Simple curl balances and thermocline depth:
    Terms of Sverdrup integration (Curl(Tau) and Tau-x): Tropical Pacific  SWCA  SWCA (overlay vectors) 
    Curl terms from ECMWF: Mean  Annual cycle  Annual cycle anonymous
    Curl(Tau/f) components:  Mean: SWCA   Pacific    1 cpy harmonic: Stack    Overlay    Detail SWCA
    Compare transports: Ekman vs XBT Geostrophic    Sverdrup, Ekman, Geostrophic (all from winds)   Magnitudes
    Ekman pumping:Annual cycle correlation: d(Z20)/dt vs Curl
   Statistics of the Ekman pumping balance terms
    Compare Curl to d(Z20)/dt harmonics (vectors):  Curl(Tau) and d(Z20)/dt  Curl(Tau/f) and d(Z20)/dt
    Same comparison from K90 XBTs:  SWCA  Whole N tropical Pacific
    d(Z20)/dt as a fn of (x,t) at different latitudes (pos = downwelling)
   Compare Curl(Tau)/(f*rho) 
    Compare Curl and Z20 as a fn of (y,t) at 100°-94°W
    Mean thermocline from winds and Sverdrup balance (Entirely within Ferret: jnl 95 -> 97)
     Compare damping times for Sverdrup balance (Obs Z20 vs from winds):    FSU winds.     H&R winds.
->  Link to Sverdrup calculation page
->  Link to Rossby wave model page