Units(*varargin, **kwargs) | Unit conversions. |
Model() | This class represents a model for the thermodynamics. |
Hulet(*varargin, **kwargs) | Parameters for Rice trapping potential: cont-mat/0908455 |
nab(x, y, z, mua, mub[, trap, model]) | Return the density at point (x,y,z) in specified trap with chemical potentials (mua,mub). |
mup_eff(x, y, z[, trap]) | Return the effective chemical potential mu_+ - lambda_+ due to |
muab2mupm((mua, mub)) | Return (mup,mum) from (mua,mub). |
mupm2muab((mup, mum)) | Return (mua,mub) from (mup,mum). |
Inheritance diagram for mmf.physics.potentials.optical_traps:
Various Optical Traps.
Bases: mmf.objects.Container
Unit conversions.
Units(s=2042.03522483,
m=439785.045897,
kg=1.00116626934e+26,
K=64112752.2488,
amu=0.166247683713)
>>> u = Units()
>>> kB = 1.3806505e-23*u.m*u.m*u.kg/u.s/u.s/u.K
>>> kB
1.0
>>> hbar = 1.05457168e-34*u.m*u.m*u.kg/u.s
>>> hbar
1.0
>>> Li_m = 6.0151214*u.amu
>>> Li_m
1.0
>>> aosc = np.sqrt(hbar/Li_m/(2.*pi*325./u.s))
>>> aosc
1.0
Attributes
This class represents a model for the thermodynamics.
The compute() method must be called if the parameters are changed.
Methods
compute() | Recomputes values for speed. |
dh(y) | The function dh(y) must also be provided. |
h(y) | The function h(y) must be provided. |
nab(mua, mub) | Return the density pair (na,nb) for given chemical potentials. |
special_y() | Return an array of special y’s where h(y) has a kink. |
Calls compute()
Methods
compute() | Recomputes values for speed. |
dh(y) | The function dh(y) must also be provided. |
h(y) | The function h(y) must be provided. |
nab(mua, mub) | Return the density pair (na,nb) for given chemical potentials. |
special_y() | Return an array of special y’s where h(y) has a kink. |
The function dh(y) must also be provided. If h(y) has any kinks, then one of the limiting values should be provided and the kink locations returned by special_y.
The function h(y) must be provided.
Here we provide a simple version interpolating between y0 and y1 linearly.
>>> m1 = Model()
>>> y = np.linspace(-1.0,1.0,100)
>>> h = np.vectorize(m1.h)(y)
>> p1 = plot(y,h) >>> yc = m1.special_y() >>> hc = np.vectorize(m1.h)(yc)
>> p2 = plot(yc,hc,’x’)
Bases: mmf.objects.StateVars
Parameters for Rice trapping potential: cont-mat/0908455
Hulet()
>>> t = Hulet()
>>> t.U(0, 0)
0.0
Attributes
Return the density at point (x,y,z) in specified trap with chemical potentials (mua,mub).
>>> import matplotlib.pyplot as plt
>> plt.clf() >>> mua = 12.0 >>> mub = 1.0 >>> z = np.linspace(0,500*UNITS.micron,100) >>> (na,nb) = np.vectorize(nab)(0,0,z,mua,mub)
>> p=plot(z,na,z,nb) >>> r = np.linspace(0,500*UNITS.micron,100) >>> (na,nb) = np.vectorize(nab)(0,r,0,mua,mub)
>> p=plot(r,na,r,nb) >> plt.show()
Return the effective chemical potential mu_+ - lambda_+ due to trap at position (x,y,z)