WARPXM v1.10.0
Loading...
Searching...
No Matches
wxm::apps::functions::kinetics Namespace Reference

Classes

class  CounterStreamingBeams2d2v
 
class  GeneralMaxwellianTwoStream
 General Maxwellian Two-Stream Instability Initial Condition We initialize 2 counterstreaming Maxwellian plasma beams: f(x,v_x, v_y) = 1/2 * n_0/((2pi)^0.5*v_th) * (exp(-(v_x-v')^2/(2 v_th^2)) + exp(-(v_x+v')^2/(2 v_th^2))) f(x,v) = fM_1 + fM_2 where fM_i == n_i * (1/2pi / v_th_i^2)^d/2 * exp( -1/2 / v_th_i^2 (|v-V_i|^2)) More...
 
class  Kinetics1d1vArbitraryShocktube
 Double Rarefaction 1D Riemann Problem See: Buffard and Clain -> Monoslope and multislope MUSCL methods for unstructured meshes Journal of Computational Physics, 229 (2010) 3745-3376. More...
 
class  Kinetics1d1vDoubleRarefaction
 Double Rarefaction 1D Riemann Problem See: Buffard and Clain -> Monoslope and multislope MUSCL methods for unstructured meshes Journal of Computational Physics, 229 (2010) 3745-3376. More...
 
class  Kinetics1d1vLandauDamping
 1D1V Landau Damping Initial Condition This is a Maxwellian distribution of f in velocity space multiplied by a sinusoidal variation in position space, given by the form: f(x,v_x) = n_0/((2pi)^0.5*v_th) exp(-v_x^2/(2v_th)^2) * (1 + alpha cos(kx)) See the paper: Physics-Based-Adaptive Plasma Model for High-Fidelity Numerical Simulations https://www.frontiersin.org/articles/10.3389/fphy.2018.00105/full Equation 119 More...
 
class  Kinetics1d1vTwoStream
 1D1V Two-Stream Instability Initial Condition We initialize 2 counterstreaming plasma beams: f(x,v_x) = 1/2 * n_0/((2pi)^0.5*v_th) * (exp(-(v_x-v')^2/(2 v_th^2)) + exp(-(v_x+v')^2/(2 v_th^2))) * (1 + alpha cos(kx)) See the paper: Physics-Based-Adaptive Plasma Model for High-Fidelity Numerical Simulations https://www.frontiersin.org/articles/10.3389/fphy.2018.00105/full Equation 122 More...
 
class  Kinetics1d2vDoryGuestHarris
 1D2V Dory-Guest-Harris Initial Condition We initialize a ring distribution with a perturbation, equations 29 and 30 in Vogman JCP2014 f(x, v_{x}, v_{y}) = \frac{1}{\pi \alpha_{\perp}^2 j!} \left(\frac{v_{x}^2+v_{y}^2}{\alpha_{\perp}^2}\right)^j \exp\left(-\frac{v_{x}^2+v_{y}^2}{\alpha_{\perp}^2}\right) \left(1 + \epsilon \sin\left(4\theta -\frac{\tilde{k}\Omega_{c}}{v_{\perp 0}}x\right)\right) More...
 
class  Kinetics2d2vDoryGuestHarris
 2D2V Dory-Guest-Harris Initial Condition We initialize a ring distribution with a perturbation, extending the 1d2v form given equations 29 and 30 in Vogman JCP2014 to 2D2V f(x, y, v_{x}, v_{y}) = \frac{1}{\pi \alpha_{\perp}^2 j!} \left(\frac{v_{x}^2+v_{y}^2}{\alpha_{\perp}^2}\right)^j \exp\left(-\frac{v_{x}^2+v_{y}^2}{\alpha_{\perp}^2}\right) \left(1 + \epsilon \sin\left(4\theta -\boldsymbol{k}_{\perp} \cdot{\boldsymbol{r}}\right)\right) More...
 
class  Kinetics2d2vKelvinHelmholtzInstability
 2D2V Kelvin-Helmholtz Instability Based on calculated kinetic equilibrium More...
 
class  Kinetics2d2vKelvinHelmholtzInstabilityFluidMaxwellian
 2D2V Kelvin-Helmholtz Instability using the Maxwellians as the initial condition for the distributions More...
 
class  KineticsDriftingMaxwellian
 A drifting maxwellian with perturbation initial condition. More...
 
class  KineticsInitialConstant
 An initial constant initial condition for the wave energy distribution IC. More...
 
class  KineticsPressureEquilibrium
 A drifting maxwellian with density variation in pressure equilibrium. More...
 
class  LandauDamping2d2v
 2D2V Landau Damping Initial Condition This is a Maxwellian distribution of f in velocity space multiplied by a sinusoidal variation in position space, given by the form: f(x,y,v_x,v_y) = n_0/((2pi)*v_th^2) exp(-(v_x^2 + v_y^2)/(2v_th)^2) * (1 + alpha_x cos(kx) + alpha_y cos(ky)) More...
 
class  Maxwellian
 Initailize Maxwellian Distribution. More...
 
class  VlasovMaxwellCustom
 Initailize VlasovMaxwellCustom Distribution. More...
 
class  WeibelCustom
 Calculates the difference between a fed-in IC and a General Maxwellian Two-Stream conditions, weights this difference, and adds it back. More...