
When Private Set Intersection Meets Big Data:
An Efficient and Scalable Protocol∗

Changyu Dong1, Liqun Chen2, Zikai Wen1

1Dept. of Computer and Information Sciences, 2Cloud & Security Lab,
University of Strathclyde, Hewlett Packard Labs,

changyu.dong@strath.ac.uk liqun.chen@hp.com
wjb12186@uni.strath.ac.uk

Abstract

Large scale data processing brings new challenges to the design of privacy-preserving
protocols: how to meet the increasing requirements of speed and throughput of modern
applications, and how to scale up smoothly when data being protected is big. Efficiency and
scalability become critical criteria for privacy preserving protocols in the age of Big Data.
In this paper, we present a new Private Set Intersection (PSI) protocol that is extremely
efficient and highly scalable compared with existing protocols. The protocol is based on a
novel approach that we call oblivious Bloom intersection. It has linear complexity and relies
mostly on efficient symmetric key operations. It has high scalability due to the fact that
most operations can be parallelized easily. The protocol has two versions: a basic protocol
and an enhanced protocol, the security of the two variants is analyzed and proved in the
semi-honest model and the malicious model respectively. A prototype of the basic protocol
has been built. We report the result of performance evaluation and compare it against the
two previously fastest PSI protocols. Our protocol is orders of magnitude faster than these
two protocols. To compute the intersection of two million-element sets, our protocol needs
only 41 seconds (80-bit security) and 339 seconds (256-bit security) on moderate hardware
in parallel mode.

(Auguest 2016): Recently we were contacted by Claudio Orlandi and Mikkel Lambæk
(Aarhus University) and Mike Rosulek and Peter Rindal (Oregon State University)
regarding a bug in the enhanced protocol (section 5). The problem is that by manip-
ulating its own input, a malicious server can cause a selective failure, i.e. the protocol
may fail only when the client has a certain input. This bug does not affect the semi-
honest protocol. We thank them for pointing out the bug.
An obvious way of patching the bug requires committing the input and zero-knowledge
proofs thus is not efficient. Rindal and Rosulek proposed an efficient fix using the cut-
and-choose approach that has low overhead. Please refer to their paper for more
details:

• Improved Private Set Intersection against Malicious Adversaries, Peter Rindal
and Mike Rosulek, Cryptology ePrint Archive, http://eprint.iacr.org/
2016/746

∗A preliminary version of this paper appears in CCS 2013.

1

1 Introduction

In many countries, protecting data privacy is no longer optional but a legal obligation. Legisla-
tion includes various US privacy laws (HIPAA, COPPA, GLB, FRC, etc.), European Union Data
Protection Directive, and more specific national privacy regulations. It is a challenging task for
organizations because they have to protect data in use and transmission. To this end, many
security solutions have been proposed to enable privacy-preserving data processing. However,
the amount of data to be processed and protected becomes increasingly large. For example,
geneticists need to search 3 billion base pairs in personal genome to find genetic disorders that
might cause diabetes or cancers, epidemiologists need to link multiple medical databases that
contain millions of patients’ records to identify risk factors for diseases, and online retailers
want to correlate petabytes of their transaction records with customers’ social network activi-
ties, hoping to increase customer satisfaction. Any privacy-preserving data processing service
is not cost free and this has brought us new challenges: how to meet the increasing requirements
of speed and throughput of modern applications, and how to scale up smoothly when data being
protected is big? With the prevalence of large scale data processing, efficiency and scalability
become critical criteria for designing a privacy-preserving protocol in the age of “Big Data”.

The subject of study in this paper is the Private Set Intersection (PSI) problem. Namely,
two parties, a client and a server, want to jointly compute the intersection of their private input
sets in a manner that at the end the client learns the intersection and the server learns nothing.
The PSI problem has been extensively studied for two reasons, firstly set intersection is a foun-
dational primitive and secondly it has many practical applications. For example, PSI has been
proposed as a building block in applications such as privacy preserving data mining [4], human
genome research [6], homeland security [15], Botnet detection [34], social networks [33], lo-
cation sharing [36] and cheater detection in online games [11]. Many PSI protocols have been
proposed, e.g. [22, 31, 24, 17, 25, 28, 12, 15, 14, 29, 5, 26]. PSI protocols are often criticized
as being impractical because the performance becomes unacceptable when the input size or the
security parameter becomes large, and it is difficult to improve the performance by just adding
hardware proportionally. The criticism is not unfounded. Currently two protocols claim to be
the fastest PSI protocol: the RSA-OPRF-based protocol by De Cristofaro et al [15, 16] and the
garbled circuit protocol by Huang et al [26]. Both protocols have a highly optimized imple-
mentation. We obtained the source code from the authors of these two protocols and tested the
performance. To compute the intersection of two 1,048,576-element (220) sets, De Cristofaro’s
protocol needs 10.6 minutes at 80-bit security, but requires a much longer time at 256-bit secu-
rity. We estimate the time to be approximately 131 hours from tests with smaller sets. The tests
with million-element sets on Huang’s protocol were unsuccessful because the Java Virtual Ma-
chine ran out of memory on the client computer that has 16 GB RAM. From tests with smaller
sets, we estimate that Huang’s protocol requires 27 hours and 51 hours respectively to compute
the intersection at 80-bit and 256-bit security. Clearly to use PSI in real world applications, we
need more practical protocols.
Contributions We present a new PSI protocol that is much more efficient than all the already
existing PSI protocols. The protocol is designed based on a novel two-party computation ap-
proach, which makes use of a new variant of Bloom filters that we call garbled Bloom filters,
and we refer the new approach as oblivious Bloom intersection. The ideas of garbled Bloom
filters and oblivious Bloom intersection are general and have their own interests.
Our PSI protocol has two versions: a basic protocol, security of which can be proved in the

2

semi-honest model, and an enhanced protocol, security of which can be proved in the mali-
cious model. The basic protocol has linear complexity (with a small constant factor) and relies
mostly on symmetric key operations. It is fast even with large input sets, and when the secu-
rity parameter increases, the performance degrades gracefully. Test results show it is orders of
magnitude faster than the previous best protocols. The enhanced protocol is an extension of the
basic protocol, that only increases the cost by a factor proportional to the security parameter.
Apart from efficiency, another big advantage of the protocol is scalability: the computational,
memory and communication complexities are all linear in the size of the input sets. More
attractively, most operations in the protocol can be performed in the SPMD (single program,
multiple data) fashion, which means little effort is required to separate the computation into
a number of parallel tasks. Therefore it can fully take the advantage of parallel processing
capacity provided by current multi-core CPUs, GPGPUs (General-purpose graphics processing
unit) and cloud computing. As a result, the protocol is particularly suitable for Big Data oriented
applications that have to process data in a parallelized and/or distributed way.
We have implemented a proof of concept prototype of the basic protocol. To compute the
intersection of two million-element sets, it needs only 41 seconds (80-bit) and 5.65 minutes
(256-bit) on two moderate computers in parallel mode.
Organization The paper is organized as follows: in section 2, we review the related work,
in section 3 we introduce the notations and building blocks, in section 4, we present the gar-
bled Bloom filter data structure, the semi-honest protocol, analyze the security and provide a
simulation-based proof, in section 5 we show how to extend the basic protocol to achieve secu-
rity against malicious adversaries, in section 6 we show a prototype of the basic protocol and
the performance evaluation result, in section 7, we conclude the paper.

2 Related Work
The concept and first protocol of Private Set Intersection were introduced by Freedman et al
in [22]. Their protocol is based on oblivious polynomial evaluation. Along this line, Kiss-
ner and Song [31] proposed protocols in multiparty settings, Dachman-Soled et al [17], and
Hazay and Nissim [25] proposed protocols which are more efficient in the presence of mali-
cious adversaries. Hazey and Lindell [24] proposed another approach for PSI which is based
on oblivious pseudorandom function (OPRF) evaluation. This approach is further improved by
Jarecki and Liu [28, 29] and De Cristofaro et al [15, 14]. There are also a number of variants
of PSI protocols, which aim to achieve more features than the original PSI concept. Camenisch
and Zaverucha [12] proposed a PSI protocol which requires the input sets to be signed and cer-
tified by a trusted party, Ateniese et al [5] proposed a PSI protocol that also hides the size of
the client’s input set. Among the above protocols, the most efficient protocol is the protocol by
De Cristofaro et al [15, 14]. It has linear complexity and requires O(n) public key operations,
where n is the size of the set. The performance of this protocol is affected significantly by
n and the security parameter. Recently, Huang et al [26] presented a semi-honest PSI proto-
col based on garble circuits. This protocol requires O(nlogn) symmetric key operations and
a small number of public key operations. The authors demonstrated that in certain cases this
protocol is significantly more efficient than the previous PSI protocols. At low security settings,
De Cristofaro’s protocol [15] is the fastest but at high security settings, Huang’s protocol [26]
is more efficient.

Recently a few PSI protocols based on Bloom filters were proposed. In [32], the parties

3

AND their Bloom filters by a secure multiplication protocol and each party obtains an intersec-
tion Bloom filter. They then query the resulting Bloom filter to obtain the intersection. However
the protocol is not secure because the intersection Bloom filter leaks information about other
party’s sets. In [30], Bloom filters are used in conjunction with the Goldwasser Micali homo-
morphic encryption.The semi-honest version of the protocol requires kn hash operations and
(k log2 e + kl + k + 2l)n modular multiplications, where k and l are parameters controlling
false positive. Our basic protocol requires 2(k + k log2 e)n hash operations and a few hundred
public key operations (independent to n). The total number of operations in our basic protocol
is much less than the protocol in [30]. Given that a modular multiplication is faster than a public
key operation but slower than a hash operation, for large input sets (i.e. a large value of n), the
PSI scheme in [30] would be slower than our basic protocol. The protocol also has a higher
communication overhead than ours, as each bit in the Bloom filter and the encrypted elements
has to be expanded to a group element. The version secure in the malicious model requires a
trusted party to certify the client’s set, thus is hard to compare fairly with our enhanced protocol.

3 Preliminaries

3.1 Notations
A function µ(·) is negligible in n, or just negligible, if for every positive polynomial p(·) and
any sufficiently large n it holds that µ(n) ≤ 1/p(n). A probability ensemble indexed by I is a
sequence of random variables indexed by a countable index set I . Namely, X = {Xi}i∈I where
each Xi is a random variable. Two distribution ensembles X = {Xn}n∈N and Y = {Yn}n∈N are
computationally indistinguishable, denoted by X

c≡ Y if for every probabilistic polynomial-
time (PPT) algorithm D, there exists a negligible function µ(·) such that for every n ∈ N,

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| ≤ µ(n)

For a set X , we denote by x
r← X the process of choosing an element x of X uniformly

randomly.

3.2 Bloom Filters
A Bloom filter [9] is a compact data structure for probabilistic set membership testing. A Bloom
filter is an array ofm bits that can represent a set S of at most n elements. A Bloom filter comes
with a set of k independent uniform hash functions H = {h0, ..., hk−1} that each hi maps
elements to index numbers over the range [0,m− 1] uniformly. In the rest of the paper, we use
(m,n, k,H)-Bloom filter to denote a Bloom filter parameterized by (m,n, k,H), use BFS to
denote a Bloom filter that encodes the set S, and use BFS[i] to denote the bit at index i in BFS .

Initially, all bits in the array are set to 0. To insert an element x ∈ S into the filter, the
element is hashed using the k hash functions to get k index numbers. The bits at all these
indexes in the bit array are set to 1, i.e. set BFS[hi(x)] = 1 for 0 ≤ i ≤ k − 1. To check if an
item y is in S, y is hashed by the k hash functions, and all locations y hashes to are checked. If
any of the bits at the locations is 0 , y is not in S, otherwise y is probably in S.

Because the hash functions are deterministic, if y is encoded in the filter then in the query
phase every BFS[hi(y)] must be 1, so a Bloom filter never yields a false negative. However, a

4

false positive is possible, i.e. it is possible that y is not in the set S, but all BFS[hi(y)] are set
to 1. The probability that a particular bit in the Bloom filter is set to 1 is p = 1− (1− 1/m)kn,
and according to [10], the upper bound of the false positive probability is:

ε = pk × (1 +O(
k

p

√
lnm− k ln p

m
) (1)

which is negligible in k.
In practice we often need to build a Bloom filter with a capped false positive probability, i.e.

it represents any set of at most n elements from a universe in a manner that allows false positive
probability to be at most ε. The efficiency of such a Bloom filter depends on the parameters
m and k. It turns out the lower bound of m in this case is m ≥ n log2 e · log2 1/ε, where e is
the base of natural logarithms. The optimal number of hash functions is k = (m/n) · ln 2 and
if m is also optimal then the optimal k is log2 1/ε. In the rest of the paper, we always assume
optimal k and m unless otherwise stated.

A standard Bloom filter trick is that if we have two (m,n, k,H)-Bloom filters that each en-
codes a set S1 and S2, we can obtain another (m,n, k,H)-Bloom filter BFS1∩S2 by bit-wisely
ANDing BFS1 and BFS2 . The resulting Bloom filter has no false negative, which means the
query result of any element y ∈ S1 ∩ S2 against BFS1∩S2 is always true. The false positive
probability of the resulting Bloom filter is no higher than either of the constituent Bloom fil-
ter [38]. Note that due to collisions, it is possible that the jth bit is set in BFS1 by an element in
S1 − S1 ∩ S2 and jth bit is set in BFS2 by an element in S2 − S1 ∩ S2. Therefore the resulting
Bloom filter usually contains more 1 bits than the Bloom filter built from scratch using S1 ∩S2.

3.3 Secret Sharing

Secret sharing is a fundamental cryptographic primitive. It allows a dealer to split a secret s
into n shares such that the secret s can be recovered efficiently with any subset of t or more
shares. With any subset of less than t shares, the secret is unrecoverable and the shares give
no information about the secret. Such a system is called a (t, n)-secret sharing scheme. An
example of such a scheme is Shamir’s secret sharing scheme [41].

When t = n, an efficient and widely used secret sharing scheme can be obtained by simple
⊕ (XOR) operations [40]. The scheme works by generating n−1 random bit strings r1, ..., rn−1

of the same length as the secret s, and computing rn = r1⊕, ...,⊕rn−1 ⊕ s. Each ri is a share
of the secret. It is easy to see that s can be recovered by computing r1⊕, ...,⊕rn and any subset
of less than n shares reveals no information about the secret.

3.4 Oblivious Transfer

Oblivious transfer [39, 20] allows a sender to send part of its input to a receiver in a manner that
protects both parties. Namely, the sender does not know which part the receiver receives and
the receiver does not learn any information about the other part of the sender’s input. Generally,
an oblivious transfer protocol can be denoted as OTml . The notation means the sender holds
m pairs l-bit strings (xj,0, xj,1) (0 ≤ j ≤ m − 1), while the receiver holds an m-bit selection
string r = (r0, ..., rm−1). At the end of the protocol execution, the receiver outputs xj,rj for
0 ≤ j ≤ m− 1.

5

Oblivious transfer protocols are costly and often become the efficiency bottleneck in proto-
col design. However it has been shown by Beaver that it is possible to obtain a large number
oblivious transfers given only a small number of actual oblivious transfer calls [7]. In this direc-
tion, efficient OT extensions were proposed in [27]. The extensions rely on the Random Oracle
Model [8] (or the existence of correlation robust hash functions) and can reduce OTml to OTλλ
where λ is a security parameter. The latter can be further reduced to λ invocations of OT1

λ. In
our implementation, we use the above OT extension scheme to reduce the actual cost of an OTmλ
invocation to λ calls to the Naor-Pinkas OT protocol [35]. We provide a short summary of the
reduction in the appendix.

3.5 The Semi-honest Model

We prove the security of the basic protocol in the presence of static semi-honest adversaries.
In the model, the adversary controls one of the parties and follows the protocol specification
exactly. However, it may try to learn more information about the other party’s input. The
definitions and model are according to [23].

A two-party protocol π computes a function that maps a pair of inputs to a pair of outputs
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). For every pair of inputs
x, y ∈ {0, 1}∗, the output-pair is a random variable (f1(x, y), f2(x, y)). The first party obtains
f1(x, y) and the second party obtains f2(x, y). The function can be asymmetric such that only
one party gets the result. It is captured as f(x, y)

def
= (f1(x, y),Λ), where Λ denotes the empty

string.
In the semi-honest model, a protocol π is secure if whatever can be computed by a party in

the protocol can be obtained from its input and output only. This is formalized by the simulation
paradigm. We require a party’s view in a protocol execution to be simulatable given only its
input and output. The view of the party i during an execution of π on (x, y) is denoted by
viewπ

i (x, y) and equals (w, ri,mi
1, ...,m

i
t) where w ∈ (x, y) is the input of i, ri is the outcome

of i’s internal random coin tosses and mi
j represents the jth message that it received.

Definition 1. Let f = (f1, f2) be a deterministic function. We say that the protocol π se-
curely computes f in the presence of static semi-honest adversaries if there exists probabilistic
polynomial-time algorithms S1 and S2 such that

{S1(x, f1(x, y))}x,y
c≡ {viewπ

1 (x, y)}x,y

{S2(y, f2(x, y))}x,y
c≡ {viewπ

2 (x, y)}x,y

4 The Basic Protocol

In this section we present the basic protocol that is secure in the semi-honest model. Concep-
tually the protocol is very simple: the client computes a Bloom filter that encodes its set C and
the server computes a garbled Bloom filter (see below) that encodes its set S. Then they run
an oblivious transfer protocol so that the client obtains a garbled Bloom filter that represents
the intersection and the server learns nothing. Then the client queries the intersection garbled
Bloom filter and obtains the intersection.

6

x1 x2

* s11 * * s21 * s12 * s31 * s22 *

 0 1 2 3 4 5 6 7 8 9 10 11

Figure 1: Add elements into a garbled Bloom filter

4.1 Garbled Bloom Filters
We introduce a new variant of Bloom filters called garbled Bloom filters (GBF). A garbled
Bloom filter is the garbled version of a standard Bloom filter. From a high level point of view,
there is no difference between a garbled Bloom filter and a Bloom filter: it encodes a set of at
most n elements in an array of length m, it supports membership query with no false negative
and negligible false positive. To add an element, the element is mapped by k independent
uniform hash functions into k index numbers and the corresponding array locations are set. To
query an element, the element is mapped by the same k hash functions into k index numbers
and the corresponding array locations are checked.

From a low level point of view, a garbled Bloom filter is backed by a different data structure.
Namely, instead of using an array of bits, a garbled Bloom filter uses an array of λ-bit strings,
where λ is a security parameter. In the rest of the paper, we use (m,n, k,H, λ)-garbled Bloom
filter to denote a garbled Bloom filter parameterized by (m,n, k,H, λ), we denote a garbled
Bloom filter encoding a set S by GBFS and denote the λ-bit string at index i by GBFS[i].

To add an element x ∈ S to a garbled Bloom filter, we split the element into k λ-bit shares
using the the XOR-based secret sharing scheme as described in section 3.3. The element is also
mapped into k index numbers and we store one share in each location hi(x). Note this is a very
loose description, the actual process is more complicated. To query an element y, we collect
all bit strings at hi(y) and XOR them together. If the result is y then y is in S, otherwise y is
not in S. The correctness is obvious: if y ∈ S, the XOR operation will recover y from its k
shares which are retrievable from the garbled Bloom filter by their indexes. If y 6∈ S, then the
probability of the XOR result is the same as y is negligible in λ. The algorithm to encode a set
into a garbled Bloom filter and the algorithm to query an element are given in Algorithm 1 and
2.

In Algorithm 1, we first create an empty garbled Bloom filter and initialize each location
to NULL (line 1-4). To add x ∈ S, we split x into k shares on the fly and store the shares
in GBFS[hi(x)] (line 5-21). Note that in this process, some location j = hi(x) may have
been occupied by a previously added element. In this case we reuse the existing share stored
at GBFS[j] (line 16-18). For example, in Figure 1 we first add x1 to GBFS and split it into
3 shares s1

1, s
2
1, s

3
1. Then when we add x2, GBFS[4] has already been occupied by s2

1. So we
reuse the string s2

1 as a share of x2, i.e. x2 = s2
1 ⊕ s1

2 ⊕ s2
2. This is because if we replace

s2
1 with another string, x1 will not be recoverable in the query phase. Reusing shares will not

cause security problems as far as the protocol concerns, we will show in Theorem 3 that the
probability of getting all shares of an element that is not in the intersection in our protocol is
negligible. After adding all elements in S, we generate and store random λ-bit strings at all
locations that are still NULL (line 22-26). Algorithm 1 will succeed with an overwhelming
probability, as stated in Theorem 1. When m and k are optimal, the success probability in
Theorem 1 is approximately 1− 2−k.

Theorem 1. Algorithm 1 will succeed with a probability at least 1−p′k×(1+O(k
p′

√
lnm−k ln p′

m
))

7

Algorithm 1: BuildGBF (S, n,m, k,H, λ)

input : A set S, n,m, k, λ, H = {h0, ...hk−1}
output: An (m,n, k,H, λ)-garbled Bloom filter GBFS

1 GBFS= new m-element array of bit strings;
2 for i= 0 to m− 1 do
3 GBFS[i]=NULL; // NULL is the special symbol that means ‘‘no value’’

4 end
5 for each x ∈ S do
6 emptySlot = −1, finalShare= x;
7 for i=0 to k-1 do
8 j = hi(x); // get an index by hashing the element

9 if GBFS [j]==NULL then
10 if emptySlot ==−1 then
11 emptySlot=j; // reserve this location for finalShare

12 else
13 GBFS [j]

r← {0, 1}λ; // generate a new share

14 finalShare=finalShare⊕GBFS [j];
15 end
16 else
17 finalShare=finalShare⊕GBFS [j]; // reuse a share

18 end
19 end
20 GBFS [emptySlot]=finalShare; // store the last share

21 end
22 for i= 0 to m− 1 do
23 if GBFS[i]==NULL then
24 GBFS [i]

r← {0, 1}λ;
25 end
26 end

Algorithm 2: QueryGBF (GBFS, x, k,H)

input : A gabled Bloom filter GBFS , an element x, k, H = {h0, ...hk−1}
output: True if x ∈ S, False otherwise

1 recovered = {0}λ;
2 for i=0 to k-1 do
3 j = hi(x);
4 recovered = recovered⊕GBFS [j];
5 end
6 if recovered == x then
7 return True;
8 else
9 return False;

10 end

8

where p′ = 1− (1− 1/m)k(n−1).

Proof. Algorithm 1 fails when emptySlot remains −1 after the inner loop (line 20). This hap-
pens when adding an element to the GBF, all locations the element hashes to have been occupied
by previously added elements. Because in this case, at most n− 1 elements have been added to
the GBF, the probability of a particular position is occupied is at most p′ = 1−(1−1/m)k(n−1).
The probability of all k locations have been occupied can be obtained in the same way as the

false positive probability of an (m,n, k,H)-BF, which is at most p′k× (1 +O(k
p′

√
lnm−k ln p′

m
)).

The success probability is then 1 minus the probability of failure.

In a garbled Bloom filter, each location is a λ-bit string that is either a share of certain
elements or a random string. Analogously, a share in a gabled Bloom filter is equivalent to a
“1” bit in a Bloom filter, and a random string is equivalent to a “0” bit. Same as the Bloom
filters, there is no false negative when using a GBF because all shares of an encoded element
are guaranteed to be retrievable and the XOR-based secret sharing scheme always produces the
original element when all shares are available. When using a GBF, we need to consider and
differentiate the following two probabilities:

• The collision probability of a GBF is the probability when y is not in S, but it hashes to
the same set of index numbers as some x ∈ S. A collision does not cause false positive:
the recovered string (Algorithm 2) is x but not y so the query result is still false. However
it reveals x. The collision probability is negligible in k. Loosely, we can use the upper
bound of the false positive probability of a Bloom filter as the upper bound of the collision
probability of a garbled Bloom filter. Note that collisions do not affect the security of our
protocol, but may be a concern if a GBF is used in other protocols.
• The false positive probability of GBFS is the probability when y is not in S but the
recovered string equals y coincidentally. This probability is at most 2−λ.

More formally, we have the following theorem:

Theorem 2. Let GBFS be an (m,n, k,H, λ)-garbled Bloom filter, (i) ∀y 6∈ S, x ∈ S :
Pr[(

⊕k−1
i=0 GBFS[hi(y)]) = x] ≤ ε, where ε is the maximum false positive probability in equa-

tion (1). (ii) ∀y 6∈ S : Pr[(
⊕k−1

i=0 GBFS[hi(y)]) = y] ≤ 2−λ.

Proof. We start from the collision probability. Let BFS be the (m,n, k,H)-Bloom filter that
encodes the same set S as GBFS . Now for any y 6∈ S, we query y against both GBFS and
BFS . Whenever the GBF query results in a collision, the Bloom filter query must return a false
positive. This is because by definition, y hashes to the same set of index numbers as some
x ∈ S, so all locations are set to 1 in BFS by x, therefore the Bloom filter query returns true,
but y 6∈ S so this is a false positive. Since a GBF collision implies a Bloom filter false positive,
the collision probability is bounded by the false positive probability of the Bloom filter.

Let’s consider the false positive probability of a GBF. A false positive occurs when y is
not in S but the recovered string equals y. The recovered string is GBFS[h0(y)] ⊕ . . . ⊕
GBFS[hk−1(y)]. Each constitution string GBFS[hi(y)] is either a share of certain elements
or a random string. When y 6∈ S, there are three cases:
Case 1: All constitution strings are shares of the same element in S. We denote the probability
of this case as p1. In this case for sure recovered 6= y because y 6∈ S.
Case 2: The constitution strings are shares of several elements in S. We denote the probability

9

of this case as p2. In this case we can divide the constitution strings into several groups of size
at most k − 1, each group contains the shares of a particular element. From the security of the
XOR-based secret sharing scheme, the XOR result of each group should be a uniformly random
string. Therefore the recovered string is a uniformly random string.
Case 3: At least one of the constitution strings is a random string. The probability of this case
as p3 = 1− p1 − p2. In this case the recovered string is also a uniformly random string.
In all three cases, a false positive occurs if recovered = y. In case 1, the false positive proba-
bility is 0. In the other two cases, the false positive probability is 2−λ. Let B denote the event
that a false positive occurs, and let a1, a2, a3 denote the events that case 1, case 2, case 3 occurs
respectively, by the law of total probability, the false positive probability is:

Pr[B] = Pr[a1]Pr[B|a1] + Pr[a2]Pr[B|a2] + Pr[a3]Pr[B|a3]

= 0 · p1 + 2−λ · p2 + 2−λ · p3

= 2−λ(1− p1) ≤ 2−λ

In summary, with proper parameters, a garbled Bloom filter exhibits similar properties when
encoding set membership: no false negative and negligible false positive.

4.2 Produce an Intersection GBF
In this section we show how to produce an intersection garbled Bloom filter from an (m,n, k,H,
λ)-garbled Bloom filter and an (m,n, k,H)-Bloom filter. The idea is quite similar to creating
an intersection Bloom filter by ANDing two Bloom filters.

Let’s say we have an (m,n, k,H)-Bloom filterBFC that encodes a setC and an (m,n, k,H,
λ)-garbled Bloom filter GBFS that encodes a set S. We use Algorithm 3 to build the intersec-
tion garbled Bloom filter GBFC∩S .

Algorithm 3: GBFIntersection(GBFS, BFC ,m)

input : An (m,n, k,H, λ)-garbled Bloom filter GBFS , an (m,n, k,H)-Bloom filter BFC ,m
output: An (m,n, k,H, λ)-garbled Bloom filter GBFC∩S

1 GBFC∩S= new m-element array of bit strings;
2 for i=0 to m-1 do
3 if BFC [i] == 1 then
4 GBFC∩S [i] = GBFS [i];
5 else
6 GBFC∩S [i]

r← {0, 1}λ;
7 end
8 end

The intuition of the algorithm is this: if an element x is in C ∩ S, then for every position i
it hashes to, BFC [i] must be a 1 bit and GBFS[i] must be a share of x. Therefore by running
the algorithm, all shares of x are copied to the new garbled Bloom filter. That is, all elements in
C∩S are preserved in the new garbled Bloom filter. On the other hand, if x is not in C∩S, then
with a high probability, at least one share will not be copied. Or in other words, elements not
in C ∩ S are eliminated from the new garbled Bloom filter. Thus the new garbled Bloom filter
is indeed a garbled Bloom filter that encodes the intersection. Formally, we have the following
theorem:

10

Theorem 3. Let GBFC∩S be an (m,n, k,H, λ)-garbled Bloom filter produced in Algorithm 3.
For 0 ≤ i ≤ k− 1, let ai be the event that GBFC∩S[hi(x)] equals the ith share of x, we have (i)
∀x ∈ C ∩ S: Pr[a0 ∧ . . . ∧ ak−1] = 1, (ii) ∀x 6∈ C ∩ S: Pr[a0 ∧ . . . ∧ ak−1] is negligible in k.

Proof. The first part: we can see from the algorithm that for any element x ∈ C ∩ S, all the
shares will be copied from GBFS to GBFC∩S because the corresponding locations in BFC are
all set to 1.

The second part: Firstly, GBFC∩S does not encode any element x 6∈ S because GBFS
contains no share of any element x 6∈ S. Secondly, for any element x ∈ S − C ∩ S, the
probability of all its shares are copied from GBFS to GBFC∩S is ε, where ε is the upper bound
of the false positive probability of an (m,n, k,H)-BF. This is because if all shares of x are
copied to GBFC∩S then it means all locations that x hashes to in BFC are set to 1. However
x 6∈ C ∩ S and consequently x 6∈ C, then it implies a false positive when we query x against
BFC and the probability is ε.

From security point of view, a more interesting property of the intersection GBF is that it is
indistinguishable from a GBF built from scratch that encodes C ∩ S.

Theorem 4. Given sets C, S and their intersection C ∩ S, let GBFC∩S be an (m,n, k,H, λ)-
garbled Bloom filter produced by Algorithm 3 from GBFS and BFC , let GBF ′C∩S be another
(m,n, k,H, λ)-garbled Bloom filter produced by Algorithm 1 using C∩S, we haveGBFC∩S

c≡
GBF ′C∩S .

Proof. Given GBFC∩S , we modify it to get GBF ′′C∩S . We scan GBFC∩S from the beginning
to the end and for each location i, we modify GBFC∩S[i] using the following procedure:

1. If GBFC∩S[i] is a share of an element in C ∩ S, then do nothing.
2. Else if GBFC∩S[i] is a random string, do nothing.
3. Else if GBFC∩S[i] is a share of an element in S − C ∩ S, replace it with a uniformly

random λ-bit string.

The result is GBF ′′C∩S . Every GBFC∩S[i] must fall into one of these three cases, so there is no
unhandled case.

Now we argue that the distribution of GBF ′′C∩S is identical to GBF ′C∩S . To see that, let’s
compare each location in GBF ′′C∩S and GBF ′C∩S . From Algorithm 1 and the above procedure,
we can see that GBF ′′C∩S and GBF ′C∩S contain only shares of elements in C ∩ S and random
strings. Because GBF ′′C∩S and GBF ′C∩S use the same set of hash functions, for each 0 ≤ i ≤
m − 1, GBF ′′C∩S[i] is a share of an element in C ∩ S iff GBF ′C∩S[i] is a share of the same
element; GBF ′′C∩S[i] is a random string iff GBF ′C∩S[i] is a random string. The distribution of
a share depends only on the element and the random strings are uniformly distributed. So the
distribution of every location in GBF ′′C∩S and GBF ′C∩S are identical therefore the distributions
of GBF ′′C∩S and GBF ′C∩S are identical.

Then we argue that the distribution of GBF ′′C∩S is identical to GBFC∩S except for a negli-
gible probability η.
Case 1, GBFC∩S encodes at least one elements in S − C ∩ S. In this case the distribution of
GBF ′′C∩S differs from the distribution of GBFC∩S . From Theorem 3, the probability of each
element in S−C∩S being encoded inGBFC∩S is ε. Since there are d = |S|−|C∩S| elements
in S − C ∩ S, the probability of at least one element is falsely contained in GBFC∩S is:

11

η =
d∑
i=1

(
d

i

)
· εi =

d∑
i=1

d(d− 1)...(d− i+ 1)

i(i− 1)...1
· εi ≤

d∑
i=1

(dε)i ≤ 2dε (2)

As we can see η is negligible if ε is negligible.
Case 2: GBFC∩S encodes only elements from C ∩ S. In this case, each element in S − C ∩ S
may leave up to k− 1 shares in GBFC∩S . The only difference between GBFC∩S and GBF ′′C∩S
is that in GBF ′′C∩S , all “residue” shares of elements in S − C ∩ S are replaced by random
strings. From the security of the XOR-based secret sharing scheme, the residue shares should
be uniformly random (otherwise they leak information about the elements). Thus the procedure
does not change the distribution when modifying GBFC∩S into GBF ′′C∩S . So the distributions
of GBFC∩S and GBF ′′C∩S are identical. The probability of this case is at least 1− η.

Since GBF ′′C∩S ≡ GBF ′C∩S always holds and GBFC∩S ≡ GBF ′′C∩S holds in case 2, we
can conclude that Pr[GBFC∩S ≡ GBF ′C∩S] ≥ 1− η thus
|Pr[D(GBFC∩S) = 1]− Pr[D(GBF ′C∩S) = 1]| ≤ η

Theorem 4 shows that the probability of GBFC∩S and GBF ′C∩S are distinguishable is η.
In our implementation we set k = λ so ε is about 2−λ, then a question may arise whether
this is appropriate: since η is bounded by 2dε, will the security be weakened? For example
if λ = 80 and d = 220, will the security be weakened to about 60-bit rather then desired 80-
bit? The answer is no. Loosely speaking, a bigger d means that an adversary can distinguish
GBFC∩S and GBF ′C∩S with a smaller number of attempts, but in each attempt the amount of
computation required to distinguish the two also increases. Therefore the total amount of work
needed to distinguish the two remains unchanged. We demonstrate it through the following
game: an adversary can query an oracle with two sets S and C of its choice. The oracle
randomly chooses b r← {0, 1}, if b = 1, it returns GBFC∩S , if b = 0, it returns GBF ′C∩S .The
adversary can repeatedly query the oracle. At the end of the game, it challenges the oracle and
outputs b′. It wins the game if b′ = b. The advantage is |Pr[b′ = b] − 1

2
|. As we show in

Theorem 5, the advantage depends only on ε, not η.

Theorem 5. For an adversary runs in time t, the adversary’s advantage in the above game is
no more than O(t) · ε.

Proof. In each oracle query, the adversary has a probability of η to distinguish GBFC∩S and
GBF ′C∩S . Therefore if it makes q oracle queries, the advantage will be q · η. The number of
oracle queries the adversary can make is t/td, where td is the time needed to check whether the
GBF encodes an element that is not in the intersection. As there is no way other than querying
the GBF to decide, the best the adversary can do is to query all elements in S − C ∩ S against
the GBF. Therefore td = |S−C∩S| · tg = d · tg, where tg is the time of a GBF query. Therefore
the advantage of the adversary is: q · η = t

td
· η ≤ t

d·tg · 2dε = O(t) · ε.

4.3 Oblivious Bloom Intersection

The idea of the basic protocol is shown in Figure 2. That is, to run Algorithm 3 by two parties
using oblivious transfer. Thus we call it oblivious Bloom intersection. The protocol runs as
follows:

12

Client Server

set : C set : S

GBFSBFC

queryGBFπ
C∩SC ∩ S

OTm
λ

n,m, k, λ, h0, . . . , hk−1

Figure 2: The basic PSI protocol π∩

1. The server’s private input is S, the client’s private input is C. The auxiliary inputs include
the security parameter λ, the maximum set size n, the optimal Bloom filter parameters
m, k and H = {h0, ..., hk−1}. The parameter k is set to be the same as the security
parameter λ.

2. The client generates an (m,n, k,H)-BF that encodes its private setC, the server generates
an (m,n, k,H, λ)-GBF that encodes its private set S. The client uses its Bloom filter
as the selection string and acts as the receiver in an OTmλ protocol. The server acts as
the sender in the OT protocol to send m pair of λ-bit strings (xi,0, xi,1) where xi,0 is a
uniformly random string and xi,1 is GBFS[i]. For 0 ≤ i ≤ m− 1, if BFC [i] is 0, then the
client receives a random string, ifBFC [i] is 1 it receivesGBFS[i]. The result isGBF π

C∩S .
3. The client computes the intersection by querying all elements in its set against GBF π

C∩S .

At the end of step 2, the client receives a new garbled Bloom filter GBF π
C∩S . The OT

protocol does exactly what we want to achieve in Algorithm 3.

Theorem 6. Given an (m,n, k,H, λ)-Garbled Bloom filter GBFS and an (m,n, k,H)-Bloom
filter BFC . the garbled Bloom filter GBF π

C∩S is equivalent to a garbled Bloom filter GBFC∩S
that is built by Algorithm 3 using GBFS and BFC .

Proof. Let’s run the algorithm and protocol simultaneously and use the same random coins
for the random strings that are to be placed in GBF π

C∩S and GBFC∩S . From the description
of the algorithm and the protocol, we can see that for 0 ≤ i ≤ m − 1, if BFC [i] = 1, then
GBF π

C∩S[i] = GBFC∩S[i] = GBFS[i]; if BFC [i] = 0, then GBF π
C∩S[i] = GBFC∩S[i] = ri

where ri is a uniformly random strings. Therefore the two garbled Bloom filters are equivalent.

Informally, the correctness of the protocol follows from Theorem 3 and 6. The protocol
produces a garbled Bloom filter that encodes C ∩ S, then by querying it the client can obtain
the correct intersection except for a negligible probability. To see why the protocol is secure,
notice that the only messages being sent in the protocol are the messages in the OT protocol.
The client’s privacy is protected because the server learns no information about BFC in the OT
execution. The server’s privacy is protected because the client receives only GBF π

C∩S from the
server and it contains only information about elements in C ∩ S.

The reader may have noticed that the OT protocol can also be used to AND two Bloom
filters in a similar way and create an intersection Bloom filter BFC∩S on the client side. Then
do we really need the garbled Bloom filter? Can the server just encode its set into a Bloom filter
and run the protocol? The quick answer is we do need the garbled Bloom filter. BFC∩S leaks

13

PK ops SK ops Memory Comm.
Huang’s O(λ) O(n log n) O(n log n) O(n log n)

De Cristofaro’s O(n) O(n) O(n) O(n)
The Basic Protocol O(λ) O(n) O(n) O(n)

Table 1: Asymptotic Costs Comparison: n is size of the input sets, λ is the security parameter,
PK (SK) ops means public (symmetric) key operations.

information about the server’s set because it contains more 1 bits than the Bloom filter built
from scratch using C ∩ S. The expected number of additional 1 bits is (tS−t∩)(tC−t∩)

m−t∩ , where
tS, tC , t∩ are the number of 1 bits in BFS, BFC and the the Bloom filter built from scratch
using C ∩ S respectively [38]. The additional knowledge the client gets is the additional 1 bits
in BFC∩S .

The protocol makes a single call to OTmλ , so the efficiency depends largely on the efficiency
of the underlying OT protocol. If we use the semi-honest OT extension protocol from [27] and
the Naor-Pinkas OT [35], then:
Computational complexity: To build BFC or GBFS , each party needs k · n hash operations.
Then the server needs λ public key operations and the client need 2λ public key operations for
the Naor-Pinkas OT, and both parties need m = kn log2 e ≈ 1.44kn hash operations for the OT
extension.
Memory complexity: The client needs to keep a copy of the Bloom filter and a copy of the in-
tersection Garbled Bloom filter which in total need at most (λ+1)m bits. This can be optimized
to (λ/2 + 1)m bits because the client can throw away the string received when BFC [i] = 0 and
leave GBF π

C∩S[i] = NULL. The server needs to store the garbled Bloom filter that is λ · m
bits.
Communication complexity: The main data sent in the protocol is a bit matrix required by the
OT extension and the strings sent by the server in the OT extension. In total 2λ · m bits. All
other communication costs are much less significant and can be ignored.

A quick asymptotic costs comparison of Huang’s, De Cristofaro’s and our basic protocol is
shown in Table 1.

4.4 Security Analysis
Now we sketch the security proof of the basic protocol. The basic protocol is secure in the
semi-honest model. The main theorem is stated below:

Theorem 7. Let C, S be two sets from a predefined universe, f∩ be the set intersection function
defined as:

f∩(C, S) = (fC(C, S), fS(C, S)) = (C ∩ S,Λ).

Assuming the underlying OTmλ protocol is secure, then the basic PSI protocol π∩ in Section 4.3
securely computes f∩ in the presence of semi-honest adversaries.

Proof. (sketch) If the OTmλ is secure then the simulators for the sender and receiver are guaran-
teed to exist, we can use them as subroutines when constructing our simulators.
Server’s view We start from the case in which the server is corrupted. We construct a simulator
SimS that receives the server’s private input and output and generates the view of the server in

14

the protocol. Given S, the simulator SimS uniformly chooses its random coins rs and generates
the garbled Bloom filter GBFS that encodes its set S. Then SimS invokes the simulator of
the OT sender SimOT

snd that is guaranteed to exist. SimS obtains SimOT
snd’s view for the OT

protocol. Finally SimS outputs the simulated view: (S, rS,SimOT
snd(GBFS,Λ)). We then need

to show that the view is indistinguishable from a view in an execution of π∩. A view of the
real protocol execution contains the input S, the random coins and the messages in the OT
protocol. In the simulated view, the input set S is the same as in the view of a real execution,
the outcome of internal random coins rs is uniformly random thus the distribution is the same
as in a real execution. As the OT protocol is secure, then the distribution of the view produced
by SimOT

snd(GBFS,Λ) should be indistinguishable from the view in a real execution of the OT
protocol. Thus we conclude the simulated view is indistinguishable from a real view.
Client’s view We construct a simulator SimC that is given the client’s private input C and the
output C ∩ S. SimC chooses its random coins rc. It then generates the Bloom filter BFC to
encode its set and the garbled Bloom filter GBFC∩S from scratch using Algorithm 1. It then
invokes the simulator of the OT receiver SimOT

rec withBFC andGBFC∩S . SimC obtains the view
for the OT protocol. Finally SimC outputs the simulated view: (C, rc, GBFC∩S,SimOT

rec (BFC ,
GBFC∩S)). The view of a real protocol execution contains the input set C, the random coins,
the garbled Bloom filter GBF π

C∩S , and the messages in the OT protocol. In the simulated view,
the input set C and rc should be indistinguishable from the counter parts in the real view. The
garbled Bloom filterGBFC∩S is indistinguishable fromGBF π

C∩S as we have shown in Theorem
4 and 6. The rest parts in the views are the simulated OT messages and the OT messages in the
real execution. As the OT protocol is secure, then they should be indistinguishable. Thus we
conclude the simulated view is indistinguishable from a real view.

Combine the above, we conclude that:

{SimS(S, fS(C, S)}C,S
c≡ {viewπ

S(C, S)}C,S

{SimC(C, fC(C, S))}C,S
c≡ {viewπ

C(C, S)}C,S
and finish our proof.

5 The Enhanced Protocol
In this section, we present a fully secure PSI protocol whose security holds in the presence of
malicious parties. The protocol is shown in Figure 3. The security model and proof can be
found in the Appendix.

In the basic protocol, the interaction between the two parties is essentially an oblivious trans-
fer. At the first glance, it seems that we can easily obtain a fully secure protocol by replacing
the semi-honest OT protocol with one that is secure against malicious parties. However, this
is not enough. A fully secure OT protocol can prevent malicious behaviors such as changing
input during the protocol execution but it cannot prevent a malicious client from mounting a
full universe attack.

In a full universe attack, a malicious client encodes the full universe of all possible elements
in its Bloom filter and uses it in the PSI protocol to learn the server’s entire set. A Bloom filter
can easily represent the full universe by setting all the bits to 1. This is a special feature of
Bloom filters and it causes a problem when we try to construct a simulator for the client in the

15

Server’s input: Set S
Client’s input: Set C
Auxiliary input: the security parameter λ , parameters for BF and GBF n, k = λ,m = 2kn,H =
{h0, . . . , hk−1}, a secure block cipher E.

1. The client generates a Bloom filter BFC . The client then generates m λ-bit random strings,
say r0, ...rm−1. The client sends the random strings to the server.

2. The server generates the garbled Bloom filter GBFS . The server generates a random key sk
for the block cipher E. For 0 ≤ i ≤ m − 1, the server computes ci = E(sk, ri||GBFS [i]).
The server also uses a (m/2,m)-secret sharing scheme to split sk intom shares (t0, ..., tm−1).

3. The server and the client engage in an OT protocol that is secure against malicious parties.
The client uses BFC as the selection string and the server uses as input two sets of strings ci
and ti (0 ≤ i ≤ m − 1). As a result of the protocol, if BFC [i] = 1, the client receives ci; if
BFC [i] = 0,the client receives ti.

4. The client recovers sk from the shares it received in the OT. The client creates a garbled
Bloom filter GBFC∩S of size m as follows. For 0 ≤ i ≤ m − 1 if BFC [i] = 0 then
GBFC∩S [i]

r← {0, 1}λ; if BFC [i] = 1, the client decrypts ci and gets di = E−1(sk, ci),
checks whether the first λ-bit equals ri that is sent in step 1. If yes then skip the first λ bits in
di and copy the second λ bits to GBFC∩S [i]. Otherwise output ⊥ and terminate. Finally, the
client queries GBFC∩S with its own set C and outputs C ∩ S.

Figure 3: The Enhanced PSI protocol

malicious model. Namely, when the adversary uses the all-one Bloom filter, the simulator needs
to enumerate all elements in the universe and send them to the trusted party in the ideal process.
Without making any assumptions, the universe is potentially too large and a polynomial time
algorithm may fail to enumerate all elements.

To prevent the full universe attack, we add a step to make sure that the client’s Bloom filter
is not all-one. More specifically, the server uses a symmetric key block cipher to encrypt strings
in its garbled Bloom filter before transferring them to the client. It forces the client to behave
honestly by splitting the key into m shares using a (m/2,m)-secret sharing scheme. The client
uses the bit array in its Bloom filter as the selection string to receive the intersection garbled
Bloom filter and the shares of the key. If the bit in the selection string is 0, the client receives a
share of the key; if the bit is 1, the client receives an encrypted string in GBFS . The intuition
is that if the client cheats by using an all-one Bloom filter, it will not be able to gather enough
shares to recover the key, and thus will not be able to decrypt the encrypted garbled Bloom
filter. In the protocol we set m = 2kn in order to make sure that the client’s Bloom filter has
at least m/2 0 bits to receive enough shares to recover the key. Since the client has at most
n elements and each element needs to be hashed k times, then the number of 1 bits in BFC
will never exceed kn = m/2, consequently the number of 0 bits will always be at least m/2.
Although in this setting m is not optimal, the overhead is acceptable given the optimal number
of m is about 1.44kn.

The added step will not affect the client’s privacy, but may affect the correctness of the
protocol if a malicious server sends wrong shares of the key or uses a different key to encrypt
its garbled Bloom filter. The client cannot detect it because the key is random and the strings
in the garbled Bloom filter look random. To prevent this malicious behavior, we also require

16

Ours De Cristofaro’s Huang’s
80 SHA-1, NIST P-192 curve RSA 1024, SHA-1 1024-bit p, 160-bit q, SHA-

1
128 SHA-1 (filter), SHA-256

(OT), NIST P-256 curve
RSA 3072, SHA-1 3072-bit p, 256-bit q, SHA-

1
192 SHA-1 (filter), SHA-384

(OT), NIST P-384 curve
RSA 7680, SHA-1 7680-bit p, 384-bit q, SHA-

256
256 SHA-1 (filter), SHA-512

(OT), NIST P-521 curve
RSA 15360, SHA-1 15360-bit p, 512-bit q, SHA-

256

Table 2: Security parameters and settings

the client to send m λ-bit random strings (r0, ..., rm−1) to the server before the OT. For each
GBFS[i], the server encrypts ri||GBFS[i] (|| means concatenation) and sends the ciphertext in
the OT. After the transfer, the client can recover the key and decrypt the received ciphertexts. If
the server is honest, then the client can correctly decrypt using the key it recovered and ri should
present in the decrypted message. For each garbled Bloom filter string the client received, the
probability of the server getting away with cheating is 2−λ.
Efficiency In [27] a fully secure version of the OT extension protocol is given. It uses the cut-
and-choose approach to ensure a malicious party can cheat with at most 2−Ω(λ) probability. The
major overhead of the fully secure protocol is introduced by the non-optimal m and cut-and-
choose, which increase the communication and computation complexity of the semi-honest one
by a factor of 1.4λ. Overhead introduced by other parts of our protocol is small. The additional
computational overhead in our protocol includes: the server needs to perform m encryptions
and to use the threshold secret sharing scheme to split the key, the client needs to perform
m/2 decryptions, to recover the key. The additional communication overhead in our protocol
includes: m · λ bits for sending the random strings of in step 1.

6 Implementation and Evaluation

6.1 Implementation

We have implemented a prototype of the basic protocol in C. The source code (and its Java port)
is released online1. It uses OpenSSL (1.0.1e) for the cryptographic operations. We currently
use keyed SHA-1 to build/query Bloom filters and garbled Bloom filters2. Namely each hi(x)
is instantiated as sha1(si||x) mod m, where si is a unique salt. We implement the semi-honest
OT extension protocol [27] on top of the Naor-Pinkas OT protocol [35]. The hash functions
in the OT extension protocol are instantiated depending on the security parameter. When hash
values need to be truncated, the truncation follows the steps specified by the NIST [18]. We use
the NIST elliptic curve groups over Fp [37] for the public key operations required by the Naor-
Pinkas OT protocol. We use elliptic curve groups because they are much faster than integer
groups at high security levels.

The C prototype has two executables, one for the client and one for the server. The client
and server communicate through TCP. The prototype can work in two modes: pipelined and

1http://personal.cis.strath.ac.uk/changyu.dong/PSI/PSI.html
2Cryptographically strong hash functions are not necessary here. Later we will change to more efficient hash functions e.g. MurmurHash

[2] that has been used by Apache Hadoop and Cassandra in their Bloom filter implementation.

17

parallel. In the pipelined mode, on each side, the computation is done in a single thread, an
additional thread transmits data in parallel when possible. Parallel data transmission enables the
server or the client to start working immediately without waiting for the other party to complete
its computation. The parallel mode extends the pipeline mode by utilizing all CPU cores and
distributing tasks on all cores evenly. Our test result shows that the parallel mode can improve
the performance significantly on multicore systems. This is due to the fact that the computation
in our protocol is dominated by independent hashing. Namely, on each side, n independent
set elements each needs to be hashed k times to build the Bloom filter or the garbled Bloom
filter, also hashing of m matrix rows are needed in the OT extension protocol. As the data to
be hashed is independent, this is a perfect SPMD (single program multiple data) scenario. The
program detects the number of cores available, decides the number of threads, evenly allocates
a portion of data to each thread, and then launch the threads to execute the tasks in parallel. The
hash values are then consumed by main threads that run the protocol. This approach requires
only minimal changes to the program structure. For example, only one line (line 8) needs to be
changed in Algorithm 1. Namely instead of hashing the element, the algorithm reads from an
array a precomputed index number.

6.2 Performance Evaluation

In this section we show the performance evaluation results of our prototype. All experiments
were conducted on two Mac computers. The server is a Mac Pro with 2 Intel E5645 6-core
2.4GHz CPUs, 32 GB RAM and runs Mac OS X 10.8. The client is a Macbook Pro laptop with
an Intel 2720QM quad-core 2.2 GHz CPU, 16 GB RAM and runs Mac OS X 10.7. The two
computers are connected by 1000M Ethernet. The security settings of the experiments in this
and the next section are summarized in Table 2. In all experiments we set BF/GBF parameter
k = λ so the false positive probability of a BF is at most 2−λ, we set m to be the optimal value
kn log2 e. For example, at 80-bit security k = λ = 80, and when n = 220, m = 120795960.
We use randomly generated int sets in the experiments. We measure the total running time of
the protocol. The measurement starts from the client sending the request and ends immediately
after the client outputting the intersection. The time includes all operations such as building
the Bloom filter, building the garbled Bloom filter, the full OT extension protocol (including
the underlying Naor-Pinkas OT), data transmission, and the client-side query for obtaining the
intersection. We do not, however, include the time for initialization tasks, e.g. to generate
random sets, to interpret the command line arguments, and to setup sockets.

We first show the performance of the prototype working in the pipelined mode. In the
pipelined mode, all computation on each side is done in a single thread. We vary the set size
(n) from 210 to 220 and security parameters (λ and k) from 80 to 256. The result is shown in
Figure 4a. We can see the running time increases almost linearly in the set size at each security
level. And for each increase in security parameter, the running time increases only by a factor
of approximately 2. We also measured the time for each individual step of the protocol. In the
experiments, we fix the set size (220) and vary only security levels. The result is shown in Figure
4b. We can see the protocol running time is dominated by the OT execution. This suggests that
with a more efficient OT protocol, the total running time can be further reduced.

Then we show the performance of the parallel mode. In the parallel mode, we use multiple
threads for computation. The result is shown in Figure 4c. The total running time in the parallel
mode is much less than in the pipelined mode. At 80-bit security, million elements set inter-

18

80128192256
1,024

4,096
16,384

65,536
262,144

1,048,576

0

200

400

600

800

1000

1200

1400

1600

1800

Set Size

Security Level

T
im

e
 (

S
e

c
)

(a) Performance: the pipelined mode
(b) Running time of each step in the pipelined
mode

80128192256
1,024

4,096
16,384

65,536
262,144

1,048,576

0

50

100

150

200

250

300

350

Set Size

Security Level

T
im

e
 (

S
e
c
)

(c) Performance: the parallel mode

80 128 192 256
0

200

400

600

800

1000

1200

1400

1600

1800

Security Level

T
im

e
 (

S
e
c
)

set size=1,048,576

parallel

pipelined

unencrypted pairwise comparison (best case)

unencrypted pairwise comparison (worst case)

(d) A comparison of running time in the two
modes

Figure 4: Performance of our basic protocol

section can be done in 41 seconds. In the highest security setting, the same computation can
be done in 339 seconds – that is less than 6 minutes. A comparison of the performance in the
two modes is shown in Figure 4d. The client has 4 cores and the server has 12 cores, and we
can see that the parallel mode is about 5 times faster than the pipelined mode. This shows that
our protocol can fully take the advantage of the multicore architecture. We believe the ability
to easily scale up to multiple cores is a clear advantage of our protocol and makes the protocol
suitable for large scale private data processing.

The performance of our protocol can even beat some inefficient plain algorithms in some
settings. For example, Figure 4d shows the time needed for a single threaded C program to
compute the intersection of two unencrypted random sets (n = 220) by pairwisely comparing
the elements. It needs 429 seconds in the best case when C = S, and needs 844 seconds in the
worst case when C ∩ S = ∅.

19

80-bit Security
PPPPPPPPprotocol

Set size
210 212 214 216 218 220

Huang’s(Java) 19 65 331 2049 22853 98468†

Our pipelined (Java) 0.693 2.34 7.02 31.5 110.6 426
Our parallel (Java) 0.195 0.431 1.42 6.31 25 91
De Cristofaro’s (C) 0.590 2.41 9.84 41.3 159 641
Our pipelined (C) 0.275 0.863 3.37 13.9 54.0 237
Our parallel (C) 0.075 0.207 0.642 2.49 9.49 40.9

256-bit Security
Huang’s (Java) 32 157 733 4647 43156 185570†

Our pipelined (Java) 8.2 20.3 68.44 313.4 1298 5421
Our parallel (Java) 1.5 3.2 10.5 54 215 1132
De Cristofaro’s (C) 462 1850 7419 29654 118286 473144†

Our pipelined (C) 4.09 8.94 29.8 113 453 1852
Our parallel (C) 0.741 1.53 4.68 17.8 74.2 339

All time shown in the table are in seconds. † – estimated running time

Table 3: Performance comparison

1024 262144
0

2000

4000

6000

8000

10000

12000

14000

Set size

B
a
n

d
w

id
th

 c
o

n
s
u

m
p

ti
o

n
 (

M
B

)

De Cristofaro

Our

Huang

(a) Bandwidth Consumption: 80-bit security

1024 262144
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Set size

B
a
n

d
w

id
th

 c
o

n
s
u

m
p

ti
o

n
 (

M
B

)

De Cristofaro

Our

Huang

(b) Bandwidth Consumption: 256-bit security

Figure 5: Bandwidth Consumption Comparison

6.3 Performance Comparison

We compared the performance of our basic protocol against two other semi-honest PSI pro-
tocols. The protocols we compared to are De Cristofaro’s RSA-OPRF protocol (implemented
in C) and Huang’s Sort-Compare-Shuffle with Waksman Network protocol (implemented in
Java). They are previously the fastest PSI protocols and the code has been optimized by the
authors. We test the two protocols on the same hardware and OSes that we use for testing ours.
De Cristofaro’s C implementation is compiled with OpenSSL 1.0.1e and GMP 5.1.1 using gcc.
The RSA public exponent is 3 in all tests. We run Huang’s Java code using Java 1.7.0 12.
The element bit length in Huang’s protocol is set to 32. As it is unfair to compare the perfor-
mance of Huang’s Java code with our C code, we ported our C code to Java and measured the
performance.

We measured the total running time of the protocols. De Cristofaro’s code outputs running

20

time so we use the output directly3. Huang’s code has no such output, and we measure the
running time of the execution() function in the Program class.

The comparison in Table 3 shows that in all settings, both modes of our protocol are faster
than the other two protocols. Both De Cristofaro’s implementation and Huang’s implementation
pipeline the protocol execution, which is exactly what we do in the pipelined mode. Therefore
the performance of these three can be compared directly4. The performance of De Cristofaro’s
protocol is close to ours at 80-bit security and is faster than Huang’s. But when the security
parameter increases to 256-bit, it becomes much slower than our protocol and Huang’s. This
is because De Cristofaro’s protocol is based mainly on public key operations, while ours and
Huang’s protocols rely on mostly symmetric key operations. Put aside differences caused by
languages and implementation, our protocol is faster than Huang’s because it requires the same
number of public key operations but significantly less symmetric key operations. For example,
at 80-bit security with 220 input size, our protocol requires 0.4 billion symmetric key operations,
while Huang’s requires 8.5 billion (1.7 billion non-free gates, each requires 4 symmetric key
operations to build and another 1 to evaluate).

We skip the test with the biggest input size (220) on De Cristofaro’s protocol at 256-bit
security because it would take too long. The running time of De Cristofaro’s protocol is linear
in the input size, our estimation is that it would need 131 hours to finish. This estimation
is based on the result of test with 218-element sets at the same security level. The JVM on the
client computer ran out of memory (16 GB) when we testing Huang’s protocol with 220-element
sets at 80-bit security. The test was repeated twice and both times we got the same error. We
could not finish the test but base on the test result of input size 218, we estimate the test would
need 27 hours. This estimation is somehow far from the time reported by the authors, that is
6 hours. However the test had been running for more than 24 hours before the JVM threw
the error. Therefore we believe the estimation is reasonable. We observed excessive paging
activities during the test on the client computer because the JVM occupied all free memory (14
GB). This may account for the difference between our estimation and the authors’ measurement.
Because at 256-bit security Huang’s protocol requires even more memory, we skip the test with
220 input size and estimate the running time to be 51 hours from test result of input size 218.

We also measured bandwidth consumption of the protocols. As we couldn’t finish the tests
with the other protocols using 220 input size, the largest input size we used in the experiment
was 218. The results are shown in Figure 5. As we can see, the bandwidth consumption of De
Cristofaro’s and our protocol is almost linear. Our protocol consumes more bandwidth than De
Cristofaro’s protocol but less than Huang’s protocol.

6.4 Further Parallelization
GPGPUs For many personal computers, a readily available massive parallel computing device
is the graphic cards. Modern GPUs have hundreds of processing cores and can provide ample
computation cycles and high memory bandwidth to massively parallel applications. The com-
putation in our protocol can be easily parallelized and therefore is an ideal application for GPU
acceleration. We have started implementing the protocol on top of OpenCL [3]. A test on our
GPU version of SHA-1 shows that on an ATI Radeon HD 5770 graphic card, it only takes 37.5

3We exclude the running time of the last step in the protocol. In this step the client searches the hash values received in the protocol to
find the intersection. This step is excluded because it uses an inefficient pairwise comparison and the authors plan to replace it with a hashtable
search.

4De Cristofaro’s code uses two threads on each side for computation. But this does not affect the comparison result.

21

input
set

map

<bin,(element,[index])>

shuffle reduce

GBFbin1

GBFbin2

OT

GBFbin0

Figure 6: MapReduce on the server side

milliseconds to perform 1 million hash operations. This is about 5 times faster than a single 2.4
GHz CPU core.
Extremely Big Data Set & Cloud Computing In practice, to process extremely big data set,
we have to distribute the task on multiple computers. New computing paradigms such as cloud
computing make it possible to execute such distributed tasks “on demand”. Our protocol can be
easily deployed on cloud platforms. Here we show how to do it with the semi-honest protocol.
The fully secure protocol case is similar. From a high level point of view, the client and the
server throw their elements into bins using an hash function. Each side has b bins and each bin
contains about dn

b
e elements. Then they build Bloom filters and garbled Bloom filters for each

bin. The parameter k is still determined by the desired false positive probability, the parameter
m is determined by k and the bin size. The filters are associated with the bin number. Then for
each 0 ≤ i < b, the server uses OT to transfer the garbled Bloom filter for bin i to the client,
who uses its Bloom filter for bin i as the selection string. The client then queries all elements in
its bin i against the received garbled Bloom filter and adds any positive elements into the result
set. In the end, the client has the intersection. Conceptually, this splits a big set into b smaller
sets that each can be handled by a single node. It is correct because the two parties use the same
hash function so an element thrown by the server into bin i will also be threw by the client into
bin i. The idea can be implemented using the MapReduce programming model [19] easily. For
example, figure 6 depicts the MapReduce procedure of the first step on the server side with 3
bins: the map function takes a portion of the input set and maps an element into a key-value
pair such that the key is the bin number and the value is a tuple consists of the element and k
index numbers. The MapReduce framework shuffles and groups together the values returned
by the map function that have the same key. The reduce function generates a garbled Bloom
filter of a certain bin and outputs it for OT. We are currently experimenting with Hadoop [1] to
implement the protocol in MapReduce.

7 Conclusion and Future Work
In this paper we presented a highly efficient and scalable PSI protocol based on oblivious Bloom
intersection. The protocol depends mostly on efficient symmetric key operations and the op-
erations can be parallelized easily. We presented two variants of the protocol: the basic one is
secure in the semi-honest model and the enhanced one is secure in the malicious model. The
performance evaluation and comparison results show that our protocol is orders of magnitude

22

faster than the previously fastest protocols. The results also show that our protocol can fully
utilize the parallel processing capability provided by the multicore architecture. The efficiency
and scalability make our protocol suitable for large scale privacy preserving data processing.

As discussed in Section 6.4, we are in the process of prototyping the protocol on GPGPUs
and MapReduce. The preliminary results of this work is encouraging. We hope more paral-
lelization options could enable more applications in various computing environments.

In the field of cryptographic protocols, we have seen many examples that a new protocol
improves performance of previous work by using a better algorithm. It is different in this work:
the performance gain comes mainly from a better data structure. We would like to continue our
research along this line. Namely we will investigate, adapt and design better data structures, so
that they can be used in the design of more efficient cryptographic protocols.

References
[1] Hadoop. http://hadoop.apache.org/.
[2] Murmurhash. https://code.google.com/p/smhasher/.
[3] Opencl. http://www.khronos.org/opencl/.
[4] C. C. Aggarwal and P. S. Yu, editors. Privacy-Preserving Data Mining - Models and Algorithms,

volume 34 of Advances in Database Systems. Springer, 2008.
[5] G. Ateniese, E. D. Cristofaro, and G. Tsudik. (if) size matters: Size-hiding private set intersection.

In Public Key Cryptography, pages 156–173, 2011.
[6] P. Baldi, R. Baronio, E. D. Cristofaro, P. Gasti, and G. Tsudik. Countering gattaca: efficient

and secure testing of fully-sequenced human genomes. In ACM Conference on Computer and
Communications Security, pages 691–702, 2011.

[7] D. Beaver. Correlated pseudorandomness and the complexity of private computations. In STOC,
pages 479–488, 1996.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[10] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. H. M. Smid, and Y. Tang.
On the false-positive rate of bloom filters. Inf. Process. Lett., 108(4):210–213, 2008.

[11] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh. Openconflict: Preventing real time map
hacks in online games. In IEEE Symposium on Security and Privacy, pages 506–520, 2011.

[12] J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In Financial Cryptogra-
phy, pages 108–127, 2009.

[13] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[14] E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols secure
in malicious model. In ASIACRYPT, pages 213–231, 2010.

[15] E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity.
In Financial Cryptography, pages 143–159, 2010.

[16] E. D. Cristofaro and G. Tsudik. Experimenting with fast private set intersection. In TRUST, pages
55–73, 2012.

[17] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set intersection.
In ACNS, pages 125–142, 2009.

[18] Q. Dang. Sp 800-107 (rev. 1). recommendation for applications using approved hash algorithms.
Technical report, Gaithersburg, MD, United States, 2012.

23

[19] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI,
pages 137–150, 2004.

[20] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Commun.
ACM, 28(6):637–647, 1985.

[21] M. Fischlin, A. Lehmann, T. Ristenpart, T. Shrimpton, M. Stam, and S. Tessaro. Random oracles
with(out) programmability. In ASIACRYPT, pages 303–320, 2010.

[22] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
EUROCRYPT, pages 1–19, 2004.

[23] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[24] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with security
against malicious and covert adversaries. In TCC, pages 155–175, 2008.

[25] C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In
Public Key Cryptography, pages 312–331, 2010.

[26] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than custom
protocols? In NDSS, 2012.

[27] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO,
pages 145–161, 2003.

[28] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot
and secure computation of set intersection. In TCC, pages 577–594, 2009.

[29] S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN, pages 418–435, 2010.
[30] F. Kerschbaum. Outsourced private set intersection using homomorphic encryption. In ASIACCS,

pages 85–86, 2012.
[31] L. Kissner and D. X. Song. Privacy-preserving set operations. In CRYPTO, pages 241–257, 2005.
[32] D. Many, M. Burkhart, and X. Dimitropoulos. Fast private set operations with sepia. Technical

Report 345, Mar 2012.
[33] G. Mezzour, A. Perrig, V. D. Gligor, and P. Papadimitratos. Privacy-preserving relationship path

discovery in social networks. In CANS, pages 189–208, 2009.
[34] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov. Botgrep: Finding p2p bots with

structured graph analysis. In USENIX Security Symposium, pages 95–110, 2010.
[35] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, pages 448–457, 2001.
[36] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location privacy via

private proximity testing. In NDSS, 2011.
[37] NIST. Recommended elliptic curves for federal government use, 1999.
[38] O. Papapetrou, W. Siberski, and W. Nejdl. Cardinality estimation and dynamic length adaptation

for bloom filters. Distributed and Parallel Databases, 28(2-3):119–156, 2010.
[39] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard

Aiken Computation Laboratory, 1981.
[40] B. Schneier. Applied cryptography - protocols, algorithms, and source code in C (2. ed.). Wiley,

1996.
[41] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

A The OT Extension Protocol
The OT extension protocol by Ishai et al [27] is used in our protocol to reduce an OTml protocol
to an an OT λm protocol and then to λ invocations of an OT 1

λ protocol. To make the paper
self-contained, we take the protocol description from [27] and include it here. The following
notation will be used: we denote vectors by bold letters, denote the jth row of a matrix M as
mj and its ith column as mi. The notation b · v where b is a bit and v is a binary vector, should
be interpreted as: it evaluates to 0 if b = 0 and to v if b = 1.

24

Reducing OTml to OT λm

Input of S (sender): m pairs (xj,0, xj1) of l-bit strings, 1 ≤ j ≤ m.
Input of R (receiver): m selection bits r = (r1, . . . , rm).
Common Input : a security parameter λ.
Oracle : a random oracle H : [m]× {0, 1}k → {0, 1}l
Cryptographic Primitive: An ideal OT λm primitive.

1. S initializes a random vector s ∈ {0, 1}λ and R a random m× λ bit matrix T .
2. The parties invoke the OT λm primitive, where S acts as a receiver with input s and R

as a sender with inputs (ti, r⊕ ti), 1 ≤ i ≤ λ.
3. Let Q denote the m× λ matrix of values received by S. (Note that qi = (si · r)⊕ ti

and qj = (rj ·s)⊕tj). For 1 ≤ j ≤ m, S sends yj,0, yj,1 where yj,0 = xj,0⊕H(j,qj)
and yj,1 = xj,1 ⊕H(j,qj ⊕ s)

4. For 1 ≤ j ≤ m, R outputs zj = yi,rj ⊕H(j, tj).

Reducing OT λm to OT λλ

Input of S (sender): λ pairs of m-bits strings (xi,0, xi,1), 1 ≤ i ≤ λ.
Input of R (receiver): λ selection bits r = (r1, . . . , rλ).
Common Input : a security parameter λ.
Oracle : A PRG G : {0, 1}λ → {0, 1}m
Cryptographic Primitive: An ideal OT λλ primitive.

1. S initializes n pairs of random k-bit seeds (si,0, si,1).
2. The parities invoke theOT λλ primitive, where S acts as a sender with inputs (si,0, si,1), 1 ≤
i ≤ λ, and R as a receiver with input r.

3. For 1 ≤ i ≤ λ, S sends (yi,0, yi,1), where yi,b = xi,b ⊕G(si,b).
4. For 1 ≤ i ≤ λ, R outpus zi = yi,ri ⊕G(si,ri).

OT λλ can be obtained by invoking an OT 1
λ primitive λ times.

B Malicious Model
We briefly review the security model in the presence of malicious adversaries. More details can
be found in [23]. In the malicious model, the adversary can behave arbitrarily. The security is
formalized by an ideal process that involves an incorruptible trusted third party. The two parties
send their inputs to the trusted party. The trusted party computes the functionality on the inputs
and sends outputs back. A protocol is said to be secure if any adversary in the real protocol can
be simulated by an adversary in the ideal model.
Ideal Process In the ideal process, let Ai be the adversary that corrupts a party i ∈ {1, 2}:

1. input: Let x be the input of party 1 and y be the input of party 2, Ai gets i’s input and an
auxiliary input z.

2. Sending inputs to the trusted party: An honest party always sends its input. The cor-
rupted party controlled byAi may abort or send arbitrary input. The trusted party receives
(x′, y′). If any input is abort, then the trusted party answers both parties with a special
symbol ⊥.

25

3. The trusted party answers the adversary: The trusted party computes fi(x′, y′) and sends
the result to Ai. Ai can instruct the trusted party by sending abort or continue to the
trusted party.

4. The trusted party answers the honest party: If the trusted party receives continue, it
computes fj(x′, y′) and sends the result to the honest party j. If the trusted party receives
abort, it sends ⊥ to the honest party.

5. Output: An honest party alway outputs the output value it obtained from the trusted party.
The corrupted party outputs nothing. The adversary outputs its view.

The joint output of the ideal process, denoted by IDEALf,Ai(z)(x, y). is defined as the pair of
the honest party’s output and the adversary’s output.
Real model In the real model a protocol π is executed. An honest party follows the instructions
of π, but an adversary A may follow an arbitrary feasible strategy. The joint output of an
execution in real model is denoted as REALπ,Ai(z)(x, y).
Simulatability Security of protocol is defined by requiring that adversaries in the ideal model
are able to simulate the execution of a secure real-model protocol.

Definition 2. Let π be a protocol and f be a functionality. Protocol π is said to securely
compute f in the malicious model if for every PPT adversary A in the real model, there exists a
PPT adversary Sim in the ideal model, such that for every i ∈ {1, 2},

IDEALf,Simi(z)(x, y)
c≡ REALπ,Ai(z)(x, y)

The F -hybrid model A proof technique we will use is the F -hybrid model. In our protocol we
use a secure OT protocol as a subprotocol. The F -hybrid model is a standard way of abstracting
out the details of a subprotocol that securely computes a functionality F . In the security proof,
we will work in a hybrid model such that two parties directly interact with each other as in the
real model, whenever the subprotocol is needed, the invocation of the subprotocol is replaced
by an ideal call to a trusted party for computing F . The ideal calls are just instructions to send
an input of F to the trusted party and receive the output back (if any). The protocol continues
after an ideal call.

Let F be a functionality, π be a two-party protocol, Ai be an adversary corrupts party i
in π, Then the joint output of an F -hybrid execution of π on input (x, y), an auxiliary input
z is denoted as HYBRIDF

π,Ai(z)
(x, y), defined as the pair of the honest party’s output and the

adversary’s output. Let ρ be the subprotocol, then the real protocol πρ is defined as follows:
all messages sent between parties in the hybrid protocol is unchanged, and when a party i
needs to invoke an ideal call with input ai, it invokes ρ with input ai instead. When the exe-
cution of ρ ends with output bi, the party continues with π as if bi is the output received from
the trusted party. By the composition theorem [13], if ρ securely computes F , then the joint
output distribution of a protocol π in a hybrid execution with F is computationally indistin-
guishable from the joint output distribution of the real protocol πρ. Therefore when analyze
the security of πρ, it is suffices if can show IDEALf,Simi(z)(x, y)

c≡ HYBRIDF
π,Ai(z)

(x, y). Then

IDEALf,Simi(z)(x, y)
c≡ REALπρ,Ai(z)(x, y) can be derived via the composition theorem.

C Security Analysis of the Fully Secure Protocol
In the analysis we make the following abstractions: we model the hash functions used in build-
ing Bloom filters as random oracles and the block cipher E as a pseudorandom permutation.

26

A random oracle [8] is an idealization of hash functions. A random oracle is publicly acces-
sible. Upon receiving a query x, the random oracle returns a uniformly random answer y from a
certain range. It is guaranteed that the answer is consistent, i.e. if the random oracle has seen x
before, it will output the same y. Although the random oracle model is quite popular, it is well
known that it is only a heuristic and may be hard to instantiate. In our proof, we use the random
oracle in a non-programmable fashion, which relies on weaker assumptions for the hash func-
tions [21]. Namely, the simulator can see the queries the adversary made to the random oracle,
but it has not control over the answers.

A pseudorandom permutation F : {0, 1}k × {0, 1}l → {0, 1}l is a pseudorandom func-
tions such that for every K ∈ {0, 1}k, the function FK(·) is one-to-one. There is an efficient
algorithm to compute F−1

K (x) given K. A pseudorandom permutation is computationally indis-
tinguishable from a random permutation on l-bit strings.

Before the main theorem, we now show two lemmas.

Lemma 1. If the client cheats in the protocol by using a Bloom filter with less than m/2 0 bits,
then every string received by the client in the OT is indistinguishable from random strings.

Proof. (sketch) If the client uses a Bloom filter with less thanm/2 0 bits, then by the security of
the OT it will receive less than m/2 shares of the key. Then by the security of the secret sharing
scheme, the shares it received should be indistinguishable from random strings and the key is not
recoverable. Because the client cannot recover the key and E is a pseudorandom permutation
then each E(sk, ri||GBFS[i]) should be indistinguishable from a random string.

Lemma 2. If the server cheats in the OT protocol by not sending the correct shares of the secret
key or not encrypting garbled Bloom filter strings correctly, then the probability of the client
accepting an incorrect GBFC∩S in step 4 is negligible.

Proof. (sketch) The client recovers an incorrect GBFC∩S if it recovers a key sk′ 6= sk, or if it
recovers the correct sk, but for certain 0 ≤ i ≤ m − 1, BFC [i] = 1 and the ith received string
is not E(sk, ri||xi), where xi is a λ-bit string. In all other cases the client will get the correct
GBFC∩S . Let’s first consider the first case. There must be at least dm/2e 1 bits in its Bloom
filter. Then for each of the strings received in OT corresponding to a 1 bit at location i, the client
decrypts the string using the recovered key. Because the recovered key is not the same as the
encryption key, and because E is a pseudorandom permutation, the probability of the decrypted
message contains ri that the client sent in step 1 is 2−λ. Therefore the client can detect it with
overwhelming probability. For the second case, now the key is correct but at certain i such that
BFC [i] = 1, the string str 6= E(sk, ri||xi). Because E is a permutation, then the probability of
the inverse is a string with a prefix ri is 2−λ. Again the client can detect it with an overwhelming
probability.

Theorem 8. Let C, S be two sets from a predefined universe, f∩ be the set intersection func-
tionality defined as:

f∩(C, S) = (fC(C, S), fS(C, S)) = (C ∩ S,Λ)

Assuming the OTm2λ is secure in the presence of malicious parties, then the PSI protocol π∩ in
Figure securely compute f∩ in the random oracle model against malicious adversaries.

27

Proof. (sketch) We prove in the hybrid model that the OT protocol is replaced by ideal calls.
We first consider the case that the server is corrupted then the case that the client is corrupted.
Server is corrupted We construct a simulator SimS in the ideal model that uses the adversary
AS as a subroutine. The simulator behaves as below:

1. SimS invokes AS with the input S and the auxiliary input z. There are k random oracles.
2. SimS maintains a list and records all queries the adversary made to the random oracles.

Without loss of generality, we assume the adversary makes no more than poly(λ) queries
and stops at some point. Then SimS extracts a set S ′ from the queries.

3. SimS generates m λ-bit random strings r0, ..., rm−1 and sends them to AS
4. SimS receives the input of the ideal call to the OT functionality, which are m pairs of

2λ-bit strings (xi,0, xi,1) for 0 ≤ i ≤ m − 1. The client recovers a key sk from xi,0
and decrypts all xi,1. SimS checks whether there is any decryption that does not has
the correct prefix ri, if so SimS sends abort to the trusted party and terminates here.
Otherwise all decrypted messages di are put in an empty garbled Bloom filter GBF such
that GBF [i] = di. Then SimS queries each element in S ′ against the GBF . If the query
result is true, the element is put in a set S ′′. After all elements in S ′ have been queried, it
sends S ′′ to the trusted party.

5. SimS outputs whatever AS outputs and terminates.

Let’s first show the honest client’s output are indistinguishable in the ideal process and in
the hybrid execution. Firstly, the probability of the client in the ideal model outputs ⊥ is the
same as the client in the hybrid model outputs ⊥. To see that, the client in the ideal model
outputs ⊥ iff SimS found the OT strings are not correct. In the hybrid model the client outputs
⊥ iff it found the OT strings are not correct. The probability of outputting ⊥ only depends on
the adversary’s strategy. So the probability of the client’s output is⊥ is the same in a simulation
and a hybrid execution. Next we show that if the output is not ⊥ but a set intersection, then the
distribution of the output in the simulation and the hybrid execution should be the same. This
can be boiled down to whether the simulator can correctly extract the adversary’s input. The
adversary can only add an element into its GBF by querying the random oracles. Therefore S ′

contains all possible elements that can be encoded in the GBF. However, the elements in S ′ may
not necessarily all be used. The adversary may chose only a subset of S ′ and uses the subset
as the input to the protocol. That’s why SimS queries GBF with S ′ to obtain S ′′. The set S ′′

should be the adversary’s input except two cases: a false positive happens or the server cheats
in the OT without being detected. By Theorem 2, the probability of the first case is 2−λ, and by
Lemma 2 the probability of the second case is also negligible. Therefore S ′′ is the correct input
of the adversary. Then in this case the distribution of the client output in the simulation and the
hybrid execution should be computationally indistinguishable.

The adversary’s output contains its view. In the simulation and the hybrid execution, the
views contain the same input S, the internal random coins with the same distribution, the m
random strings follow the uniform distribution and the empty string as the result of the ideal
call to the OT funtionality. So they are indistinguishable.

Combine the above, in this case we have

IDEALf,SimS(z)(C, S)
c≡ HYBRIDOT

π,AS(z)(C, S)

Client is corrupted We construct a simulator SimC in the ideal mode. The simulator behaves
as below:

28

1. SimC invokes the adversary with the input C and the auxiliary input z. SimC observes
the queries from the adversary to the random oracles. When the adversary stops, SimS

extracts a set C ′ from the queries.
2. SimC receives m λ-bit strings from the adversary.
3. SimC receives the input to the ideal call of the OT functionality, which is an m-bit string.

SimC parses the string into a Bloom filter BF and queries all elements in C ′ against the
BF , then it puts all elements that the query result is true into a set C ′′. SimC sends C ′′ to
the trusted party and receives C ′′ ∩ S back.

4. SimC constructs a garbled Bloom filter that encodes C ′′ ∩ S, then chooses a random
secret key sk, splits it into m shares and uses sk to encrypt each ri||GBFC′′∩S[i]. SimC

answers the ideal call to the OT functionality in the following way: for each bit i in
BF , if BF [i] = 0, SimC returns the ith share of sk and if BF [i] = 1, SimC returns
E(sk, ri||GBFC′′∩S[i]).

5. SimC outputs whatever the adversary outputs and terminates.

The honest party has no output so we only need to show the adversary’s view is indistin-
guishable in the simulation and the hybrid execution. The view contains the input C, the internal
random coins, the OT result. The first two parts should be indistinguishable in the two views.
Using the same argument as in the corrupted server case, C ′′ must be the set encoded in BF .
Thus C ′′∩S is the correct intersection. If the adversary cheats by using a Bloom filter with less
than dme/2 0 bits, then by Lemma 1 the OT result is indistinguishable from random strings. In
this case, the view in the simulation and the view in the hybrid execution are indistinguishable.
If the adversary does not cheat, then it will be able to recover the key and recover a garbled
Bloom filter from encrypted OT strings. The only difference is that in the hybrid execution, the
server sends GBFS in the OT, so the garbled Bloom filter GBFC∩S contains residue shares,
while in the simulation, the simulator sends GBFC′′∩S that is build from scratch using C ′′ ∩ S,
so contains no residue shares. But by Theorem 4, the two garbled Bloom filters should be in-
distinguishable. So in either case, the distribution of the views should be indistinguishable. So
we have

IDEALf,SimC(z)(C, S)
c≡ HYBRIDOT

π,AC(z)(C, S)

Combine both cases and apply the composition theorem, we can conclude the protocol is
secure against malicious adversaries.

29

