|
class | DyadicMonomialMoments |
|
class | EnergyFluxMoment |
| Computes the moment which becomes the Fluid Energy Flux Gamma = Full velocity space integral of vec{v}(1/2 A_{alpha} vec{v}^2 f_{alpha}) d^{3}vec{v} or \Gamma = \iiint \boldsymbol{v} \left(\frac{1}{2} A_{\alpha} v^2 f_{\alpha}\right) d^3\boldsymbol{v} where alpha is the species We find from moments of the Boltzmann equation: Gamma = e_{alpha} vec{v}_{alpha} + P_{alpha}vec{v}_{alpha} + \vec{h}_{alpha} or \Gamma = e_{\alpha} \boldsymbol{v}_{\alpha} + P_{\alpha} \boldsymbol{v}_{\alpha} + \boldsymbol{h}_{\alpha}. More...
|
|
class | FullDyadicSecondMoment |
| Computes the Full Dyadic Second Moment which becomes the Fluid Momentum Flux Gamma = Full velocity space integral of vec{v}(A_{alpha} vec{v} f_{alpha}) d^{3}vec{v} or \Gamma = \iiint \boldsymbol{v} \left(A_{\alpha} \boldsymbol{v} f_{\alpha}\right) d^3\boldsymbol{v} where alpha is the species We find from moments of the Boltzmann equation: Gamma = A_{alpha}n_{alpha} vec{v}_{alpha}vec{v}_{alpha} + P_{alpha} or \Gamma = A_{\alpha}n_{\alpha} \boldsymbol{v}_{\alpha}\boldsymbol{v}_{\alpha} + P_{\alpha}. More...
|
|
class | MaxwellianDistanceMetric |
| Computes the Maxwellian Distance Metric chi = int(abs(f - fM))dv / n. More...
|
|