✏2 1 0

0 0 1

3

5, neglecting higher-order terms (computed

using axis-angle rotations in python’s sympy package).
A more realistic scenario requires that these motions be

smooth, minimizing the magnitude of required torques. This
suggests sinusoidal oscillations [16]. These can be driven with
a sinusoidal torque

⌧ c = T0

2

4
sin(2⇡Ft)

sin(2⇡Ft+ �)

0

3

5
, (1)

where T0 is the torque oscillation amplitude, which must be
less than or equal to the maximum possible torque that can
be achieved by the vehicle’s wings. The quantity F is the
frequency of the driving oscillations, t is time, and � is the
phase offset. Note that the torque about the z-axis is zero.

To understand how these torques map to body motions,
consider a dynamic model of the attitude dynamics of a
flapping-wing flyer, parameterized by Euler Angles. The
attitude is represented by an array of three angles ✓e 2 R3

and is obtained by first rotating by an angle ✓e3 (yaw) around
the body z-axis, then by ✓e2 (pitch) around the new body
y-axis, and then by ✓e1 (roll) around the new body x-axis.
This representation has singularities at extreme attitudes but
is convenient to represent motion in the neighborhood of a
certain attitude. Its dynamics can be written as

˙✓e = W(✓e)!, (2)
J ˙! = ⌧ � ! ⇥ J!, (3)

where ! 2 R3 is the angular velocity vector, ⌧ 2 R3 is
a torque applied to the body by aerodynamic forces and
control torques generated by the wings, and J 2 R3⇥3 is the
matrix of the mass moment of inertia given in body-attached
coordinates. The quantity W(✓e) is a matrix that relates the

angular velocity ! to the rate of change in Euler Angles.
Rewriting equation (2) in terms of these coordinates gives
2

4
˙
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˙
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˙

✓e3

3

5
=
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(4)
The kinematic behavior can be understood using a simplifi-

cation in which the inertia matrix is identity, J = I, so that the
term ! ⇥ J! = ! ⇥ (I!) = ! ⇥ ! = 0. Then Equation (3)
reduces to ˙! = ⌧ , and for zero initial conditions gives

! =

T0

2⇡F

2

4
cos(2⇡Ft)

cos(2⇡Ft+ �)

0

3

5
. (5)

We analyze the resulting motion by numerically integrating
Equations (4) and (5) with a fixed-step time increment of 0.1
ms with a � = 90º phase offset between !1 and !2. Figure 3
(and video) shows the results of simulations. Oscillating !
inputs cause the two Euler Angles ✓e1 and ✓e2 to oscillate
cyclically around a mean value of zero so that the body
remains upright. Results show that a), for a given amplitude
of oscillations in ✓e1 and ✓e2, a higher frequency results
in a higher cycle-averaged rate of yaw rotation, ˙

✓e3, b)
for a constant amplitude of ! oscillations (= T0/2⇡F in
Equation (5)), the amplitude in oscillations of ✓e1 and ✓e2

increases, resulting in larger ˙

✓e3, and c) that ˙

✓e3 can be varied
by varying the magnitude of the oscillations about one of the
two axes. The simulation also confirmed (data not shown)
that ˙

✓e3 is highest for � = 90

�, falling to zero at � = 0

� and
� = 180

� (in the latter two cases, ✓e3 varies in time, but its
stroke-averaged value and time-derivative remain zero).

III. AERODYNAMICS MODEL AND SIMULATIONS

With a demonstration of the operation of the basic kine-
matics, we now turn to how to generate the required torques
about the pitch and roll axes by altering wing motions relative
to baseline hovering kinematics.

1) Oscillating at the flapping frequency: At the flapping
frequency, note that the flapping wings themselves produce
an oscillating pitch torque. This is because drag produced by
their forward-backward motion acts at a distance above the
center of mass (CM). The free-body dynamics simulations
described below suggest the amplitude of ✓e2 oscillations is
about 1� for the robot fly considered here. The flapping fre-
quency of this vehicle is 120 Hz, which is far below its ~3 Hz
unstable natural mode predicted for body oscillations [18],
suggesting that wing motion should not excite its natural
mode.

To achieve wriggling, roll oscillations must occur at about
a 90

� phase difference relative to pitch oscillations. Be-
cause basic aerodynamics suggest that lift and drag typically
occur in phase with one another for forward motion, we
instead consider incorporating vertical (z-axis) motion into
the wing kinematics. Previously, a mechanism was proposed
and demonstrated that could actuate the stroke deviation angle
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Fig. 3. Kinematics of wriggle-steering. Motions of the body attitude Euler Angles ✓e were computed from a numerical simulation of Equation (4) driven
by the sinusoid input in ! given by Equation (5). In all cases, pitch and roll oscillations are offset by � = 90� phase. (top) If the amplitude of body rotations
✓e1 and ✓e2 are held constant, a higher oscillation frequency F in ! results in a higher cycle-averaged rate of change in yaw angle, ✓̇e3. Examples are
plotted for frequencies F of 60 Hz (blue), 120 Hz (red), and 240 Hz (green). (middle) For oscillations with a fixed torque amplitude T0 (Equation (1)),
corresponding to a fixed amplitude in body angular velocity ! oscillations (Equation (5)), lower frequency results in a larger amplitude oscillations in ✓e1
and ✓e2, resulting in a higher ✓̇e3. Examples are plotted for oscillations with ! amplitude of 1000�/sec for frequencies F of 60 Hz (green), 120 Hz (red),
and 240 Hz (blue). (bottom) Given a constant pitch oscillation angle amplitude, yaw rate can be varied by modulating the magnitude of roll oscillations.
Examples are plotted for a pitch amplitude of 1000�/s, and roll amplitudes of 1000�/s, 500�/s, and 0�/s.

✓ of a microrobotic fly, in addition to the necessary stroke
angle, by adding an extra piezo actuator [10]. Figure 4 shows
the resulting wing kinematic perturbation: the stroke plane
angle ✓ oscillates at the same frequency as wing flapping so
that the wings move up and down as they move front to back.
In [10], the oval stroke pattern was found to be energetically
less efficient at generating lift than other wing kinematics, but
we note here that it is ideal for producing wriggling because
the resulting vertical wing motion produces roll torques out
of phase with stroke-induced pitch torques.

2) Quasi-steady aerodynamics simulation: To demonstrate
the ability to produce the necessary actuation mode, the
proposed driving wing kinematics were simulated in a quasi-
steady aerodynamic model that includes passive flexion of
the elastic flexure around which the wing’s angle of attack
is allowed to rotate during wing motions [19]. This model,
which estimates resulting forces and torques, was validated
on experimental force data taken from flapping wings, and
is based on the characteristics of the wing and hinge of the
vehicle in [6]. Figures 5 and 6 show the resulting body torques
arising out of the “flat” and “oval” kinematics, respectively.
The torque produced by “oval” kinematics has a fundamental
harmonic in roll torque that is 90º out of phase from pitch
torque, as desired. The magnitude of the roll torque can be
altered by varying the size of the stroke angle deviation,
providing a means for varying ˙

✓e3.
3) Oscillating below flapping frequency: We now consider

oscillations driven at lower frequency, driven by torques that

flat
upstroke

downstroke

U-shaped

oval figure-of-eight

0

0

+φ

-φ
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+θ

-θ

ψ

Fig. 4. Proposed wing kinematics that generate a profile of roll torques
necessary to induce wriggling at the flapping frequency. An “unwrapped”
distal viewpoint from the tip of the wing (As in Figure 2B) shows lines that
represent the angle of attack of the wing, with a dot denoting the leading edge.
In the baseline “flat” kinematics (top), the leading edge of the wings remains
in a plane, so that the stroke deviation angle ✓ remains a constant zero. With
“oval” kinematics (bottom), the stroke deviation angle varies up and down at
the same frequency as the flapping frequency. The up-and-down motion adds
a net roll torque, particularly around the moment of stroke reversal. Figure
used with permission from [10].

are produced on a stroke-averaged basis. The robot shown in
Figure 1 has a pair of independently-actuated wings that can
produce orthogonal stroke-averaged pitch and roll torques.
Following [6], which used the simulation derived in [19],
we derive a simplified numerical linearization to provide a
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Fig. 5. Wing kinematics (top) and resulting torques (bottom) for the “oval”
trajectory in shown in Figure 4. The amplitude of stroke deviation ✓ is 7.5º
(15º peak-to-peak). The resulting torque from the wings (black, solid line) is
compared against the ideal (black, dashed line) given by Equation (1). Large
deviations from the ideal roll torque profile at phases of 0� and 180� occur
at time points when the angle of attack of the wing,  , is near zero, that is,
when it is near vertical. At these phases, the cross-sectional area exposed to
the flow is very small, leading to small forces and therefore torque during
the wing’s predominantly z-axis motions at that time. Nevertheless, this wing
motion produces a fundamental harmonic in roll torque at the desired 90�
phase shift relative to pitch torque.

mapping between desired torques and the necessary wing
kinematics to produce them. Given stroke kinematics in which
� is the amplitude of wing stroke cycles '(t), �� is the
difference in wing stroke amplitude between left and right
wings, and �m is the shift forward or backward in mean
wing stroke angle, then the lift force fl and control torques
⌧c1 and ⌧c2 follow the following relation to first order:

fl = ↵l�� �l

⌧c1 = (↵1�� �1)��

⌧c2 = (↵2�� �2)�m. (6)

The ↵ and � quantities are constants derived from nu-
merical linearization. The control signal �� produces a roll
torque by changing the relative amplitudes of the left and right
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Fig. 6. Wing kinematics (top) and resulting torques (bottom) for the “flat”
trajectory shown in Figure 4, in which stroke deviation remains at ✓ = 0.
No net roll torque arises.

wing strokes, producing a differential lift force. Changing �m

produces a pitch torque by moving the “mean wing stroke
angle”–the time-averaged angle of the forward-backward mo-
tion of the wings–in front (+x) or behind (�x) the CM [14].
These two torques are approximately orthogonal, so they
can be considered independently. The torque magnitudes,
however, are dependent on the wing stroke amplitude �.
A second-order linear model of the piezo-transmission-wing
resonant system is used to map these wing stroke kinematics
to electrical driving signals to the piezo actuators [20].

IV. FREE-BODY SIMULATION OF ROBOT DYNAMICS

To provide a more realistic test of wriggle-steering, we
simulated forces and torques on a 6DOF dynamic simulation
of the flapping-wing vehicle described in [6]. The model
includes a stroke-averaged model of aerodynamic drag on the
wings, so it additionally incorporates velocity in the robot’s
state according to

m

˙v = f � ! ⇥mv. (7)

In this equation, v 2 R3 is the velocity of the CM, f 2 R3

are external forces acting on the CM, and m is the mass of
the vehicle. The stroke-averaged aerodynamic drag is

fd = �bwvw = �bw(v + ! ⇥ rw), (8)



quantity symbol quantity units
mass m 81⇥ 10�6 kg

moment of inertia (x-axis) J1 1.42⇥ 10�9 kg m2

moment of inertia (y-axis) J2 1.34⇥ 10�9 kg m2

moment of inertia (z-axis) J3 0.45⇥ 10�9 kg m2

vector, CM to wing pair midpoint rw

2

4
0
0

7⇥ 10�3

3

5 m

aerodynamic drag constant bw 2⇥ 10�4 Nsm�1

TABLE I
ESTIMATED PARAMETERS FOR THE ROBOTIC VEHICLE USED IN

SIMULATIONS.

where bw is the air drag proportionality constant, and vw =

! ⇥ rw is the velocity of the point on the body midway
between the wings [18].

Parameters for the robotic fly in this simulation are given in
Table I and were derived from computer aided design (CAD)
software [6], a precision scale, and wind tunnel tests [18] on
the Robobee. The dynamics of the simulation reproduce the
robot’s dynamics, including dynamic instability in flight, so
an additional feedback torque was added to the simulation,
⌧ c = �kd!, with a gain of kd = 1.5 ⇥ 10

�7 Nms/rad, so
that the simulated robot remains upright in flight [18].

A. Oscillations driven at stroke-frequency
The results of the simulation of the robot fly (Equa-

tions (2)–(4), (7), and (8)) driven by torques plotted in
Figure 5, show that torques produced by oval wing kinematics
can produce yaw rotations, with a rate proportional to the
magnitude of stroke plane deviations ✓ (Figure 7). We note
that the torques estimated by the quasi-steady aerodynamic
simulation assumed the vehicle was still and in quiescent flow,
but this assumption may not necessarily hold under conditions
in which the vehicle is in motion. However, the amplitude of
pitch and roll oscillations are small, only 1-2º, suggesting that
they may have a small effect on the simulated aerodynamics,
and lateral motions are near zero.

B. Oscillations below the flapping frequency
In this simulation of the robotic fly (also given by Equa-

tions (2)–(4), (7), and (8)), driven by stroke-averaged torques,
the torque amplitude T0 was set to 0.5 µNm, approximately
half of the maximum torque that the robot’s wings have been
able to produce along its pitch and roll axes [14]. The results
for driving frequencies of F = 5, 10, and 20 Hz, are shown
in Figure 8. As in Figure 3, we found that driving torques
with the same amplitude but lower frequency results in larger
deviations in attitude, and results in a larger cycle-averaged
yaw angular rate ˙

✓e3.

V. FLIGHT TESTS OF LOW-FREQUENCY OSCILLATIONS

We verified that the simulations described above could
operate as desired by performing flight tests on a hover-
ing robotic fly (Figure 1). Robot power and control com-
mands were sent through a lightweight compliant tether cable
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Fig. 7. Free-body simulation of the robotic fly subject to wriggling driven at
the flapping frequency. Wing-induced torques were estimated from a quasi-
steady model of flapping-wing aerodynamics (Figure 5). Pitch oscillations
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but have a small effect on yaw rotations.
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wriggling driven below the flapping frequency by stroke-averaged torques.
Wing-induced torques were estimated from a quasi-steady model of stroke-
averaged flapping-wing aerodynamics (Equation (6)). The driving signal is
given by Equation (1), with oscillations driven at frequencies of F = 5 Hz
(green), 10 Hz (red), and and 20 Hz (blue). A lower driving frequency results
in larger attitude oscillations in ✓e2 and ✓e2, resulting in a larger cycle-
averaged yaw angular rate ✓̇e3 (right).

consisting of four 51-gauge (0.022 mm diameter) copper
wires [6]. We performed flights tests in a motion capture
arena with an array of calibrated cameras (Vicon T040-
series, Oxford, UK). Each camera emits bright infrared light
that is reflected from a number of retroreflective markers
mounted on the vehicle so that its position and orientation
can be reconstructed in real-time for later analysis. In all
flights, computations to generate signals for the piezoelectric
actuators to drive wing motion, as well as to map desired
control torques to these signals, were performed on an XPC
Target, a desktop computer running a real-time operating
system (Mathworks, Natick, MA USA). Analog voltage out-
puts from an analog-to-digital conversion board (National
Instruments, Austin TX USA, model PCI-6259) installed in
this computer were amplified by high-voltage piezo amplifiers
and transmitted to the robotic fly through the tether cable.

In these flight tests, we introduced a three-filament kevlar
restraining thread at the top of the robot to reduce wear on
the wing hinges during crash landings. This was inspired by



Fig. 9. Example of wriggle-induced left (left) and right (right) turn during
hover of fly-sized flapping-wing robot. (top) Euler Angles ✓e1 (roll rotation,
red) and ✓e2 (pitch rotation, green) do not oscillate before turn, but oscillate
due to commanded inputs during turning phase. Roll oscillations either lead
(left turn) or lag (right turn) pitch oscillations by 90�, resulting in a turn of
the desired polarity. Roll oscillations are larger than pitch oscillations because
of a resonant mode in the feedback system near the commanded oscillation
frequency. (bottom) The heading or yaw angle ✓e3 changes during the turning
phase. Dashed line shows the prediction of the model for a pitch oscillation
amplitude of 10� and a roll oscillation amplitude of 20�.

the umbilical cord used to stop the fall of walking robots in
the event of malfunction [21]. In both cases, the thread mass
is negligible relative to the robot – each 30 cm filament has a
mass of 60 µg, measured on a precision scale, giving the bun-
dle of three a mass of approximately 0.2 mg, less than 0.2%
of the total robot mass. To test its compliance, we extended a
single filament horizontally 10 cm. The length of thread was
unable to support its own 20 µg weight, indicating that the
torque that a three-filament bundle can apply to the robot is
less than 3 · 20⇥ 10

�9
[kg] · 9.81

h
N
kg

i
· 0.01[m] ⇡ 0.02 µNm,

which is small relative to control torques, calculated to have
a root mean square (RMS) magnitude of 0.35 µNm for pitch
and roll during normal hovering flights.

Flight tests consisted of a takeoff and a short period of
hover (4 seconds) to stabilize the dynamics and allow the
adaptive controller to tune its parameters (roll and pitch
trim torques and three orthogonal force trim values). The
controller was functionally similar to [6], and consists of
an inner loop controlling the attitude (roll and pitch angles)
of the robot and an outer loop that regulates position by
commanding attitude changes to the inner loop. To produce
the wriggling oscillations, an oscillating setpoint attitude was
sent to the attitude feedback controller to command pitch
and roll oscillations with an amplitude of 10� at a frequency
F = 10 Hz. Larger amplitudes are in principle possible, but
cause undesirable larger position errors.

Figure 9 shows that the flight controller was successfully

Fig. 10. Flight tests of wriggle-induced turns from 24 separate events. (top)
The mean of the 12 turn events (black) is shown as a thick blue line, and
the prediction of the model shown as a dashed line, showing a close match.
(bottom) Equivalent plot for 12 right turns. Disturbances from the tether are
occasionally sufficiently large to overcome the effect of the wriggle-turns.

able to induce roll oscillations that either led or lagged pitch
oscillations by 90�. This resulted in either a left or a right
turn, respectively (video shows these two turns).

Figure 10 shows data from 24 separate turn events, 12
in each direction, resulting in turns of the desired polarity.
The mean angular velocity of the robot was approximately
131�/sec in leftward direction and -139�/sec in the rightward
direction. The prediction of the model, for a pitch oscillation
amplitude of 10� and a roll oscillation amplitude of 20�,
closely follows the behavior of the robot, with 12% and
18% error for left and right turns, respectively. However,
the robot’s turn rate was variable, occasionally even going in
the opposite direction of the wriggle-steering. This indicates
that disturbances, likely primarily due to the wire tether, are
larger than is possible to consistently overcome using wriggle
steering to control yaw angle.

VI. CONCLUSIONS

This paper describes a method to rotate the yaw or heading
angle of underactuated flapping-wing hovering flying robots
and animals. Termed wriggle-steering, it consists of driving
vehicle rotations around a certain axis by cyclically rotating
by small angles about two other axes. This was motivated
by a deficiency in an existing design of a fly-sized hovering
robot, which is unable to reliably regulate its heading to a
desired value using known wing kinematics. To the authors’
knowledge, inducing motion by wriggle-steering way has not
previously been proposed.

We used a simplified kinematic analysis to maximize
yaw angular rate under the realistic situation that actuation
authority T0 (maximum achievable pitch and roll torque)



is limited. Our results indicate that this can be achieved
by minimizing oscillation cycle frequency. The lower fre-
quency produces higher-amplitude rotation cycles. However,
large oscillations may produce undesirable consequences. As
amplitude increases, the cycle-averaged lift force decreases
because more of the thrust from the wings is directed laterally.
Oscillations also may make it more difficult to collect feed-
back from onboard sensors, as well as making the vehicle’s
aerodynamics harder to predict. These consequences must be
weighed against design objectives.

We then proposed two mechanisms by which a flapping-
wing flying robot could perform the desired motion. The
first consists of wriggling at the stroke frequency. As a
conceptual exercise, this is appealing because it relies on body
pitching oscillations that already occur as a result of the robot
being driven by flapping wings. But it requires additional
actuators in the robot design, and our quasi-steady aerody-
namic simulations and free-body model suggest it produces
a low yaw rotation rate of 2.5�/s, limiting its applicability.
The second consists of lower-frequency wriggling, driven by
stroke-averaged torques. This produced much higher turn rates
in simulation, and can be performed on a currently-available
robotic fly design. We performed hovering flight tests showed
that the robot’s average yaw rate was comparable to the
prediction of the model in both directions.

Although our tests indicated that wriggle-steering could
not consistently overcome tether disturbances acting on our
robotic vehicle, our purpose in this work was merely to
introduce an actuation mode that could in principle perform
the desired motion in underactuated designs. Our flight tests
provide encouraging evidence that wriggle-steering operates
as desired, reducing the need for additional actuators to
simplify design and reduce weight. In the future, consistent
control of heading angle may be facilitated as follows. First,
disturbances could be reduced by using even thinner tether
wire, or better, removing it entirely by using batteries. Alter-
natively, wriggling could be combined with split-cycle signals
to the actuators [14] to provide greater control authority.
Combining actuation modes like this appears to be a common
approach used in biology. For example, sudden heading
changes in flies in flight, termed body-saccades, are driven
by changes both in stroke deviation and amplitude [11].

We conclude by remarking that wriggle-steering as pro-
posed here could be performed by other, non-hovering types
of robotic aerial vehicles. It is, however, impractical on
manned vehicles because rapid cyclic oscillations could lead
to pilot discomfort. But for a robotic aerial vehicle, as long
as the rotation angle along any two axes can be actuated, then
the third can rotated by an equivalent style of phased cyclic
excitations.
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