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Abstract

We study a queueing system with a Poisson arrival process and Markov modulated, exponential

service requirements. For a modulating Markov Chain with two states, we show that the distribution of

the number-in-system is a superposition of two matrix-geometric series and provide a simple algorithm

for computing the rate and coefficient matrices. These results hold for both finite and infinite waiting

space systems, as well as for cases in which eigenvalues of the rate matrices’ characteristic polynomials

have multiplicity grater than one.

We make the conjecture that the Markov-modulated system performs better than its M/G/1 analogue

if and only if the switching probabilities between the two states satisfy a simple condition. We give an

intuitive argument to support this conjecture.
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1 Overview

Consider the following single-server queue: the arrival process is Poisson; service times are exponentially

distributed; and the service discipline is first-come, first-served (FCFS). However, the rates of these expo-

nential service times are determined by an underlying Markov chain, and transitions of the Markov chain

take place at service completions.

The Markov chain has m states. If the new state of the Markov chain is i, 1 ≤ i ≤ m, then the rate of

next exponential service time will be µi. We will call this system with Markov-regulated Markovian services

an M/MM/1 queue.

Our interest in this type of queueing system comes from the study of service systems with human servers.

Employee learning and turnover cause the sequence of service-time distributions to exhibit systematic non-

stationarities: as an employee learns, his or her service speed increases; when an employee turns over, s/he

is usually replaced by a new person with lower service speeds. We wish to understand the effect of employee

learning and turnover on measures of system performance such as average waiting time and queue length.

We model employee learning and turnover as transitions through states of a Markov chain. After each

service an employee may learn and advance to a higher skill level with a pre-specified probability. After

each service an employee may also turn over with another pre-specified probability, in which case s/he is

replaced by a new employee at the lowest skill level. Skill levels correspond to states of the Markov chain

and the Markov chain modulates the service-time distribution. In the simplest case, when there is only one

employee, the human server queueing system becomes an M/MM/1 system.

In addition to modelling server “learning and turnover”, the M/MM/1 queue may be used to model a

processor in a data network. The processor works at a constant speed but processes jobs from several sources.

The aggregate arrival process is a stationary Poisson process, but the source from which a particular job

comes (the job “type”) is determined by an underlying Markov chain. Jobs from different sources carry with

them exponentially distributed amounts of work with different means.

When the waiting space is infinite, the dynamics of the two systems are equivalent. When there is a

finite limit on the waiting space, however, the behavior of the two systems differs. In the data-processing

model, arriving jobs that are lost still generate transitions of the modulating Markov chain, and changes in

the service-time distribution from one job to the next depend on whether or not the waiting space is full.

Alternatively, in the human-server model it is service completions that generate transitions of the modulating

Markov chain, and these transitions are unaffected by lost arrivals.

Using a matrix difference equation approach, we are able to obtain a complete characterization of the

system’s behavior when the Markov chain has two states (m = 2). In this case, we can also use closed-form

solutions to the resulting cubic equations to obtain exact solutions for the computation of required rate

coefficient matrices in the numerical study. Our analysis yields the following results.

We obtain traditional measures of queueing performance for this M/MM/1 system: the distribution of

the number of customers in the system and, in turn, the system utilization, the average number in the
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system, the average waiting time in queue and in the system. In the case of systems with finite waiting

rooms we also obtain the loss probability.

More fundamentally we show that, for systems with either infinite or finite waiting spaces, the steady-

state distribution of the number of customers in the system can be represented as the superposition of two

matrix-geometric series: Xn = (Rn
1K1 + Rn

2K2) X0. Here R1 and R2 are two square matrices and Xn is

the vector of steady-state system probabilities for states which have n customers in the system.

Moreover, our analysis develops explicit, computable analytical expressions for both the rate and coeffi-

cient matrices of the geometric series. Thus, for the case of a 2-state Markov chain, we obtain an efficient

computational procedure for calculating the steady-state distribution of the number-in-system for M/MM/1

systems with both finite and infinite waiting rooms. At the end of this paper, we also discuss how this

procedure may be extended to M/MM/1 systems whose underlying Markov chain has m ≥ 3 states.

For the infinite waiting space system, we compare the M/MM/1 model with an analogous M/G/1 model

with the same arrival rate and the same first two moments of service time. Through numerical examples we

show that the M/G/1 system, which has independent service times, does not necessarily out-perform the

M/MM/1 system with correlated service times. When the transition probabilities of the modulating Markov

chain are invariant across states, the M/MM/1 system is equivalent to an M/H2/1 system, and therefore

it has the same expected backlog as its M/G/1 analogue. When the modulating Markov chain’s transition

probabilities out of the current state fall below these M/H2/1 transition probability levels, however, numerical

results show that M/MM/1 performance suffers. Conversely, when the transition probabilities out of the

current state exceed these levels, then the expected backlog in the M/MM/1 system is smaller than in the

M/H2/1 system. In the finite waiting space case, loss probabilities of the M/MM/1 system and its M/G/1

analogue exhibit the same pattern.

This numerical evidence leads us to believe that the pattern of observed differences between the M/MM/1

system and its M/G/1 analogue is provably true. We give an intuitive argument to support this conjecture.

2 Literature Review

The M/MM/1 system is a special case of a “Quasi Birth and Death” (QBD) process. QBD processes can

be used to model a wide variety of stochastic systems, in particular many telecommunications systems. For

background and examples, see Neuts [5] and Servi [6].

Neuts’s [5] seminal work characterizes QBD systems with countable state spaces as having, when a certain

boundary condition holds, a steady-state distribution of the number-in-system that can be described as a

single, matrix-geometric series: Xn = RnX0. The rate matrix R may be difficult to calculate, however,

and the required boundary condition that R must satisfy is difficult to verify.

For finite QBD processes with a limit of N in the system, Naoumov [4] develops results that are similar

to ours. Its determination of the rate matrices, R1 and R2, requires the computation of two infinite series
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of (recursively defined) matrices, however. Hence the calculation of its solution is approximate and may be

computationally intensive.

Mitrani and Chakka [3] is the paper closest to ours. Using a spectral expansion method that is similar to

the approach used in the current paper, it shows that the steady-state distribution of the number-in-system

has mixed-geometric solutions. The paper’s general results appear to be broader than ours, applying to cases

in which m ≥ 3.

However, the paper does not directly address the case in which some eigenvalues of the characteristic

matrix polynomial have multiplicity higher than 1. While (as [3] points out) this does not appear to be a

practical problem, it is both interesting and important theoretically: without it, the treatment of the problem

and the characterization of its solution are incomplete. This case is also technically difficult to analyze.

In this paper we offer a constructive characterization of the rate matrices that complements the approach

use by Mitrani and Chakka [3]. Our approach allows us to address the uncovered case in which the eigenvalues

of the characteristic matrix polynomial have multiplicity higher than 1.

Furthermore, it offers computational advantages over the approach laid out in [3]: the mixed-matrix

geometric form of our solution is more compact; and, because it retains all of the eigenvalue-eigenvector

information, our solution allows for straightforward calculation of higher moments of the queueing system

performance. (For details, see §4.) Therefore, our solution procedure is more straightforward and efficient

numerically.

Thus, for M/MM/1 systems with m = 2, we develop a characterization of system performance that

represents a link between Neuts’s single-geometric-series characterization of an infinite QBD processes and

Naoumov’s dual-geometric-series characterization of finite QBD systems. We offer a unified approach and

a single characterization of system performance that covers both the finite and countable-state-space cases.

Moreover, its constructive characterization complements Mitrani and Chakka’s work and addresses cases in

which there are duplicated eigenvalues.

The rest of the paper is organized as follows. In §3.1-§3.2 we give a complete solution to the steady-

state probability distribution of the number-in-system of an M/MM/1 system. Then in §3.3 we compute

important queueing performance measures, such as average number in the system. In §4 we analyze the

finite waiting space queueing system, M/MM/1/N. In §5 we present numerical analyses which compare both

the infinite and finite systems to their analogues that have i.i.d. service times. Finally, in §6 we discuss

possible extensions of our results.

3 M/MM/1 queueing system solution

In the following analysis, the Markov chain that modulates the service-time distribution has m = 2 states.

We denote the two states of the Markov chain as fast, F , and slow, S.

Jobs arrive according to a Poisson process of rate λ, and service times are exponentially distributed.
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When the Markov chain is in state F , the server works at a rate of µF , and when the Markov chain is in

state S, the server works at rate µS < µF . When the server is in state F and completes a service it remains

fast with probability pFF and becomes slow with probability pFS = 1 − pFF . Similarly, when the server is

in state S and completes a service, it remains slow with probability pSS and becomes fast with probability

pSF = 1 − pSS .

3.1 The steady-state probability distribution.

We let PS,n, n = 0, 1, ... denote the steady-state probability that the server is slow and there are n jobs in

the system. Similarly, PF,n denotes the steady-state probability that the server is fast and there are n jobs

in the system.

Figure 1: State-transition diagram of the Continuous Time Markov Chain

The state-transition equations of the M/MM/1 system’s associated Continuous Time Markov Chain

(CTMC) are presented below. The corresponding state-transition diagram can be found in Figure 1.

For n = 0

λPS,0 = µSpSSPS,1 + µF pFSPF,1 (1)

λPF,0 = µSpSF PS,1 + µF pFF PF,1, (2)

and for n ≥ 1,

(µS + λ)PS,n = λPS,n−1 + µSpSSPS,n+1 + µF pFSPF,n+1 (3)

(µF + λ)PF,n = λPF,n−1 + µSpSF PS,n+1 + µF pFF PF,n+1. (4)

We can present the balance equations in a matrix-vector notation. Let

Xn =

(
PS,n

PF,n

)
, A =

(
µSpSS µF pFS

µSpSF µF pFF

)
, B =

(
λ + µS 0

0 λ + µF

)
,

C = λA−1, and D = A−1B. Then the balance equations (1)–(4) become

X1 = CX0. (5)

Xn+2 − DXn+1 + CXn = 0, ∀n ≥ 0 (6)
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We note that when pSF + pFS = 1 (pSF = pFF , pSS = pFS), the service times become i.i.d. hyper-

exponential random variables. In this case, the M/MM/1 system becomes an M/H2/1 system. Furthermore,

if either pSF or pFS is zero, then in the steady-state, the system operates as an M/M/1 queue. Since both

systems have been studied (see Kleinrock [1] for an example), in this paper we will focus on the case in which

pSF + pFS 6= 1 and pSF · pFS 6= 0.

Given the representation (5) and (6), we are ready to state our main result.

Theorem 1 When pSF + pFS 6= 1 (i.e. pSF 6= pFF , pSS 6= pFS) and pSF · pFS 6= 0, the solution to (6) and

(5) is of the form

Xn = (Rn
1K1 + Rn

2K2)X0, (7)

where R1, R2, K1, and K2 are such that

R2
i − DRi + C = 0 i = 1, 2 (8)

K1 + K2 = I (9)

R1K1 + R2K2 = C. (10)

Once the matrices R1, R2, K1, and K2 satisfying (8)-(10) are found, {Xn}∞n=0 as defined by (7) is clearly

a solution to (6). Moreover, given X0, (5) and (6) uniquely determine all other probabilities Xn, ∀n > 0.

So it suffices to prove the existence of a solution of the form (7) such that (8)-(10) are satisfied.

We constructively prove the existence of R1, R2, K1, and K2. For the cases in which eigenvalues of

R1 and R2 all have multiplicity of 1, Mitrani and Chakka [3] have more general results. The important

theoretical result of this paper is the thorough investigation of the cases in which eigenvalues have higher

multiplicities.

An outline of the proof of Theorem 1 is as follows. For R1 and R2 to satisfy (8), their eigenvalues must

satisfy a quadratic equation similar to (8). Their eigenvectors can be obtained from the equation as well.

When linearly independent eigenvectors are found (e.g. when all of the eigenvalues are distinct), the rate

matrices R1 and R2 can be easily constructed from these eigenvectors and eigenvalues. When the eigenvalues

have multiplicity of more than one and the eigenvectors are linearly dependent, however, we must reconstruct

R1 and R2 from their Jordan forms, along with the corresponding linearly-independent vectors (which are

derived from the eigenvectors). The full proof of Theorem 1 is quite long and technical, and we present it in

Appendix A.

3.2 Complete Solution of the Steady State Probability Distribution

From Theorem 1, we see that, once we know X0 = (PS,0, PF,0)
′
, then all the other probabilities can be

obtained from equation (7). The following two propositions provide two independent equations to determine

PS,0 and PF,0 and, in turn, the entire probability distribution. Their proofs can be found in Appendix B.
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Proposition 1

(i) The long-run average service time of the M/MM/1 system is 1/µ where

1
µ

=
pFS

pSF + pFS

1
µS

+
pSF

pSF + pFS

1
µF

. (11)

(ii) Let ρ = λ/µ. When ρ < 1, the system is stable, and ρ is the long-run proportion of time the system is

busy.

(iii) When ρ ≥ 1, the system is unstable.

Proposition 1 provides the first equation relating PS,0 and PF,0:

PS,0 + PF,0 = 1 − ρ. (12)

To provide the second equation, we use the fact that probabilities sum to one. Let (aM , bM) =

(1, 1)
∑M

n=0 (Rn
1K1 + Rn

2K2). Then

1 = (1, 1)
∞∑

n=0

Xn = lim
M→∞

[(aM , bM)X0]. (13)

Arrange γ1, γ2, γ3, and γ4 in descending order with regard to their absolute values (or, in the case

of complex numbers, modulus). Let the corresponding vectors be V1 = (v11, v12)
′
, V2 = (v21, v22)

′
, V3 =

(v31, v32)
′
, and V4 = (v41, v42)

′
. Since one is an eigenvalue, we must have |γ1| ≥ 1.

For the following discussion, we will assume R1 = (V1, V2)

(
γ1, 0
0, γ2

)
(V1, V2)−1 and

R2 = (V3, V4)

(
γ3, 0
0, γ4

)
(V3, V4)−1. Other cases are similar.

Now denote the coefficient matrices K1 and K2 by

K1 =

(
K1(1, 1), K1(1, 2)
K1(2, 1), K1(2, 2)

)
, K2 =

(
K2(1, 1), K2(1, 2)
K2(2, 1), K2(2, 2)

)
,

and

α1 =
(K1(1, 1)v22 − K1(2, 1)v21)(v11 + v12)

v11v22 − v12v21
, β1 =

(K1(1, 2)v22 − K1(2, 2)v21)(v11 + v12)
v11v22 − v12v21

,

α2 =
(K1(2, 1)v11 − K1(1, 1)v12)(v21 + v22)

v11v22 − v12v21
, β2 =

(K1(2, 2)v11 − K1(1, 2)v12)(v21 + v22)
v11v22 − v12v21

,

α3 =
(K2(1, 1)v42 − K2(2, 1)v41)(v31 + v32)

v31v42 − v32v41
, β3 =

(K2(1, 2)v42 − K2(2, 2)v41)(v31 + v32)
v31v42 − v32v41

,

α4 =
(K2(2, 1)v31 − K2(1, 1)v32)(v41 + v42)

v31v42 − v32v41
, β4 =

(K2(2, 2)v31 − K2(1, 2)v32)(v41 + v42)
v31v42 − v32v41

.

Then

(aM , bM) = (1, 1)

[
(

M∑

n=0

Rn
1 )K1 + (

M∑

n=0

Rn
2 )K2

]
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= (1, 1)

[
(V1, V2)

( ∑M
n=0 γn

1 , 0
0,

∑M
n=0 γn

2

)
(V1, V2)−1K1

+(V3, V4)

( ∑M
n=0 γn

3 , 0
0,

∑M
n=0 γn

4

)
(V3, V4)−1K2

]

=

(
4∑

i=1

αiEM,i,

4∑

i=1

βiEM,i

)
, (14)

where EM,i =
∑M

n=0 γn
i , and αi, βi, i = 1, 2, 3, 4, are constants as defined before.

Proposition 2 If ρ < 1, then the Markov process is ergodic and there exists a positive probability vector X0

such that equation (13) is satisfied. Moreover, either

(i) (aM , bM) does not converge to finite (a, b) but the ratio aM/bM converges to a constant, K, and

PF,0

PS,0
= − lim

M→∞

aM

bM
= −K, (15)

(ii) or, (aM , bM) converges to finite vector (a, b) and

aPS,0 + bPF,0 = 1. (16)

To prevent divergence, eigenvalues of the rate matrices must be restricted to the inside of the unit disk.

The fact that the spectral radii of the rate matrices in our system could be no smaller than one provides us

with equation (15) or (16), a second equation that we seek.

3.3 Average waiting time and queue length.

Once we know the complete distribution of the number in the system, we can compute all the important

queueing measures - average number in the system, average queue length, average waiting time in the system,

and average waiting time in queue. In fact we only need to compute any one of the four. The others follow

easily from Little’s Law and Ws = Wq + 1/µ. We will focus on finding the average number in the system.

Because Xn = (Rn
1K1 + Rn

2K2)X0, ∀n, we can let L denote the long-run average number in the system,

so that L = (1, 1)
∑∞

n=0 n(Rn
1K1 + Rn

2K2)X0.

We can find L from the following two equations. Let G =
∑∞

n=0 nPS,n and H =
∑∞

n=0 nPF,n, then

L = G + H. There are many ways to find G and H, including differentiation of the moment generating

functions. The following are just two examples.

(µS − λ)G + (µF − λ)H = λ (17)

µSpSF G − µF pFSH =
pFS

pSF + pFS
· λ2

µS
+ λPS,0 −

λpFS

(pSF + pFS)
(18)

We can also directly compute L from the matrices R1, K1, R2, K2 - which we have already obtained when

determining X0. This method will be particularly useful in the finite waiting space case. So we will defer

the discussion till then.

Detailed derivation of (17) and (18) can be found in Appendix C.
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4 M/MM/1/N queueing system solution

In many applications, there is a physical limitation on the waiting space and the system loss probability is

of primary concern. In the following analysis we assume a limited capacity of N in the system, and any job

that arrives when there are already N jobs in the system is lost.

We use the same PS,n and PF,n notation. The new balance equations are as follows:

λPS,0 = µSpSSPS,1 + µF pFSPF,1

λPF,0 = µSpSF PS,1 + µF pFF PF,1,

(µS + λ)PS,n = λPS,n−1 + µSpSSPS,n+1 + µF pFSPF,n+1 (19)

(µF + λ)PF,n = λPF,n−1 + µSpSF PS,n+1 + µF pFF PF,n+1, 1 ≤ n < N (20)

µSPS,N = λPS,N−1 (21)

µF PF,N = λPF,N−1. (22)

Again we need two equations to solve for PS,0 and PF,0. The first comes from the solution of (19) and

(20). As in the infinite waiting space case, we know that there exist R1, R2, K1, and K2 such that (8)-(10)

are satisfied and for all n,

Xn = (Rn
1K1 + Rn

2K2)X0. (23)

In particular

XN−1 = (RN−1
1 K1 + RN−1

2 K2)X0 and XN = (RN
1 K1 + RN

2 K2)X0. (24)

This, together with (21) and (22), implies
(

µS 0
0 µF

)
(RN

1 K1 + RN
2 K2)X0 = λ(RN−1

1 K1 + RN−1
2 K2)X0.

So
[
(R1 − J)RN−1

1 K1 + (R2 − J)RN−1
2 K2

]
X0 = 0 (25)

where J =

(
λ/µS 0

0 λ/µF

)
provides us with the first equation we need.

The second equation is obtained from the normalization condition that the probabilities sum to one. In

this finite waiting space case, we do not have the problem of divergence. Therefore the second equation is

quite straightforward:

(1, 1)
N∑

n=0

Xn = 1 ⇒ (1, 1)
N∑

n=0

(Rn
1K1 + Rn

2K2)X0 = 1. (26)

We will use the following algebraic identities to facilitate the computation of
∑

Rn and
∑

nRn.

Let

f1(x, N ) =
N∑

n=0

xn =
1 − xN+1

1− x
,
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f2(x, N ) =
N∑

n=0

nxn =
x − xN+1(1 + N − Nx)

(1 − x)2
,

g1(x, N ) =
N∑

n=1

nxn−1 =
1 − xN (1 + N − Nx)

(1 − x)2
,

and

g2(x, N ) =
N∑

n=1

n2xn−1 =
1 + x− xN (1 + 2N + N2 + x − 2Nx− 2N2x + N2x2)

(1 − x)3
,

then

• if R = (V1, V2)

(
γ1 0
0 γ2

)
(V1, V2)−1, then Rn = (V1, V2)

(
γn
1 0
0 γn

2

)
(V1, V2)−1,

N∑

n=0

Rn = (V1, V2)

(
f1(γ1, N ) 0

0 f1(γ2, N )

)
(V1, V2)−1,

and
N∑

n=0

nRn = (V1, V2)

(
f2(γ1, N ) 0

0 f2(γ2, N )

)
(V1, V2)−1;

• if R = (V1, U1)

(
γ 1
0 γ

)
(V1, U1)−1, then Rn = (V1, U1)

(
γn nγn−1

0 γn

)
(V1, U1)−1,

N∑

n=0

Rn = (V1, U1)

(
f1(γ, N ) g1(γ, N )

0 f1(γ, N )

)
(V1, U1)−1,

and
N∑

n=0

nRn = (V1, U1)

(
f2(γ, N ) g2(γ, N )

0 f2(γ, N )

)
(V1, U1)−1.

Note that all the γi’s and Vi’s have already been obtained in the process of computing R1 and R2. So the

above computations are straightforward. Using these identities, we can simplify (25) and (26) and quickly

compute X0. After that, we can calculate Xn for all n via (23). The other queueing measures follow from

straightforward computation and will not be presented here. Again, we will take advantage of the fact that we

have already obtained all the eigenvalues and eigenvectors in computing X0 to facilitate these computations.

For example, to find the long-run average number-in-system, we directly compute L =
∑N

n=0 nXn, using the

identities above concerning
∑

nRn.

Because arrivals are Poisson, the PASTA property for continuous-time Markov chains (see Wolff [7], for

example) implies that the loss probability equals the probability that there are N in the system: PS,N +

PF,N = (1, 1)XN .

Remark 1 Naoumov [4] proves that, in finite QBD systems, the steady-state distribution of the number-in-

system may be described as the superposition of two matrix-geometric series: Xn = Rna + SN−nb. Here

a and b are vectors that satisfy certain boundary conditions. While this solution form holds for m ≥ 3, the
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calculation of the two matrices, R and S, necessitates the computation of two infinite series of (recursively

defined) matrices. In particular,

R = lim
k→∞

Rk, where R0 = 0, Rk+1 = R2
k − (D − I)Rk + C

S = lim
k→∞

Sk, where S0 = 0, Sk+1 = CS2
k − (D − I)Sk + I

Therefore in the case of a 2-state M/MM/1 system, we extend his results by providing more properties of

the rate matrices and by providing a computationally more efficient procedure.

5 Numerical analysis

In this section, we study the performance difference between the M/MM/1 system and an analogous M/G/1

system in which service times have the same first two moments as those in the M/MM/1 system but are

i.i.d.

5.1 Infinite waiting space: the M/MM/1 system.

We first consider the case of systems with infinite waiting spaces. The Pollaczek-Khintchine formula implies

that the average queue length of an M/G/1 system depends on the service time distribution only through

the first two moments (for example, see Wolff [7, page 385]). Therefore, without loss of generality, when

calculating queueing measures such as the average queue length, we can assume that the M/G/1 system has

i.i.d. hyper-exponential (H2) service times, with pFS/(pSF + pFS ) fraction of the services being slow and

pSF /(pSF + pFS) fraction being fast.

The cases we study include a wide variety of scenarios: high/low system utilization, high/medium/low

switching probabilities, and combinations of these. In Table 1 we report the average queue length in these

systems, and we observe two interesting phenomena from these results.

First, when µS < λ and pSF is very small (at the same time pFS cannot be very large as otherwise the

system may be unstable), the expected queue length in the M/MM/1 system is much larger than that in

the M/H2/1 system. This is not surprising: when pSF is small, once the server becomes slow it tends to

stay slow for a long time; if at the same time µS < λ, then the queue length grows very quickly. In the

corresponding M/H2/1 system, however, the i.i.d. service times prevent this from happening, and the system

backlog fluctuates less. Neuts [5, page 266, Example 2] observes similar numerical phenomenon as well.

Second, when pSF + pFS > 1, the expected backlog in the M/H2/1 queue actually exceeds that for the

M/MM/1 system. This phenomenon is somewhat unexpected because one would normally think that the

serial correlations among the modulated service times would cause the M/MM/1 system to have a worse

performance than the M/H2/1 system.

As we noted before Theorem 1, however, the M/H2/1 system is in fact an M/MM/1 system with switching

probabilities (p′SF , p′FS) = 1
pSF +pF S

(pSF , pFS) where p′SF + p′FS = 1. So, the comparison in Table 1 is

10



Table 1: M/MM/1/∞ vs M/G/1/∞

Q Q Q
λ µS µF pSF pFS ρ M/MM/1 M/H2/1 % Diff.
10 8 50 0.6 0.3 0.550 1.262 1.217 -3.60%

0.30 0.60 0.900 10.80 10.55 -2.34%
0.90 0.15 0.350 0.389 0.396 1.77%
0.15 0.90 1.100 −∗ −∗ −∗

0.15 0.15 0.725 4.596 2.914 -36.61%
0.55 0.55 0.725 2.836 2.914 2.73%
0.90 0.90 0.725 2.518 2.914 15.74%

10 12.5 50 0.60 0.30 0.400 0.409 0.400 -2.20%
0.30 0.60 0.600 1.115 1.100 -1.39%
0.90 0.15 0.286 0.174 0.176 1.00%
0.15 0.90 0.714 1.934 1.940 0.30%
0.15 0.15 0.500 0.867 0.680 -21.56%
0.55 0.55 0.500 0.669 0.680 1.67%
0.90 0.90 0.500 0.619 0.680 9.82%

* Unstable.

equivalent to the comparison between an M/MM/1 system with switching probabilities (pSF , pFS) and an

M/MM/1 system with switching probabilities (p′SF , p′FS).

When pSF + pFS > 1, p′SF < pSF and p′FS < pFS . From the intuition obtained in the first observation,

we conjecture that because the M/MM/1 system representing the M/G/1 analogue has smaller switching

probabilities, the underlying Markov Chain tends to stay in both states longer and therefore the system

performance is actually worse than the original M/MM/1 system. Conversely, when pSF + pFS < 1, the

M/G/1 system performs better.

Conjecture 1 The long-run average queue length of the M/MM/1 system is smaller than that of its M/G/1

analogue when pSF + pFS > 1, larger when pSF + pFS < 1, and the same when pSF + pFS = 1.

We will not attempt to prove the conjecture in this paper. The numerical results in Table 1, however,

show that this conjecture holds for a wide variety of examples.

Most significantly, we find concrete examples to show that the system performance (average queue length,

average number in the system, average waiting time in queue, and average waiting time in the system) of

the M/MM/1 system is not necessarily worse or better than its analogous M/G/1 system. As the conjecture

states, the difference appears to depend on the switching probabilities.

11



5.2 The M/MM/1/N System.

We next compare results for systems with finite waiting spaces. Table 2 reports results that are computed

for the same set of parameters as those in Table 1. The difference here is that there is an N = 7 limit on

the waiting space. In addition, we also compare the loss probabilities here.

Table 2: M/MM/1/N vs M/G/1/N when N=7

Q P{Loss} P{Loss} P{Loss}
λ µS µF pSF pFS % Diff. M/MM/1/7 M/H2/1/7 % Diff.
10 8 50 0.6 0.3 -1.93% 3.11% 2.93% -5.76%

0.30 0.60 -0.44% 11.05% 10.85% -1.79%
0.90 0.15 1.28% 0.78% 0.82% 4.49%
0.15 0.90 0.01% 17.92% 17.96% 0.22%
0.15 0.15 -13.35% 9.08% 6.13% -32.49%
0.55 0.55 0.98% 5.93% 6.13% 3.28%
0.90 0.90 5.50% 5.06% 6.13% 21.00%

10 12.5 50 0.60 0.30 -1.76% 0.52% 0.49% -6.28%
0.30 0.60 -0.86% 1.91% 1.86% -2.70%
0.90 0.15 0.86% 0.14% 0.14% 4.15%
0.15 0.90 0.14% 3.37% 3.39% 0.47%
0.15 0.15 -14.82% 1.63% 1.02% -37.67%
0.55 0.55 1.20% 0.98% 1.02% 4.17%
0.90 0.90 7.13% 0.79% 1.02% 27.98%

Note that Conjecture 1 not only holds in this finite-waiting-space for the expected queue length, it also

holds for the loss probabilities. The intuition provided in the previous section also appears to apply here.

Note also that the relative difference in loss probabilities between the M/MM/1 system and its M/H2/1

analogue is magnitudes higher than the difference in expected queue length in all the cases. This suggests

that while an M/G/1 approximation may perform well in terms of the expected queue length, it may not be

a good approximation in terms of real loss probability.

6 Conclusion

Mitrani and Chakka [3] show that the mixed-geometric solution form holds for m ≥ 3 as well. However, they

focus only on the cases in which all eigenvalues have multiplicity of 1, and if some eigenvalue has multiplicity

greater than 1, they assume that linearly independent eigenvectors always exist. We believe that our analysis

and procedures can be extended to m ≥ 3. In particular, our Jordan-form approach should remain valid in

the cases where there are duplicate eigenvalues, though there are several difficulties: 1) high dimensionality

of the matrices; 2) lack of closed-form solution to high degree polynomial equation (27); and 3) difficulty in

numerically inverting large matrices. Nevertheless, there are numerical procedures for finding roots to high-

12



degree polynomial equations and, with the fast-increasing available computing power, even large matrices

can be inverted relatively quickly.
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A Proof of Theorem 1

Lemma 1 Suppose R satisfies (8), then if γ is its eigenvalue, it satisfies

det (γ2I − γD + C) = 0. (27)

Proof Let γ and V be such that RV = γV . Then R2 − DR + C = 0 implies (R2 − DR + C)V = 0.

Therefore

(γ2I − γD + C)V = 0 (28)

Since V is non-zero, this implies (27). 2

Lemma 1 shows that the eigenvalues and eigenvectors of any solution to (8) satisfy (27) and (28). More-

over, it shows that they can be directly computed from (27) and (28). The following two propositions show

how to construct the two solutions to (8), R1,2, based on the solutions to (27) and (28).

Since pSF + pFS 6= 1, there are four roots to equation (27): γ1, γ2, γ3, and γ4. Let V1, V2, V3, and V4 be

the corresponding vectors given by (28).

Proposition 3 If Vi and Vj are linearly independent, then R = (Vi, Vj)

(
γi 0
0 γj

)
(Vi, Vj)−1 is a solution

to (8).

Proof It can be verified as follows:

(R2 − DR + C)(Vi, Vj) = (Vi, Vj)

(
γ2

i 0
0 γ2

j

)
− D(Vi, Vj)

(
γi 0
0 γj

)
+ C(Vi, Vj)

= (γ2
i Vi, γ

2
j Vj) − D(γiVi, γjVj) + C(Vi, Vj)

= 0

from (28). Therefore (R2 − DR + C) = 0, as (Vi, Vj) is invertible. 2

If a solution to (8), R, is non-diagonalizable, then let γ̂ be its multiple eigenvalues. Since clearly R 6= γ̂I,

R can be transformed into a Jordan form: ∃(V, U ) such that R = (V, U )

(
γ̂ 1
0 γ̂

)
(V, U )−1, i.e.,

RV = γ̂V (29)

RU = V + γ̂U . (30)

The following proposition shows that the inverse is also true.

Proposition 4 If γ̂ is a multiple root of (27) and V is its corresponding solution in (28), then there exists

a U , linearly independent of V , such that R = (V, U )

(
γ̂ 1
0 γ̂

)
(V, U )−1 is a solution to (8).
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Proof We prove that the required vector, U , can be found via the following equation,

(γ̂2I − Dγ̂ + C)U = −(2γ̂I − D)V, (31)

and that it always exists. To do this, we note that

2γI − D =
d

dγ
(γ2I − Dγ + C).

Therefore if we denote γ2I −Dγ + C by

(
w1(γ), w2(γ)
w3(γ), w4(γ)

)
, then −(2γI −D) =

(
−w

′

1(γ), −w
′

2(γ)
−w

′

3(γ), −w
′

4(γ)

)
.

Furthermore, det (γ2I − Dγ + C) = w1(γ)w4(γ)−w2(γ)w3(γ). γ̂ being a multiple solution to (27) implies

that:

det (γ2I − Dγ + C)|γ=γ̂ = w1(γ̂)w4(γ̂) − w2(γ̂)w3(γ̂) = 0, (32)

and
d det (γ2I − Dγ + C)

dγ

∣∣∣∣
γ=γ̂

= w
′

1(γ̂)w4(γ̂) + w1(γ̂)w
′

4(γ̂) − w
′

2(γ̂)w3(γ̂) − w2(γ̂)w
′

3(γ̂) = 0. (33)

Moreover, V being a solution to (28) means (γ̂2 − Dγ̂ + C)V = 0; i.e. if we denote V = (v1, v2)
′
, then

(
w1(γ̂), w2(γ̂)
w3(γ̂), w4(γ̂)

)(
v1

v2

)
= 0. (34)

Without loss of generality, from (34) we can assume that

w3(γ̂) = cw1(γ̂), w4(γ̂) = cw2(γ̂), v1 = −w2(γ̂), v2 = w1(γ̂),

where c is a constant.

Then (33) reduces to:

0 = w
′

1(γ̂)w4(γ̂) + w1(γ̂)w
′

4(γ̂) − w
′

2(γ̂)w3(γ̂) − w2(γ̂)w
′

3(γ̂)

= w
′

1(γ̂)(−cv1) + v2w
′

4(γ̂) − w
′

2(γ̂)(cv2) − (−v1)w
′

3(γ̂).

Hence

w
′

3(γ̂)v1 + w
′

4(γ̂)v2 = c(w
′

1(γ̂)v1 + w
′

2(γ̂)v2), (35)

and (31) becomes: (
w1(γ̂), w2(γ̂)

cw1(γ̂), cw2(γ̂)

)
U =

(
−(w

′

1(γ̂)v1 + w
′

2(γ̂)v2)
−c(w

′

1(γ̂)v1 + w
′

2(γ̂)v2)

)
. (36)

Since these two equations are linearly dependent, a non-trivial solution U always exists for (31).

Now suppose, by contradiction, that U and V are linearly dependent. Then U = c0V for some constant

c0. From (34) this means that if we denote U by (u1, u2)
′
, then

w1(γ̂)u1 + w2(γ̂)u2 = 0, w3(γ̂)u1 + w4(γ̂)u2 = 0,

and therefore from (36)

w
′

1(γ̂)u1 + w
′

2(γ̂)u2 = 0, w
′

3(γ̂)u1 + w
′

4(γ̂)u2 = 0.
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That is, (γ̂2I − Dγ̂ + C)U = 0 and (2γ̂I − D)U = 0. Pre-multiplying both equations by A we get

(Aγ̂2 − Bγ̂ + λI)U = 0 and d det (Aγ2−Bγ+λI)
dγ

∣∣∣
γ=γ̂

U = 0. Because

(Aγ2 − Bγ + λI) =

(
µSpSSγ2 − (λ + µS)γ + λ, µF pFSγ2

µSpSF γ2, µF pFF γ2 − (λ + µF )γ + λ

)
,

this would imply (µSpSS γ̂2−(λ+µS )γ̂ +λ)u1+µF pFS γ̂2u2 = 0 and (2µSpSS γ̂−λ−µS )u1+2µF pFS γ̂u2 = 0.

This means γ̂ = 2λ
λ+µF

. Similarly we can show γ̂ = 2λ
λ+µS

, and, in turn, that µS = µF . Contradiction.

Thus U and V are linearly independent. If we let R = (V, U )

(
γ̂ 1
0 γ̂

)
(V, U )−1, then (29) and (30)

hold. Moreover,

(R2 − DR + C)(V, U ) = R(γ̂V, V + γ̂U ) − D(γ̂V, V + γ̂U ) + C(V, U )

= (γ̂2V, 2γ̂V + γ̂2U ) − D(γ̂V, V + γ̂U ) + C(V, U )

= ((γ̂2I − Dγ̂ + C)V, (γ̂2I − Dγ̂ + C)U + (2γ̂I − D)V )

= 0.

Therefore (R2 − DR + C) = 0, as (V, U ) is invertible. 2

Now, define

ρ = λ

[(
pFS

pSF + pFS

)
1

µS
+
(

pSF

pSF + pFS

)
1

µF

]
. (37)

Lemma 2

1. When ρ 6= 1, one and only one of the four γ’s is 1. Furthermore, the other three eigenvalues cannot

all be the same, and, none equals 0.

2. The eigenvector corresponding to the eigenvalue 1 is (µF pFS , µSpSF )
′
, and it is linearly independent

of the eigenvectors of other eigenvalues.

3. If γi = γj , then Vi and Vj are linearly dependent.

4. If γi 6= γj and Vi and Vj are linearly dependent, 1 ≤ i 6= j ≤ 4, then γiγj is an eigenvalue of C.

5. If Vi, Vj , and Vk are linearly dependent, 1 ≤ i 6= j 6= k ≤ 4, then γi, γj , and γk cannot be all distinct.

Proof

Part 1. Once we substitute γ = 1 into (27), it is straightforward to verify that the determinant of the

resultant matrix is zero.

As a result, (27), or equivalently, det (Aγ2 − Bγ + λI) = 0 can be simplified to

0 = (µSµF (pSSpFF − pSF pFS ))γ4 − ((λ + µS)µF pFF + (λ + µF )µSpSS)γ3

+(λ(µSpSS + µF pFF ) + (λ + µS )(λ + µF ))γ2 − (2λ2 − λµS − λµF )γ + λ2
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= (γ − 1)[µSµF (pSS + pFF − 1)γ3 − (λµSpSS + λµF pFF + µSµF )γ2

+λ(λ + µS + µF )γ − λ2].

Obviously 0 cannot be a root because λ2 6= 0. Now suppose we have another root that is 1. Then we would

have

µSµF (pSS + pFF − 1) − (λµSpSS + λµF pFF + µSµF ) + λ(λ + µS + µF ) − λ2 = 0, (38)

which amounts to

1 = λ
µSpSF + µF pFS

µSµF (pSF + pFS)
, (39)

i.e. ρ = 1, a contradiction.

Now suppose the other three eigenvalues are the same, γ
′
. Then

3γ
′

=
λµSpSS + λµF pFF + µSµF

µSµF (pSS + pFF − 1)
, (40)

3γ
′2 =

λ(λ + µS + µF )
µSµF (pSS + pFF − 1)

, (41)

γ
′3 =

λ2

µSµF (pSS + pFF − 1)
.

(40) and (41) imply

(λµSpSS + λµF pFF + µSµF )2 = 3λ(λ + µS + µF )µSµF (pSS + pFF − 1)

i.e.

0 = λ2[µ2
Sp2

SS + µ2
F p2

FF + 2µSµF pSSpFF − 3µSµF (pSS + pFF − 1)] (42)

+ λ[2µ2
SµF pSS + 2µSµ2

F pFF − 3(µS + µF )µSµF (pSS + pFF − 1)] + µ2
Sµ2

F .

To show contradiction, we now prove that (42), as a quadratic equation of λ, has no real roots. That is,

the discriminant is negative:

0 > [2µ2
SµF pSS + 2µSµ2

F pFF − 3(µS + µF )µSµF (pSS + pFF − 1)]2

−4[µ2
Sp2

SS + µ2
F p2

FF + 2µSµF pSSpFF − 3µSµF (pSS + pFF − 1)]µ2
Sµ2

F

= 3(pSS + pFF − 1)µ2
Sµ2

F{µ2
S [−3pFS − pSS ] + µ2

F [−3pSF − pFF ] + µSµF [2(pSS + pFF − 1)]}

But (pSS + pFF − 1) > 0, due to (41), and the coefficients of the quadratic terms in the parenthesis are

negative. Thus we, again, only need to prove that the discriminant is negative:

0 > 4(pSS + pFF − 1)2 − 4(−3pFS − pSS)(−3pSF − pFF )

= −16pSF pSS − 16pFSpFF − 32pSFpFS ,

which is clear. Therefore, we have proved that (40) and (41) are contradictory. As a result, the other three

eigenvalues cannot all be the same.
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Part 2. If we let γ = 1, it is straightforward to verify that (µF pFS , µSpSF )
′

is a solution to (28).

Moreover, if we fix V = (µF pFS , µSpSF )
′
in (28), then we get the following two equations:

µSµF pFSγ2 − (λ + µS)µF pFSγ + λµF pFS = 0

µSµF pSF γ2 − (λ + µF )µSpSF γ + λµSpSF = 0

The first equation has two roots: 1 and λ/µS , and the second equation has two roots: 1 and λ/µF . Because

µS < µF , 1 is then the only solution.

Part 3. By contradiction, suppose γi = γj = γ and Vi and Vj are linearly independent. Then due to

Proposition 3, R = (Vi, Vj)

(
γ 0
0 γ

)
(Vi, Vj)−1 is a solution to (8). Note, however, that here R = γI. But

this is impossible because there exists no γ such that γ2I − γD + C = 0.

Part 4. If Vi and Vj are linearly dependent then Vi = cVj where c is a constant. Therefore,

(γ2
i I − Dγi + C)Vi = 0 (43)

(γ2
j I − Dγj + C)Vj = 0 ⇐⇒ (γ2

j I − Dγj + C)Vi = 0. (44)

Multiplying (43) by γj and (44) by γi and taking the difference, we have

(γiγj(γi − γj)I + (γj − γi)C)Vi = 0

(γiγjI − C)Vi = 0,

since γi 6= γj . Therefore γiγj is an eigenvalue of C.

Part 5. Suppose, by contradiction, that γi, γj , and γk are distinct. Then from Lemma 4, γiγj , γiγk

and γjγk are all eigenvalues of C. Furthermore, if γi, γj , and γk are distinct and non-zero, then these three

eigenvalues are distinct as well. But C has at most two distinct eigenvalues, a contradiction. 2

The following proposition uses the results of Lemma 2 and Propositions 3 and 4 to provide a procedure

for determining solution to (7)-(10). Thus it provides a constructive proof of Theorem 1. Without loss of

generality, we can let γ1 = 1.

Proposition 5

1. Let γi, Vi, i = 1, 2, 3, 4, be given by (27) and (28), and let γ1 = 1. There are two possibilities:

(a) Suppose there exist a pair of linearly independent vectors in V2, V3 and V4, say V3 and V4.

There are two possible cases. In the first, γ2 is different from both γ3 and γ4, then R1 =

(V1, V2)

(
γ1 0
0 γ2

)
(V1, V2)−1 and R2 = (V3, V4)

(
γ3 0
0 γ4

)
(V3, V4)−1 are both solutions to

(8). In the other case, γ2 = γ3 or γ4. Without loss of generality, let γ2 = γ3. Then R1 =

(V1, V4)

(
γ1 0
0 γ4

)
(V1, V4)−1 and R2 = (V2, U2)

(
γ2 1
0 γ2

)
(V2, U2)−1 are both solutions to

(8), where U2 is found via Proposition 4 (equation (31)).
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(b) Suppose V2, V3 and V4 are pair-wise linearly dependent, then γ2, γ3, and γ4 can be neither all

distinct nor all the same. Suppose γ3 = γ4 = γ 6= γ2. Then, R1 = (V1, V2)

(
γ1 0
0 γ2

)
(V1, V2)−1

and R2 = (V3, U3)

(
γ 1
0 γ

)
(V3, U3)−1 are both solutions to (8), where U3 is found via Proposi-

tion 4.

2. R1 and R2, as constructed in (1a) and (1b), have no common eigenvalues.

3. Let R1 and R2 be given in (1a) and (1b). Then there exist K1 and K2 such that (9) and (10) are

satisfied.

Proof

Part (1a). We note that in the latter case, V1 and V4 are linearly independent according to part 2 of

Lemma 2. Part (1a) then follows from Proposition 3 in the former case and Propositions 3 and 4 in the

latter case.

Part (1b). We note that parts 1 and 5 of Lemma 2 together show that γ2, γ3, and γ4 can be neither all

distinct nor all the same. The rest follows again from Propositions 3 and 4.

Part 2. From our construction of R1 and R2 in (1a) and (1b), it is clear that they have no common

eigenvalues in all cases. We note that, in the latter case of (1a), 1 = γ1 6= γ2 and γ = γ3 6= γ4 from part 3

of Lemma 2.

Part 3. The following two lemmas are used in the proof.

Lemma 3 Let R be a 2 × 2 matrix with distinct eigenvalues γ1 and γ2 and corresponding eigenvectors V1

and V2. Then for any vector V 6= 0, if R2V = cV for a non-zero constant c, then c = γ2
i (i = 1 or 2), and

RV = γiV for the same i.

Proof of Lemma 3 Since γ1 and γ2 are distinct, V1 and V2 are linearly independent, and V can be

expressed as a linear combination of V1 and V2: V = c1V1 +c2V2. Then R2V = cV implies c1γ
2
1V1+c2γ

2
2V2 =

c(c1V1 + c2V2), i = 1 or 2.

Again, since V1 and V2 are linearly independent, this implies c1γ
2
1 = c1c and c2γ

2
2 = c2c. Because c1

and c2 cannot both be 0, if c1 6= 0, then c = γ2
1 , c2 = 0, and V = c1V1; else if c2 6= 0, then c = γ2

2 , c1 = 0,

and V = c2V2. 2

Lemma 4 R1 − R2 is invertible.

Proof of Lemma 4 Suppose, by contradiction, that R1 −R2 is non-invertible. Then there exists V 6= 0

such that R1V = R2V . This, together with (8), implies that R2
1V = R2

2V , and hence R1R2V = R2R1V.
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Now from (8), we have:

[R2
1 − DR1 + C]R2V − [R2

2 − DR2 + C]R1V = 0

R1(R1R2)V − R2(R2R1)V = 0

(R1 − R2)(R1R2V ) = 0.

Since R1 6= R2, the dimension of solution space of (R1 − R2)X = 0 is at most one. Because V and R1R2V

are both solutions, we have R1R2V = c1V for some constant c1. Moreover R1V = R2V and R1R2V = c1V

imply R2
1V = c1V , and hence R2

2V = c1V . Without loss of generality, let R1 be the one-matrix solution of

(8) with one as its eigenvalue. Then from Lemma 1, R1 has two distinct eigenvalues. Since c1 is an eigenvalue

of R2
1 and V its corresponding eigenvector, Lemma 3 implies that V is an eigenvector of R1: R1V = γV .

This implies R2V = γV as well. But R1 and R2 do not have common eigenvalues according to part 2 of

Proposition 5. This is a contradiction. 2

Proof of part 3 of Proposition 5 From (9) and (10), (R1−R2)K1 = C−R2 and (R1−R2)K2 = R1−C.

Then by Lemma 4, K1 = (R1−R2)−1(C−R2), K2 = (R1−R2)−1(R1−C) is a solution to (8), (9), and (10). 2

This concludes the proposition’s proof. 2

B Proof of Propositions 1 and 2

Proof of Proposition 1 The transition probability matrix of the Embedded Markov Chain (EMC)

at service completion epochs is P =

(
pSS pSF

pFS pFF

)
, with the steady-state distribution π = (πS , πF ) =

(
pF S

pSF +pF S
, pSF

pSF +pF S

)
such that π = πP . Note that (πS , πF ) are also the long-run proportion of slow and

fast services. More specifically, if we let m(n) be the number of slow services in the first n services the server

provides, then limn→∞ m(n) = ∞, limn→∞
m(n)

n = πS and limn→∞
n−m(n)

n = πF with probability one.

Let S1, S2, . . . denote the sequence of services provided by this server, and let

Ωn = {i : i ≤ n and Si is a slow service}, then m(n) = |Ωn|, and

lim
n→∞

∑n
i=1 Si

n
= lim

n→∞

(∑
i∈Ωn

Si

n
+

∑
i6∈Ωn

Si

n

)

= lim
n→∞

(∑
i∈Ωn

Si

m(n)
· m(n)

n
+

∑
i6∈Ωn

Si

n − m(n)
· n − m(n)

n

)

=
πS

µS
+

πF

µF
=

pFS

pSF + pFS

1
µS

+
pSF

pSF + pFS

1
µF

with probability 1. Hence the long-run average service time 1/µ is defined as in (11), and it follows from

(37) that ρ = λ/µ. When ρ < 1, by Little’s Law, ρ is the long-run average fraction of time the system is

busy.
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To derive stability conditions, we define (in Loynes’s [2] notation) T1, T2, . . . to be the sequence of inter-

arrival times. Moreover, define Un = Sn − Tn. Then

lim
n→∞

∑n
k=1 Uk

n
=

1
µ
− 1

λ

{
< 0 if ρ < 1,

≥ 0 if ρ ≥ 1
w.p.1.

Therefore, the system is stable when ρ < 1 and unstable when ρ ≥ 1. This follows directly from Theorems 1

and 2 and Corollary 1 in Loynes [2]. 2

Proof of Proposition 2 From (12), we know that PS,0+PF,0 > 0 when ρ < 1. Suppose, by contradiction,

that PS,n (or PF,n) equals zero for some n ≥ 0. Then from equations (1)-(4), PS,n+1 = 0 (or PF,n+1 = 0).

Because pSF · pFS 6= 0, it follows that PF,n = 0 (or PS,n = 0), and recursively PS,k = PF,k = 0 for all k.

This contradicts PS,0 + PF,0 > 0. Therefore, all the probabilities (PS,n, PF,n, ∀n ≥ 0) are positive, and the

Markov process is ergodic.

Because there might be identical γ’s in γ1, γ2, γ3, γ4, we first collect terms in (14). Then we denote by γi

the lowest ranking γ whose α and β coefficients are not both zero.

Suppose |γi| ≥ 1, and without loss of generality, suppose αi 6= 0. Then since limM→∞ |EM,i| = ∞ and

aM =
∑4

i=1 αiEM,i, this means limM→∞ |aM | = ∞. Because limM→∞ (aM , bM)X0 = 1, this also implies

that limM→∞ |bM | = ∞. Otherwise we would have PS,0 = 0, contradicting the fact that the solution to (13)

is positive. So βi 6= 0 as well.

The coefficient of the γM
i term in (aM , bM)X0 is αiPS,0 + βiPF,0. As M → ∞, this coefficient must

vanish. Therefore
PF,0

PS,0
= − lim

M→∞

aM

bM
= −

αi

βi
. (45)

This corresponds to the first case in the proposition statement.

Now suppose |γi| < 1. Since the eigenvalues with non-zero α and β coefficients all lie within the unit disk,

we have, from (13), that limM→∞ (aM , bM) = (a, b) for finite (a, b). Therefore, from (13), we have equation

(16). This corresponds to the second case in the proposition statement. 2

C Derivation of L in the infinite waiting space case

To derive (17), we first balance flows across cuts 1 in the state-transition diagram (Figure 2). As a result we

obtain the following equations:

λ(PS,n + PF,n) = µSPS,n+1 + µF PF,n+1 ∀n (46)

If we let G =
∑∞

n=0 nPS,n, H =
∑∞

n=0 nPF,n, multiply both sides of (46) by n + 1, and sum over all n, then

we obtain
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Figure 2: Two cuts in the state-transition diagram

λ

∞∑

n=0

((n + 1)PS,n + (n + 1)PF,n) = µS

∞∑

n=0

(n + 1)PS,n+1 + µF

∞∑

n=0

(n + 1)PF,n+1

λ(G + H) + λ = µSG + µF H.

This is (17), the first equation needed.

Next we rewrite (6):

Xn+2 − DXn+1 + CXn = 0, ∀n ≥ 0 (47)

X1 = CX0.

Again, we multiply (47) by n + 1 and sum over n from 0 to ∞, to obtain:

∞∑

n=0

(n + 2)Xn+2 −
∞∑

n=0

Xn+2 = D

∞∑

n=0

(n + 1)Xn+1 − C

∞∑

n=0

nXn − C

∞∑

n=0

Xn

∞∑

n=2

nXn −
∞∑

n=2

Xn = D
∞∑

n=1

nXn − C
∞∑

n=0

nXn − C
∞∑

n=0

Xn

∞∑

n=0

nXn − X1 −
∞∑

n=2

Xn = D

∞∑

n=0

nXn − C

∞∑

n=0

nXn − C

∞∑

n=0

Xn

(I − D + C)
∞∑

n=0

nXn =
∞∑

n=1

Xn − C

∞∑

n=0

Xn. (48)

Now if we balance the flow across cut 2 in Figure 2, then we obtain pSF µS

∑∞
n=1 PS,n = pFSµF

∑∞
n=1 PF,n.

Moreover,
∑∞

n=1 (PS,n + PF,n) = ρ. Therefore,
∑∞

n=1 PS,n = pF S

pSF +pF S
· λ

µS
and

∑∞
n=1 PF,n = pSF

pSF +pF S
· λ

µF
,

so (48) becomes:
(

−µSPSF µF PFS

µSPSF −µF PFS

)(
G

H

)
=

(
PF Sλ

PSF +PF S
PSF λ

PSF +PF S

)
−

(
pF S

pSF +pF S
· λ

µS
+ PS,0

pSF

pSF +pF S
· λ

µF
+ PF,0

)
,

out of which we obtain (only) one independent equation, equation (18).
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