Applied Mathematics 483/583
High Performance Scientific Computing
Spring Quarter, 2014
Coursera Version:
AMath 483 and 583A are currently full and we cannot add more students
due to room
size limitations. An alternative if you want to learn the material without
receiving credit is to register for the
Coursera version of
this class, which was first given in 2013 and is repeating starting on March
31, 2014. This version uses the same lecture videos from 2013 that will be
used used in 483/583.
Quick links:
Class Info:
- Professor Randy LeVeque
will be "flipping
the class" this year.
- Students will be required to watch 3 hours of lectures a week
that will be available on the web (videos recorded in Spring, 2013).
These follow the slides
and
lecture
notes from last year, but some new material will also be developed.
- For on-campus students, the class meets T-Th, 2:30 - 3:20 in OUG 136
for lab sessions.
This is an Active Learning Classroom
and class time will be used primarily for working together with other
students on exercises designed to illustrate and reinforce the material.
Some additional new material will also be presented.
Attendance will be required at these sessions.
- Undergraduates should enroll in AMath 483 and graduate students in 583. The
lectures and classroom sessions are identical,
but the 583 course will have some additional and/or more advanced assignments.
The class sizes are capped due to the size of the room and additional
students cannot be accomodated.
- Section 583B is for online Masters degree students only and is
not available to
on-campus students. Students in this section will view the same video
lectures as on-campus students. In addition, parts of the T-Th classroom
sessions will be taped and available to watch, along with the exercises
tackled by students in these sessions.
- Homework and a final project will consist primarily of programming
assignments. There will be quizzes on the lectures and on-campus students
will often submit something during lab sessions, but there will be no major
exams.
- No textbook is required.
Class notes
are available online.
- All software to be used is freely available and open source.
All of the computing
required for this class can be done freely in the cloud using
SageMathCloud.
A demo will be given during the first lab session.
Description
Introduction to hardware, software, and programming for large-scale
scientific computing. Overview of multicore, cluster, and supercomputer
architectures; procedure and object oriented languages; parallel computing
paradigms and languages; graphics and visualization of large data sets;
validation and verification; and scientific software development.
[More about the class and syllabus]
Recommended Background
Experience writing and debugging computer programs is required ---
preferably experience with scientific, mathematical, or statistical
computing, for example in Matlab or R. (Previous knowledge of Fortran,
Python, or parallel computing languages is not assumed.)
Students should also be comfortable with undergraduate mathematics,
particularly calculus and linear algebra, which is pervasive in scientific
computing applications. Many of the examples used in lectures and
assignments will require this background. Past exposure to numerical
analysis is a plus.