Not only proteomics, but the integration of lipid profiles, glycogen analysis, shell strength, growth, response to heat, and response to spinning provides tons of new insights into ocean acidification impacts on shellfish.

The provisional PDF of “Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas” is now available via BMC Genomics.

Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 muatm (pH 8.0), 800 muatm (pH 7.7), 1000 muatm (pH 7.6), or 2800 muatm (pH 7.3).

At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835).

Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

Shotgun Proteomics reveals so much about Ocean Acidification