Go to the source code of this file.
|
class | wxm::apps::functions::kinetics::Kinetics2d2vDoryGuestHarris |
| 2D2V Dory-Guest-Harris Initial Condition We initialize a ring distribution with a perturbation, extending the 1d2v form given equations 29 and 30 in Vogman JCP2014 to 2D2V f(x, y, v_{x}, v_{y}) = \frac{1}{\pi \alpha_{\perp}^2 j!} \left(\frac{v_{x}^2+v_{y}^2}{\alpha_{\perp}^2}\right)^j \exp\left(-\frac{v_{x}^2+v_{y}^2}{\alpha_{\perp}^2}\right) \left(1 + \epsilon \sin\left(4\theta -\boldsymbol{k}_{\perp} \cdot{\boldsymbol{r}}\right)\right) More...
|
|