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In this paper, we study the fulfillment strategies of an omni-channel retailer who wants to leverage her 

established offline retail channel infrastructure to help online sales. We consider a single product that is 

sold in both online and offline channels to non-overlapping markets with independent Poisson demand. The 

offline store can fulfill online demand at an additional handling and fulfillment cost, k, but not vice versa. 

The retailer makes decisions at three different levels: 1) at the strategic level the retailer must establish a 

fulfillment structure in terms of where to stock inventory in the two channels, 2) at the tactical level, the 

retailer decides how much inventory to have for each channel before the season starts, 3) at the operational 

level throughout the season, as demand unfolds and inventory depletes, the retailer makes rationing decision 

about whether to use offline inventory to fill online order at any moment. We build separate and integrated 

models to study these decisions, and find that the optimal rationing decision has a threshold-based structure 

that depends critically on k and the mix of demand between the two channels. Two simple rationing 

heuristics are proposed and shown to be effective. Furthermore, integrating the rationing policy into higher-

level decisions, we show that it can have significant impact on the retailer’s stocking and fulfillment 

structure decisions. As a result, we propose an integrated policy, where the retailer builds separate inventory 

stocks for each channel but can use the offline inventory to back up online sales, subject to a rationing 

heuristic procedure. The heuristic is simple, effective, and robust. We discuss the various practical 

implications of our findings. Finally, numerical test results confirm the analytical findings and also guide 

us to propose expanded heuristics that work well with multiple offline stores. 

1. Motivation and Introduction 

Online shopping appeals to consumers for its convenience, information abundance, and possible lower price. 

Spurred by rapid development and spread of Internet and mobile technologies, online shopping has 

expanded exponentially. Whereas total retail sales in the US grew 4.1% from the 4th quarter of 2015 to the 

4th quarter of 2016, e-commerce sales grew 14.3% in the same period (U.S. Census Bureau 2017). Online-

only retailers, such as Amazon.com, led the charge but traditional retailers, such as Macy’s and Walmart, 
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did not stand still, and also invested heavily in their ecommerce expansion. Walmart, for example, bought 

Jet.com and ModCloth (Kapner 2017) and is close to acquiring online men’s fashion retailer Bonobos (Cao 

2017). 

For traditional retailers, the expansion of online sales presents two crucial problems: First, online orders 

require different capabilities from the fulfillment center than offline ones. For example, the fulfillment 

center needs to be able to pick many items quickly in small batches and combine them for shipment, 

whereas traditional offline warehouses are set up to move products in large quantities to a smaller number 

of destinations. To manage online demand, many traditional retailers simply built more warehouses 

configured specifically for online orders. With an entry price of at least $100 million per warehouse (Banjo 

et al. 2014), this infrastructure investment imposes a huge financial burden. Second, the shift to online 

shopping reduces traffic to the offline stores, making it harder to manage offline store inventory. Reduction 

in offline inventory would cause more frequent stockouts in the stores. 

Offline stores are also costlier for traditional retailers to operate as they require more expensive space, 

labor, and are less efficient in their use of space, labor, and inventory due to its smaller scale of risk pooling, 

as compared with online stores. This gives online retailers a sizable competitive advantage. To cope with 

that, many retailers, such as The Limited, JCPenney, Staples, and Macy’s, are forced to close numerous 

stores to focus on more profitable locations and product categories. Some, including Radio Shack, Bebe, 

Payless Shoes, and Toys“R”Us, have all recently announced bankruptcy and store closings (for example, 

see Kapner 2017).  

Increasingly, traditional retailers such as Nordstrom, Macy’s, Walmart, and Target have turned to other 

more productive ways to utilize their offline store in the competition with online retailers. They realized 

that instead of building more and more expensive warehouses, they could use the abundant 

inventory/storage capabilities they have already built all around the country – in the form of offline stores 

–to meet the growing online sales (Mattioli 2012). Using this store fulfillment (a.k.a. ship-from-store) 

approach, when stock in the online warehouse(s) runs out, an online order can be routed to an offline store 

where a clerk will take the order and pick items from shop floor, pack them up in a backroom, and then 

ship to the customer. 

When used properly, these established offline stores present the retailer with a great opportunity to 

integrate online and offline fulfillments. The shift to – and the subsequent judicious use of – offline 

inventory could also help them to alleviate the out-of-stock problems plaguing offline stores. Target 

reported that 30% of its online orders were already fulfilled from the stores, and that its offline store in-

stock performance also improved (Chao 2016). 
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Store fulfillment is part of a broader set of omni-channel strategies that retailers have been pursuing in 

recent years, in order to strategically position and use inventory resources across both online and offline 

channels. Another common approach is in-store pickup of online orders. For customers who want instant 

gratification, this is an attractive option. It also increases traffic to offline store, which may lead to extra 

sales. In this paper, we focus solely on the store fulfillment, however. Readers interested in the in-store 

pickup strategy are referred to Gallino (2014) and the references therein. 

While the store fulfillment strategy can help the retailer to more effectively use its inventory in both 

online and offline stores, it also has downsides. At present, many offline stores are not set up/organized for 

online order picking, packing, and shipping (Baird & Kilcourse 2011). The logistics costs and inefficiency 

of stores versus warehouses in handling online orders may result in margin erosion (Manhattan Associates 

2011, Weedfald 2014). Moreover, it creates more work and inconvenience for store clerks who must now 

fulfill online orders and help in-store customers (Banjo et al. 2014). Store fulfillment can cost three to four 

times more when compared with that in an online warehouse (Banjo 2012). According to a PwC survey of 

CEOs (PwC 2014), 67% of all 410 respondents rank fulfillment cost as the highest cost for fulfilling orders. 

Thus, a successful omni-channel fulfillment strategy must seek balance between satisfying online demand 

and curbing fulfillment cost. It is our aim in this research to derive efficient and profitable fulfillment 

strategies and provide insights about managing store fulfillment. 

While our research is motivated by the store fulfillment strategy adopted by large retailers, our model 

is equally applicable to smaller, offline retailers that are moving to become omni-channel. The initial heavy 

capital requirement for opening an online channel, including building a website with all its associated e-

commerce functions (billing, fulfillment, processing returns, etc.), poses a big challenge to small retailers. 

Seizing this opportunity, a number of e-commerce platforms provide fulfillment services. For example, 

Fulfillment by Amazon (FBA) offers to manage inventory and fulfillment for independent sellers, who 

would retain ownership of their inventory, but let FBA handle the physical stocking, handling, and shipping 

of the products. Facing such choices, sellers must decide whether to use such services and, if so, how to 

coordinate the management of inventory with their existing offline store. From private communications, 

we know some Amazon sellers will completely rely on FBA to manage all of their inventory, yet others 

will divide up inventory between FBA and their own warehouse, and use the latter to satisfy both demand 

generated by their own website and Amazon demand that exceeds the inventory placed with FBA.  

For products with a short sales season, the retailer may also have to make real-time inventory rationing 

decisions, when both online and offline demand chase after a limited quantity of offline inventory. The Yeti 

Rambler was such a highly sought after product for the 2015 Christmas season. Some retailers, such as 
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Illinois-based Ace Hardware Corp. had to cut off using offline inventory to fulfill online orders during the 

last few weeks of the holiday season, in order to prioritize sales to local, offline customers who they believe 

are more profitable.  

Our paper aims to tackle the fulfillment problem at all three levels described above. At the strategic 

level, the retailer must decide whether to stock channel-specific inventory or rely on just the offline 

inventory to fulfill both demand streams. Then, at the tactical level once the fulfillment structure is 

determined, the retailer must decide the amount of inventory to stock. Finally, at the operational level, the 

retailer must be able to ration the remaining offline inventory, in real time, between the two demand streams 

to maximize profit. We refer to these three decisions as the fulfillment structure, stocking, and rationing 

decisions, respectively. 

Our contribution to the academic literature and business practice is four-fold: First, we build an 

integrated model to tackle all three of the problems described above. Second, our model is set in a realistic 

continuous-time framework and, we can characterize the structure of the optimal rationing policy through 

which we develop two simple yet effective heuristics. Third, we are able to provide concrete insights and 

guidance to the omni-channel retailer regarding its fulfillment structure and stocking decisions; namely, the 

retailer should shift some of its online inventory to the offline channel and use a judicious rationing policy 

to achieve profit maximization. Fourth, using an extensive numerical study, we demonstrate the value of 

integrating all these decisions, and show that our proposed approach is both profit-efficient and robust. 

The rest of this paper is organized as follow. In Section 2, we review several related literature streams. 

In Section 3, we build analytical models to study the retailer’s problems. In Section 4, we use an extensive 

numerical study to further explore the results developed in Section 3, and gain managerial insights into the 

retailer’s decisions. Finally, we conclude in Section 5. 

2. Literature Review 

Our study of the retailer’s fulfillment strategy is closely related to the literature on e-fulfillment and multi-

channel distribution (see Agatz et al. 2008, de Koster 2002, Ricker and Kalakota 1999). Both Bretthauer et 

al. (2010) and Alptekinoglu and Tang (2005) study static allocation followed by Mahar et al. (2009) who 

consider the dynamic allocation of online sales across supply chain locations. More recently, Mahar et al.

(2010) and Mahar et al. (2012) explore store configuration when in-store pickups and returns are allowed. 

The paper that comes closest to ours is Bendoly et al. (2007) who study whether online orders should be 

handled in a centralized or decentralized fashion. In our paper, not only do we compare these fulfillment 
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structures, we also integrate this decision with the stocking and rationing decisions. This makes our 

approach more practical and closer to the omni-channel ideal.  

Another stream of literature that’s closely related to the fulfillment structure and stocking aspects of 

our research is that on inventory pooling, which started with Eppen (1997) who showed the benefit of 

warehouse consolidation in a single-period setting. This seminal work has since been extended to include 

the examinations of correlated and general demand distributions (Corbett and Rajaram 2006), demand 

variability (Gerchak and Mossman 1992, Ridder et al. 1998, Gerchak and He 2003, Berman et al. 2011, 

Bimpikis and Markakis 2014), and holding and penalty costs (Chen and Lin 1989, Mehrez and Stulman 

1984, Jönsson and Silver 1987). Some researchers have identified conditions under which pooling may not 

be beneficial, such as service levels less than 0.5 (Wee and Dada 2005) and right skewed demand 

distribution under product substitution (Yang and Scharge 2009). When the demand streams are non-

identical, Eynan (1999) shows numerically that if the margins are different, lower margin customers serve 

as a secondary outlet of leftovers. Ben-Zvi and Gerchak (2012) model demand pooling with different 

shortage cost, and show that retailers are better off if they pool their inventory and give priority to customers 

with higher underage cost when allocating inventory after demand is realized.  

Our model differs in two aspects. First, unlike the above models where demand streams are different in 

only one dimension, our demand streams are different in several dimensions: not only do they vary in 

margin and leftover cost, the online orders also incur an extra handling and fulfillment cost if they are filled 

from the offline store. Second, our inventory rationing is performed as demand unfurls in real time, not 

after all the demand is realized as is the case in many previous works. Similar to the aforementioned papers, 

we develop our model in a single-period setting. Readers interested in periodic-review inventory pooling 

are referred to Scharge (1981), Erkip et al. (1990), Benjaafar et al (2005), and Song (1994). 

The rationing of inventory between online and offline demand in our model is related to three separate 

but overlapping streams of research: inventory rationing, transshipment, and substitution. 

INVENTORY RATIONING The inventory rationing literature is concerned with how to use pooled 

inventory to satisfy several classes of demand. Kleijn and Dekker (1998) give a review of early papers in 

the literature. In the periodic-review setting, Veinott (1965) first proves the optimality of threshold based 

rationing policy. His work is extended by Topkis (1968), Evans (1968), and Kaplan (1969). In the single-

period setting, Nahmias and Demmy (1981) present a model for two demand classes and Moon and Kang 

(1998) extend it to multiple classes.  
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Our model differs from the existing literature (e.g., Nahmias & Demmy 1981, Atkins & Katircioglu 

1995, Frank et al. 2003, Deshpande et al. 2003, Melchiors et al. 2000) in that demand arrivals and decision 

epochs are continuous within a single, finite period setting. Chen et al. (2011) is the only other paper with 

a similar setting but they approximate the continuous arrivals by discretizing time. Another distinguishing 

feature of our model is that demand margins are endogenized by the retailer’s rationing decision, because 

the margin on an online demand is lower if it’s satisfied by a unit of offline inventory. 

LATERAL TRANSSHIPMENT Under lateral transshipment, if one retail store is out of stock, another store 

can supply it at a cost. Lee (1987) studies a two-echelon model with one depot and n identical stores, and 

evaluates three rules on choosing which store should be the origin of transshipment. Wee and Dada (2005) 

find the optimal transshipment origin in a similar two-echelon model with one warehouse and n identical 

stores. Unlike these two papers which assume inventory is monitored in continuous time, the majority of 

works in the literature study the rationing problem in periodic-review inventory models. Moreover, to 

simplify analysis, they assume that transshipment occurs either at the end of the period after demand is 

realized (Krishnan and Rao 1965, Tagaras 1989, Tagaras and Cohen 1992, Robinson 1990; Rudi et al.

2001), or at the beginning of each period in anticipation of stockout (Allen 1958, Gross 1963, Karmakar 

and Patel 1977, Herer and Rashit 1999). In contrast, although we study a single-period inventory model, 

we allow rationing decisions to be made continuously throughout the period, as demand arrives. Only a 

few other papers in the literature allow transshipment decisions within a period in the periodic-inventory 

setting. Archibald et al. (1997) use a finite-horizon continuous-time Markov decision process to study 

whether to use transshipment or place an emergency order. Axsäter (2003) studies a store that uses a (R,Q) 

policy to replenish from the supplier, supplemented by lateral transshipment. Due to the complexity of the 

model, he derives a myopic rationing heuristic, which is still too complicated to be incorporated into the 

stocking problem. In our paper, not only we are able to characterize the optimal rationing policy, we also 

develop a simple, effective heuristic that could be used in future modeling work. For a more detailed review 

on lateral transshipments, please see Paterson et al. (2011). 

SUBSTITUTION  Our paper has similarity to those on firm-driven product substitution, because when 

online inventory runs out, offline inventory can be used as a perfect substitute, at an extra cost. Pasternack 

and Drezner (1995) consider two substitutable products with stochastic demand within a single period. They 

show that total order quantity under substitution may increase or decreases depending on the substitution 

revenue. Bassok et al. (1999) show concavity and submodularity of the expected profit function under 

various assumptions in a single-period setting with downward product substitution. Deflem and 

Van Nieuwenhuyse (2013) examine the benefits of downward substitution between two products in a 
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single-period setting. Again, all these papers make the simplifying assumption that substitution occurs at 

the end of the period after demand is realized. In contrast, in our paper, substitution decisions are made in 

real time. For a review on the substitution literature, please see Shin et al. (2015). 

In recent years there have been a few modeling papers that discuss the effect of integrating inventory 

and pricing decisions across online and offline channels. Aflaki and Swinney (2017) focuses on the impact 

of such virtual inventory pooling on the pricing in both channels and strategic customers’ responses. Harsha 

et al. (2017) uses a mixed integer program heuristic to rebalance inventory of a markdown item within a 

finite time period across online and offline stores by dynamically adjusting prices in all these stores. When 

implemented, the heuristic reports 6-12% increase in markdown revenue. Similarly, Lei et al. (2016) study 

the joint pricing and inventory fulfillment decisions for an item in a finite selling season. As the optimal 

solution is intractable, they propose a number of heuristics. Even though we do not study the pricing 

decision, our model applies to inventory management of items that can be replenished over time, and we 

study fulfillment structure and inventory ordering decisions that are absent in these two papers. 

3. Model Setup 

Consider the management of a single product for an omni-channel retailer with one online and one 

offline store. The two stores have independent, exogenous, and non-overlapping Poisson customer arrivals 

with mean rates of  and  (throughout the paper, we will use subscript 0 for all the online-related 

parameters and variables, and 1 for the offline-related ones). We focus on the inventory management of 

this product during a fixed sales period [0,T]. Before the sales period starts, the retailer makes the fulfillment 

structure and stocking decisions. There is no replenishment during the sales period, so the retailer 

dynamically rations its fixed inventory between online and offline demands as they unfold during the period, 

in order to maximize profit. 

Let  denote the product’s fixed unit profit margin at store . When online demand is 

satisfied by offline inventory, there is an extra unit cost of  (similar to Axsäter 2003), representing the 

higher handling, overhead, and shipment costs in the offline store compared to warehouses. Many retailers 

match online and offline sales prices, but some don’t. We impose no restriction on the relationship between 

 and  except that . This is a reasonable assumption that indicates the offline store prefers 

satisfying its own customer to an online one (which is clearly the case in the Yeti Rambler example, 

Nassauer 2015).  
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While some retailers integrate pricing and inventory decisions (e.g., Aflaki and Swinney 2017, Harsha 

et al. 2017), and it is possible that the retailer’s fulfillment, inventory, and rationing decisions can impact 

customers’ choice of purchasing channel (hence the demand rates), these are worthwhile questions beyond 

the scope of this paper. In our model we have assumed exogenous prices and demand rates in order to focus 

on the key fulfillment questions.  

Let  be the initial stocking level at store . Any unsatisfied demand will be lost, and any 

leftover in store n  at the end of the sales period will incur a unit cost of . This assumption applies to 

many products such as those in garment or fashion industry, and is commonly used in the literature (see, 

for example, Yang and Schrage 2009).  

As described earlier, using the store fulfillment approach, the retailer needs to make decisions at three 

levels: strategical, tactical, and operational, which are modeled as follows.  

Fulfillment Structure Decision: At the strategic level, the retailer must decide whether to stock 

only  in the offline store and use it to satisfy both online and offline demands (denoted as the 

Pooling, or P, structure) or stock and in the two stores respectively (denoted as the Non-

Pooling, or NP, structure). 

Stocking Decision: At the tactical level, retailer must decide on the appropriate level of  and 

(in the P structure ).  

Rationing Decision: At the operational level, the retailer must ration offline inventory, in real time, 

between the two demand streams with margin of  and  to maximize profit. 

While these decisions can be analyzed separately, we find the value of integrating these three levels of 

decision in our model creates more practical insight. In Section 3.1, we focus on the fulfillment structure 

and stocking decisions assuming no inventory rationing. Then in Section 3.2, we derive the optimal 

rationing policy and develop two practical, effective heuristics for given inventory level(s). In Section 3.3, 

we integrate all the decisions. 

Although we analyze a stylized model, we also study more general problem settings in later sections: 

In Section 4.4 we numerically investigate the case of non-homogenous Poisson arrivals. 

In Section 4.5 we numerically investigate the case of one online store and multiple offline stores. 
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We are able to show that the insights generated by the simple stylized model extend to these more 

general settings.

3.1. Fulfillment Structure and Inventory Stocking Problems with No Rationing 

When the retailer makes the fulfillment structure decision, she weighs the pros and cons of the P and NP 

structures (Figure 1). In the P structure, the offline store reaps the inventory pooling benefit. In the NP 

structure, online demand can be satisfied using online inventory, thus avoiding the additional cross-channel 

handling and fulfillment cost . In this section, we study when each structure should be adopted; 

furthermore, we derive the associated optimal stocking levels in each structure, assuming first-come first-

served among all demand arrivals. As a next step, rationing will be studied and incorporated in Sections 3.2 

and 3.3. 

Figure 1 P and NP Fulfillment Structure Designs

We assume that the retailer is risk-neutral and seeks to maximize her expected profit. Let 

be the retailer’s expected profit in the NP structure, given the stocking levels S0 and S1, and  be the 

retailer’s expected profit in the P structure, given the total stocking level S1.  

In the NP structure, the two stores operate as separate newsvendor systems facing independent Poisson 

demand with average rate , margin , and leftover cost , . In the P structure, both stores are 

operated centrally as a single newsvendor system with Poisson demand with average rate , 

leftover cost , and a weighted product margin of 
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. (1) 

Clearly, the cost of using offline inventory to satisfy online demand, , reduces the overall expected 

product margin. When  is high enough such that  then the fulfillment structure decision becomes 

trivial as retailer will lose money under P structure, and thus NP will be the best choice. Therefore, we only 

consider  .   

  The newsvendor results from Hadley and Whitin (1963) are summarized in Proposition 1. Following 

their notation, we denote the PDF and the complementary CDF of a Poisson random variable with a rate of 

 by   and , respectively. When necessary we use superscript P and NP to indicate the two 

fulfillment structures. 

Proposition 1  (Hadley and Whitin 1963, Chapter 6.2, pages 297-299) 

(1) In the NP structure, the optimal inventory level for store , Sn
NP , is the largest S such that: 

.  (2) 

Furthermore, the retailer’s optimal total profit function is: 

  (3) 

(2) In the P structure, the retailer’s optimal inventory level at the offline store, , is the largest S such 

that: 

. (4) 

Furthermore, the retailer’s optimal total profit function is: 

. (5) 

Proposition 1 shows the optimal stocking levels in the NP and P structures. The next proposition 

compares these quantities. All proofs in this paper can be found in the Electronic Companions. 
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Proposition 2  

(1) .

(2)  is strictly decreasing in . Moreover, there exists  such that  for 

all .  

In the P structure, the offline inventory is used to satisfy both online and offline demand. Thus, the 

offline inventory must increase accordingly, which explains (1) in Proposition 2. This result is expected, 

but its proof is non-trivial due to the presence of extra handling and fulfillment cost .  

The second part of Proposition 2 requires some additional explanation. Since there is no rationing, all 

demands are filled on a first-come-first-served basis. Therefore, for larger , the retailer has lower product 

margin ; thus, the base stock level is lower, from (4). When  is sufficiently high (i.e., ), the P 

structure has lower base stock (and thus, lower inventory levels) than that in the NP structure. However, 

this is driven by the smaller product margin  due to , which is different from the traditional pooling 

benefits in the absence of . 

On the other hand, for smaller values of , rationing has a smaller impact on the system. Thus, the 

comparison of P and NP mirrors that in the traditional inventory pooling literature, where pooling can 

reduce inventory if the products being pooled are similar to each other. Otherwise, pooling can counter-

intuitively increase inventory levels (e.g., see Ben-Zvi and Gerchak 2012 for numerical examples). In our 

setting, we also show that pooling reduces inventory when the two stores are identical ( and ). 

This idea is extended in the following corollary, where we also give a simple sufficient condition under 

which pooling always reduces the total system inventory. Please note that in practice  and it’s also 

very common to have . 

Corollary 1 When , , and , . A special case is when and 

.	
Next, we compare the retailer’s expected profit in these two structures. 

Proposition 3 

(1)  is decreasing in . 
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(2) There exists a finite  such that  if and only if .  

Proposition 3 states that the preference of one structure to the other has a threshold form: smaller values 

of k favor P and larger ones favor NP, with the threshold being . (When the NP structure is always 

preferred,  is set to be zero.)  A numerical example is presented in Figure 2. This result is intuitive as 

large values of  impose heavy penalty for every fulfillment of online demand by offline inventory, 

pushing the retailer to carry online-specific inventory. 

Figure 2 Difference between the optimal P profit and the optimal NP profit as k and  increase  

( ) 

From Figure 2, we further observe that the threshold  is decreasing in . That is, when online 

demand is large, it makes more sense to have online-specific inventory in order to avoid the cross-channel 

handling and fulfillment cost . The next proposition gives theoretical support to this observation. 

Proposition 4  is submodular in  and . 

Submodularity means that the threshold on k found in Proposition 3 is decreasing in . Figure 3 

depicts a typical dominance map of the P and NP structures. There is a monotonically decreasing switching 

curve in the -  space. Below the curve, inventory pooling (P structure) is preferred and above it channel-

specific inventory (NP structure) is preferred. A similar threshold on  is numerically observed by 

Bendoly et al. (2007).  
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Figure 3 P versus NP Structure Decision Map ( ) 

The P structure always leads to lower inventory (Proposition 2), but not necessarily higher profit 

(Proposition 4), due to the cross-channel fulfillment cost k which is an important distinguishing feature of 

our model. This result adds to the existing literature on inventory pooling, which has explored the benefits 

and effect of pooling in regard to demand distribution, demand correlation, and cost parameters asymmetry 

(Yang and Schrage 2009, Gerchak and Mossman 1992, Pasternack and Drezner 1991).  

3.2 Inventory Rationing Problem 

Our analysis in Section 3.1 does not incorporate any real-time inventory rationing. However, since a unit 

of offline inventory gets a higher margin when it is used to satisfy an offline demand (  ), it may 

be more profitable to protect some offline inventory for possible future offline customers, rather than using 

them to satisfy immediate online customers (Nassauer 2015). Therefore, any offline demand is always 

satisfied as long as there is offline inventory, but this is not necessarily true with online demand. Let 

 denote the start time of rationing (i.e., when online demand starts to be routed to the offline 

store.) In the P structure,  which means rationing starts at the beginning of the season.  In the NP 

structure,  represents the instant online store runs out of inventory. From  onward, all online demand is 

routed to the offline store but due to the rationing policy, it is not always filled.  

Our inventory rationing model is similar to the multi-class revenue management (RM) capacity 

allocation problem (Talluri and Van Ryzin 2004). A common solution approach is to approximate the 

problem using discrete-time setting dynamic program, where each time interval has a demand of only 0 or 

1. However in this paper we employ a continuous-time framework and seek an exact solution. 
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Let  denote the elapsed time from the beginning of the sales season. We formulate the rationing 

problem as a dynamic program. Because of the memory-less property of Poisson arrival, the state variable 

for decision making is where i is the offline inventory level at time t. The Bellman equation can be 

written as follow: 

  (6) 

where u  represents the decision to accept ( ) or reject online demand ( ).  If an online demand is 

routed to the offline store, the retailer can accept it and make a profit , or reject it and protect the 

inventory unit for possible future offline use. The latter is optimal if and only if the expected future value 

of the (protected) marginal inventory unit exceeds . 

Intuitively, the marginal value of an extra unit of inventory should be higher when there is more time 

left in the sales season to sell it. Moreover, for a fixed time, this value should be decreasing in the existing 

inventory level: more inventory means a higher probability for this unit to be left over. Therefore, we expect 

 to be concave in , and submodular in . The following lemma formalizes this observation. It is 

based on Liang (1999), which studies a revenue management problem in a continuous-time setting.  

Lemma 1 (Liang 1999)  is concave in  and submodular in . 

As discussed above, when employing a rationing policy, the retailer compares the expected value of a 

marginal inventory with . The concavity in  shows decreasing marginal value in , therefore if it is 

optimal to accept an online demand when on hand inventory is i, then it will also be optimal to accept online 

demand at inventory levels larger than i. We define a policy with such a property as a threshold-based 

rationing policy, as follow: 

There exists an inventory threshold  for all  where an online demand at time  is 

accepted if and only if the offline inventory at time t is above . 

The following theorem is a key result in our study of the rationing problem.  

Theorem 1 There exist a positive integer l and points in time where , such 

that a threshold-based rationing policy is optimal for the offline inventory, with the thresholds defined as 

follows:  on  and  on , . 
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The main idea behind Theorem 1 is that the marginal value of an additional unit of inventory is 

decreasing not only in inventory but also in the remaining time. Thus, the inventory-based threshold should 

also decrease with time. To characterize these thresholds, we first consider t just before the end of the season 

(i.e., ). Any offline inventory at that point is almost certain to end up as leftover. Therefore, if an 

online demand occurs, the offline store should accept it and take the sure profit . As we move 

backward from T, more time is left in the sales season, and the probability of the marginal unit being leftover 

decreases. There comes a time, denoted by , when the marginal value of protecting an offline inventory 

equals to . Then  is the first point (going backwards in time) when the retailer becomes indifferent 

between protecting and not protecting the last unit of offline inventory. Moving further back from , the 

retailer now strictly prefers to protect the last unit, so the threshold jumps to one. This procedure can be 

applied recursively to find the other indifference times,  . At those time points, it is equally 

optimal for the retailer to protect j units and j+1 units. Hence the retailer is indifferent between protecting 

or not protecting the (j+1)th unit. For expositional purpose, we break the tie and define the retailer to protect 

units at , but not the (j+1)th.

Theorem 1 simplifies the computation of the optimal policy. Instead of calculating the optimal decision 

u(i,t) for all the (i,t) values, it now suffices to find all the indifference points. Theorem 1 also allows us now 

to express the value function in a straightforward way. For , the optimal profit function can be 

written as: 

  (7) 

We can now use (7) and the indifference property to recursively find all the , 

. 

Figure 4 illustrates the structure of the optimal rationing policy via a numerical example, for different 

values of . As expected, when  increases, the retailer stocks more inventory at time 0, and the optimal 

rationing policy employs more threshold levels, making it both computationally and practically difficult to 

use. This makes the case for developing simple yet effective heuristics for practical use. 
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Figure 4 Optimal Rationing Policy change as  increases ( ) 

We develop heuristics using two different approaches. In the first, we limit the number of thresholds to 

a single one. In the second, we retain the multi-threshold structure of the optimal policy, but use a simple 

function to approximate  in (7). This function does not need to be evaluated recursively, so the 

indifference points are easier to find. We present these two heuristics in 3.2.1 and 3.2.2 respectively.  

3.2.1. Single Threshold (ST) Heuristic 

In the optimal rationing policy, the threshold varies over time; therefore, a natural simplification is to use a 

fixed threshold throughout the season. This replaces the staircase shape of the optimal policy with a fixed 

horizontal line. Once this single threshold is set at time , it is used for the rest of the season. Because of 

this, the threshold should reflect the level of inventory, , at time : if the inventory level at time  is high, 

the retailer should be more concerned about having leftover at the end of the season; therefore, a low value 

of single threshold should be set, and vice versa. We define this single threshold (ST) heuristic as follows: 

Let there be  units of inventory in the offline store at time . Under a single threshold heuristic, the 

offline store accepts an online demand at time  if and only if the offline inventory at time t is 

above a calculated threshold level . 

Under the ST heuristic, the threshold  is chosen to maximize the offline store’s expected profit 

for  (note that the online store is already out of stock, this also represents the system profit):
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   (8) 

Even though  appears more complicated, it is much easier to use than the optimal policy 

because the threshold needs to be calculated only once and used for the rest of the season. In particular, we 

note that unlike the profit function of the optimal policy,  in (7), evaluation of  in (8) is 

not recruvie. Thus, the ST heuristic is much simpler to compute than the optimal rationing policy.  

Lemma 2 

(1) For any fixed  and ,  is concave in 

(2) For any fixed ,  is submodular in . 

(3) For any fixed ,  is submodular in . 

The concavity of  allow us to find  for any given  and  using the first order 

condition. The submodularity properties in parts (2) and (3) imply that  is decreasing in  or , 

when the other is fixed. This makes intuitive sense, as more inventory and less time left to sell should lead 

the inventory protection level to be lower. 

Proposition 5 If the online store runs out of inventory at time , , and the offline inventory at 

that time is , then the offline store should use a single threshold heuristic where 

.

3.2.2. Newsvendor Thresholds (NT) Heuristic 

We now take a different approach, which simplifies how the thresholds are calculated. To do so, we assume 

once the threshold is hit, rest of the season all inventory will be protected for offline store customers. As a 

result, “future” value function  in the right-hand side of dynamic program (7) is replaced by the 

offline store newsvendor profit function, . This way, the 

calculation of indifference point simplifies to: 



18 

We 

refer to this heuristic, which is based on optimizing , the newsvendor thresholds (NT) heuristic. 

Lemma 3

(1)  is concave in  and submodular in . 

(2)  for all . 

Again, the concavity of  in part (1) of Lemma  allows us to use the first order condition to 

characterize the optimal control in part (2). Therefore, we now know that the NT heuristic works as follows: 

Under the NT heuristic, an online demand at time  is accepted if and only if the offline inventory at 

time  is above . 

Note that the threshold under the ST heuristic, , depends on the timing of  and the offline 

inventory level at , but it is calculated once and used for the rest of the season. In contrast, the NT 

heuristic employs thresholds that vary over time, but their computations are much simpler due to the use 

of newsvendor value function  which makes the profit function evaluation of the NT heuristic 

non-recursive. We are, thus, able to compute the indifference points in closed-form solutions, which 

require a straightforward inversion of a Poisson complementary CDF.  

The following proposition shows that these thresholds behave in a similar fashion to the optimal ones and 

decrease in unit steps over time. 

Proposition 6 There exists a positive integer n and time points  where , such 

that the optimal NT threshold is  for  and  for . Moreover, the 

time points  are solutions to the following equation:  

.  
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Proposition 6 provides the indifference points that are key to the complete characterization of the NT 

heuristic. The following corollary further establishes that at any time t, the NT heuristic thresholds are no 

greater than the optimal policy thresholds. Thus, in addition to having easier-to-computer thresholds, the 

NT heuristic also will have fewer thresholds to compute. 

Corollary 2 The indifference points under the NT heuristic are no greater than those under the optimal 

policy. That is,  for all . 

3.3. Integrated Fulfillment Structure, Stocking, and Rationing Policy 

In Sections 3.1 and 3.2 we analyzed the fulfillment structure, stocking, and rationing decisions separately.  

Next, we integrate them into a coherent inventory policy. To that end, we use superscript X ,Y  to indicate an 

integrated policy  where  represents the fulfillment structure and 

represents the no rationing and optimal rationing policies. In the numerical studies in Section 4, we will 

extend  to include all the rationing policies, therefore  then. 

First, we investigate how the use of the optimal rationing policy could impact the retailer’s overall 

profit as well as her inventory stocking levels.  

Proposition 7  

(1)  and  for any fixed  and . 

(2)  and . 

Even though part (1) is stated for any fixed  and , once we maximize over all possible  and , 

we can see that the profit improvement under rationing holds in optimality as well. This profit increase is 

expected: Since no rationing is always a feasible action for the optimal rationing policy, profit should 

increase from the use of optimal rationing. However, we numerically show in Section 4 that the magnitude 

of such a profit improvement can be substantial, especially in the NP structure.  

At the same time, the optimal rationing policy also impacts the retailer’s inventory stocking levels. 

Within the NP structure, the use of optimal rationing helps the retailer to shift inventory from the online 

store to the offline store where its use is more flexible and, thus, more valuable. We see this inventory shift 

in practice where large retailers are putting a higher emphasis on using offline stores to satisfy online 

0S 1S
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demand and moving inventory in that direction (Chao 2016). Part b) in the proposition formalizes this 

intuition.  

While the results in Proposition 7 are very intuitive, their proofs are not trivial as they require the 

establishment of concavity and submodularity of the profit functions in the inventory stocking levels. These 

are provided in a lemma in the Electronic Companions. 

Proposition 7 demonstrates the effects of using the optimal rationing policy on the retailer’s inventory 

and profit, within a fixed fulfillment structure, P or NP. Next, we discuss the impact of the rationing policy 

on the retailer’s fulfillment structure itself. 

Broadly speaking, rationing offers benefits at both the operational and the strategic levels. On the 

operational level, it helps the retailer to better utilize its limited offline inventory, in much the same way 

the expected marginal seat revenue (EMSR) model helps airlines to sell tickets in the RM literature. By 

differentiating the two types of customers and rejecting the lower-margin online customers at the 

appropriate time, the retailer can achieve a higher margin and better inventory utilization. This is how 

rationing helps in the P structure. 

On the strategic level, rationing allows the retailer to combine the benefits of both P and NP as it can 

now place some inventory in the online store, in order to minimize cross-channel fulfillment costs caused 

by k. The retailer can choose this amount to be suitably low to minimize leftovers, knowing that it can 

always use offline inventory and rationing to handle any excess online demand. This is how rationing helps 

in the NP structure. 

For any fixed stocking level(s), either benefit (operational or strategic) could dominate. However, when 

the retailer sets its inventory level(s) optimally, we expect the operational benefit to be minimized, and the 

strategic benefit to dominate. Therefore, rationing should offer bigger profit improvement to a retailer that 

uses the NP fulfillment structure than to one that uses the P fulfillment structure. This will be numerically 

confirmed in Section 4. 

4. Numerical Studies 

In this section, we study the retailer’s fulfillment structure, stocking, and rationing decisions using a 

numerical experiment. The three subsections in this section mirror those in Section 3: In 4.1 we compare 

the performance of P and NP structures when no rationing us employed (i.e., ). In 4.2 we investigate 

the effectiveness of the rationing policies and study their impact on the retailer’s average profit, margin, 

and inventory stocking level. Finally, 4.3 will be devoted to the integrated policies. 
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In the numerical study, we normalize , and . Then we set and  at:  

 and , 

. 

Since  is fixed in the numerical experiment, setting the online leftover cost  is equivalent to setting 

service level . Thus, set  

, which implies . 

The offline leftover cost is generally higher than its online counterpart, thus we set:  

, which leads to the following offline store service levels for fixed values of 

online service level: 

0.65 0.75 0.85 0.95 

0.54 0.60 0.65 0.65 0.71 0.75 0.78 0.82 0.85 0.92 0.94 0.95

In total, 600 cases were considered.  

4.1. Fulfillment Structure and Inventory Stocking Decisions 

In Section 3.1, we prove that there is a switching curve on the -  space that demarcates whether the 

retailer should hold store-specific inventory, or pool all of her inventory at the offline store. Using the 600 

instances from the test bed, we studied the switching curve and the performance deviation (%) between the 

two structures on profit, product margin, and inventory stocking level. To streamline the presentation, we 

express the results as (NP, )’s performance percentage deviation from (P, ), defined as:  

,   
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where . Note that margin is defined as profit per unit of inventory 

stocked, and inventory represents the initial inventory stocking level. In the tables to follow, the average 

performance deviations over the 600 cases are presented. 

Table 1 represents the average performance deviation for 25 possible combinations of  and 

considered in the study. As can be observed, the results presented in Proposition 3 are confirmed. That is: 

P is a better fulfillment structure for small values of  and ; furthermore, the switching curve between 

the two fulfillment structures is monotonically decreasing in both  and .  

Table 1 Policy (NP, )’s Average Profit Deviation from Policy (P, ) by k and 

2 -0.61% 1.54% 5.32% 13.79% 49.75% 

1 -1.76% -0.17% 2.59% 8.60% 31.67% 

0.8 -2.08% -0.67% 1.76% 7.01% 26.54% 

0.5 -2.60% -1.55% 0.25% 4.05% 17.39% 

0.2 -2.86% -2.34% -1.45% 0.37% 6.24% 

 0.2 0.5 1 2 5 

 Handling Cost ( ) 

It should be noted that throughout our analysis we have ignored the fixed cost associated with building 

online warehouse, if the retailer adopts the NP structure. Clearly, this is a sunk cost and should not be 

involved in the fulfillment structure decision when the retailer has already built the online warehouse for 

other purposes or other items. It is also a reasonable assumption when the NP structure corresponds to using 

fulfillment services provided by an online platform, since the vast majority of the cost charged by such 

services (i.e., Amazon Fulfillment) is variable based on volume of fulfillment as the fixed monthly fee is 

nominal. In cases when the retailer needs to build and operate the online warehouse herself, the fixed cost 

would only affect the threshold of determining preference of the P or NP structure as the switching curve 

would be shifted upward and the analysis remain intact.  

Of the 600 cases studied, in 385 cases (NP, ) and in the remaining 215 cases (P, ) were the preferred 

structures. Table 2 presents the average performance deviations of profit, margin, and inventory when a 

fulfillment structure is preferred. Note that the profit figures in Table 2 can be aggregated to obtain the 

corresponding ones in Table 1. The other two performance measures can be similarly aggregated. 
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Table 2  (NP, )’s Average Performance Deviation from (P, ) 

 Policy (NP, )  Is Preferred (385 cases) Policy (P, ) Is Preferred (215 cases) 

Profit Dev 11.22% -2.14%

Margin Dev 2.55% -7.28% 

Inventory Dev 8.48% 5.62% 

To summarize, when (NP, ) is preferred, the profit deviation is significant (11.22% on average). This 

is accompanied by a big jump in inventory (8.48%), which can be explained by the lack of inventory pooling. 

Moreover, margin is modestly higher (2.55%). In the remaining cases when either  or  is low and (P, ) 

is preferred, (P, ) outperforms (NP, ) by a modest amount (2.14%), but as a result of inventory pooling 

employment, on average there is a reduction of 5.62% in inventory, leading to a 7.28% increase in product 

margin. 

These observations are in line with our expectation: when the NP structure is preferred, it uses a 

dedicated online stock to reduce the fulfillment cost of online orders, but that comes at the expense of 

increased inventory. Thus, whereas profit is higher significantly, the product margin enhancement is modest. 

Conversely, when the P structure is preferred, the profit improvement is limited, but it does so with lower 

inventory and a much improved product margin.  

In closing, the results presented in 4.1 indicate that in the absence of a rationing policy, selecting the 

proper fulfillment structure could lead to significant improvement in profit, product margin, and/or 

inventory. 

4.2. Inventory Rationing Decision 

BASE TESTS

Next, to isolate the impact of the rationing policy, we fixed the fulfillment structure, and studied the 

performance of various rationing policies compared to the baseline case when no rationing is employed. 

Define the performance deviation to be: 

,   

where , , and . Table 3 provides a 

summary of the results when the retailer sets the stocking level(s) optimally for each Y. 
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Table 3 Policy (X,Y)’s Average Performance Deviation from Policy (X, ) (Using Optimal Stocking) 

X = P  X = NP 

Y = ST Y = NT Y = OPT  Y = ST Y = NT Y = OPT 

Profit Dev 0.01% 0.09% 0.12%  2.13% 2.15% 2.16% 

Margin Dev 0.08% 0.34% 0.54%  6.31% 6.38% 6.42% 

Inventory Dev -0.07% -0.24% -0.40%  -3.85% -3.90% -3.93% 

Two notable observations can be made from Table 3. First, employing rationing in the NP fulfillment 

structure makes a difference. This is true irrespective of which rationing policy (the optimal one or the ST, 

NT heuristics) is employed. On average, inventory is reduced around 4% and profit is improved by more 

than 2%. In contrast, while rationing is still beneficial under P, its impact is minimal. This is consistent with 

our conjecture in Section 3.3 that the benefit of rationing is more significant in the NP structure than in the 

P structure. 

Second, we note that both heuristics perform well in general.  Under the NP structure, the two heuristics 

performances are very close to that of the optimal policy. Let us provide an intuitive explanation for this 

observation: Under the NP structure, when the retailer sets inventory levels optimally, the rationing start 

time in the season, , usually happens towards the end of the sales period. In such cases, only a few of the 

optimal policy’s thresholds will effectively be used. Therefore, the simplification to a single threshold (in 

the case of ST) and the approximation of the value function (in the case of NT) will not deviate too much 

from the optimal policy.  

In practice, the two heuristics offer different advantages: ST is simpler and has analytical properties 

that make it more suitable to be used in analytical modeling.  In contrast, NT performs better and is more 

effective when the rationing start time,  , happens early in the season – either because the P fulfillment 

structure is used, or due to an early occurrence of online stockout. 

ADDITIONAL TESTS – LOW SERVICE LEVELS

Intuitively, rationing is most valuable when there is abundant demand in the presence of limited 

inventory. In the following, we extend our experimentations when service levels are small in both channels. 

Keeping all the other parameters as before, we considered the following combinations of service levels: 

0.25 0.35 0.45 0.55 

0.17 0.21 0.25 0.25 0.30 0.35 0.34 0.40 0.45 0.43 0.49 0.55
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This gives us another 600 test cases. Table 4, provides a summary of the magnitude of the performance 

of the rationing policies (optimal and the two proposed heuristics) under the two fulfillment structures: 

Table 4 Policy (X,Y)’s Average Performance Deviation from Policy (X, ) (Using Optimal Stocking) 

X = P  X = NP 

Y = ST Y = NT Y = OPT  Y = ST Y = NT Y = OPT 

Profit Dev 0.01% 0.36% 0.54%  7.70% 7.81% 7.88% 

Note that the profit improvements in Table 4 are significantly higher than those in Table 3, especially 

under the NP fulfillment structure. This confirms our intuition that rationing is more valuable for lower 

service level targets – characteristic of products that have either higher leftover cost h or lower margin p. 

This is because at low service levels, the risk of offline inventory going unsold is low. Thus, it is more 

important to use a proper rationing policy to protect offline inventory for offline customers. 

SUMMARY

The results of the numerical tests considered in 4.2 consistently suggest that rationing could have a 

significant impact on the retailer’s inventory levels and profit, especially in the NP fulfillment structure 

and/or when service levels are low. Moreover, both heuristics perform extremely well in the NP structure. 

In the P structure, because there is a longer rationing time window, the multi-threshold NT heuristic tends 

to perform better than the relatively less flexible, single-threshold ST heuristic. However, both heuristics 

are shown to be effective. 

4.3. Impact of Rationing on Fulfillment Structure and Stocking Decisions 

In the previous section, we studied the impact of rationing in the P and NP fulfillment structures. Now, 

we integrate all the decisions and investigate the impact of rationing on the fulfillment structure as well. 

Parallel to Table 2, Table 5 summarizes the performance of the operating measures over the two fulfillment 

structures (P and NP) when the optimal rationing is employed ((P,OPT) and (NP,OPT)).  

Table 5 Policy (NP,OPT)’s Average Performance Deviation From (P,OPT) 

  (NP,OPT) Is Preferred (595 Cases) (P,OPT) Is Preferred (5 Cases) 

Profit Dev 8.56% -0.13%

Margin Dev 4.59% -0.13% 

Inventory Dev 3.64% 0.00% 
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As conjectured in Section 3.3, employment of rationing will make the NP fulfillment structure attractive. 

In fact, one can observe from In the previous section, we studied the impact of rationing in the P and NP 

fulfillment structures. Now, we integrate all the decisions and investigate the impact of rationing on the 

fulfillment structure as well. Parallel to Table 2, Table 5 summarizes the performance of the operating 

measures over the two fulfillment structures (P and NP) when the optimal rationing is employed ((P,OPT) 

and (NP,OPT)).  

Table 5, that in 595 out of 600 cases considered, (NP,OPT) dominated (P,OPT). This is quite an 

improvement when one notes that (NP,   was dominant in only 385 cases in Table 2. Moreover, in the 

remaining 5 cases where (P,OPT) was dominant, the performance of the (NP,OPT) policy was nearly as 

good.  

Note that the overwhelming dominance of the (NP,OPT) policy has practical implications. First, in 

many practical situations, estimation of system parameters are not accurate. More importantly, while our 

analysis and results are on a single product, in practice, a retailer handles a large number of such single-

seasonal products and thus, it is impractical to expect the retailer to tailor its fulfillment structure for each 

individual product. Therefore, retailers can achieve near optimal results by choosing the NP fulfillment 

structure and apply rationing policies when managing stocking and fulfillment of their product families. 

Similar to Table 1, Table 6 below breaks down the profit deviation by the k and λ0 parameter values. 

Comparing the two tables, we can see clearly that the use of rationing moves the switching curve closer to 

the lower left corner, just as discussed in section 3.3. The dominance of the (NP,OPT) policy is also 

apparent: it is optimal in almost all the cases. Depending on the k and λ0 parameters, the profit advantage 

of the (NP,OPT) policy also could be very substantial. Table 6 shows a heat map of the profit deviations. 

Table 6 Policy (NP,OPT)’s Average Profit Deviation from Policy (P,OPT) by k And 

1.41% 3.40% 6.96% 14.99% 48.89% 

0.94% 2.35% 4.86% 10.45% 31.96% 

0.77% 1.95% 4.08% 8.82% 26.53% 

0.45% 1.23% 2.66% 5.84% 17.25% 

0.14% 0.56% 1.32% 3.02% 9.14% 

k = 0.2 k = 0.5 k = 1 k = 2 k = 5 
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We already know from Table 3 that both (NP,ST) and (NP,NT) are effective policies within the NP 

fulfillment structure. Results of a further analysis, presented in Table 7 below, shows that (NP,ST) and 

(NP,NT) have nearly as good a performance against (P,OPT). Therefore, we conclude that the retailer 

should consider using either (NP,ST) or (NP,NT) as its stocking-rationing policy in all situations. 

Table 7 Policy (NP,ST)/(NP,OPT)’s Average Performance Deviation From Policy (P,OPT) 

 (NP,ST) or (NP,NT) Is Preferred (595 Cases) (P,OPT) Is Preferred (5 Cases) 

Profit Dev. 8.53%    /    8.55% -0.13%    /    -0.13

Margin Dev. 4.47%    /    4.55% -0.13%    /    -0.13 

Inventory Dev. 3.73%    /    3.67% 0.00%    /    0.00 

4.4. Extension to the Cases When Demand Follows Non-Homogenous Poisson 

Process 

In this section we extend our numerical experimentation to cases where demands are non-homogenous 

Poisson processes (NHPP), and study how time-varying demand patterns would favor P or NP structure.  

First, note that in the absence of rationing, the base stock levels only depend on the total demand during 

the season and not on how it is spread over the season. When rationing decisions are allowed, however, 

having different demand rate patterns will make a difference. Using a standard time-scaling technique (Law 

and Kelton 2000), any NHPP can be generated from an appropriately defined HPP, and events in both 

processes have one-to-one correspondences. Consequently, we can show that the optimal policy for an 

NHPP arrival process has the same time-varying threshold structure as its HPP counterpart. Moreover, 

instead of directly solving the optimization problem with the NHPP, we can simply formulate its 

corresponding HPP, and solve for the indifference time points of optimal rationing policy using Equation 

(7). Their corresponding time points in the NHPP are the optimal indifferent time points there, and can be 

found via the same scaling transformation. For details of how this is done in a similar inventory problem, 

please see Jain et al. (2012). 

Let  represent the demand rate of store n at time t. Figure 5 shows the four demand rate patterns 

we consider for analysis; we call them patterns 1, 2, 3, and 4 respectively. To fairly compare results across 

different demand patterns – including the homogenous Poisson Process (HPP) results presented earlier – 
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we keep the expected total demand throughout the season equal to  (i.e., ) in all the 

four patterns. For the other parameters, we choose the same values used as in the HPP case. 

Figure 5 Demand Rate Patterns 

In Section 4.3, we discussed that with HPP, rationing has a more pronounced impact in the NP structure 

than the P structure, making (NP,OPT) an attractive strategy for retailers considering implementing store 

fulfillment strategy. We also showed that under the NP fulfillment structure, the two heuristic rationing 

procedures proposed result in near optimal profits. We conducted a numerical test to explore robustness of 

our findings under the NHPP demand scenarios. 

The results verify the robustness of our earlier findings. For brevity, we will not provide the specific 

results in this paper. It is worth noting that under the NHPP demand scenarios, fulfillment structure of 

(NP, OPT) outperforms (P, OPT) in all demand patterns, and both heuristics again perform very close to 

the OPT rationing policy.  

4.5. Extension to the Cases with Multiple Offline Stores 

Thus far, we have considered the case with one offline and one online store. However, in practice, most 

retailers will have multiple offline stores. In this section, we extend our model to such cases. The purpose 

of this section is two-fold: 

1) We have shown that the ST and NT heuristics are effective rationing policies with one offline store. 

We extend the ideas behind these heuristics to the cases with multiple offline stores and one online 

store and evaluate their effectiveness via a numerical experiment. 

2) How would the presence of multiple offline stores affect the fulfillment structure under these 

rationing policies? In particular, are many offline stores needed and how often will rationing take 

place at each offline store? 

tttt

Demand Rate, Demand Rate, Demand Rate, Demand Rate, 
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Given the robustness of the NP fulfillment structure, we only focus on extending (NP,ST) and (NP,NT) 

heuristics and investigate their effectiveness compared to when rationing is not employed (i.e., (NP, )).  

Let: 

,   

where: . In addition, we track a measure called O2O (online-to-

offline) fulfillment, defined as the percentage of online orders handled by each offline store (trivially, O2O 

fulfillment for (NP, ) is zero).  

We assume there are N offline stores that are geographically dispersed and operated independently from 

each other. The stores have i.i.d. Poisson demand processes with identical rate , profit margin (p) and 

leftover cost (h), but different handling cost for online orders (k), which reflects the readiness of each offline 

store for online order fulfillment. Some stores do not have suitable space and facility to implement an 

efficient pick-and-ship operation; thus, their unit handling cost k should be higher than the others. 

In the following numerical tests, we analyze up to 4 offline stores. As before, we normalize , and 

, and set the rest of the parameters as follows. There are 243 cases in total. 

 and , 

and , 

, which implies , 

, which leads to the following offline store service levels for values of online 

service level: 

0.8 0.9 0.99 

0.8 0.78 0.77 0.9 0.89 0.88 0.99 0.99 0.99
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4.5.1. Store Fulfillment Policy 

With multiple stores, each offline store will develop its own rationing policy to determine whether to 

satisfy an online order with its inventory. Before that, however, the retailer must first determine which 

offline store should handle an online order; we call this the routing policy.  

A routing policy can be static or dynamic. Under a static routing policy, stores are ranked before the 

sales period starts. When an online order is to be sent to an offline store, it is sent to the offline stores by 

their predetermined ranking. For example, suppose each offline store uses an inventory-based threshold 

rationing policy. Once the online store runs out-of-stock at time , the retailer will forward an incoming 

online order to store 1 if it has inventory above its rationing threshold. If not, then the order will be 

forwarded to store 2, and so on, until the order is accepted by one offline store or rejected by all. 

A static routing policy, by its nature, does not change once the season starts; so it’s easy to deploy. This 

also constitutes its major drawback, however. It could happen that store 1’s inventory is only slightly above 

its threshold, but store 2’s inventory is excessively above its threshold. While store 1 has a lower handling 

cost, store 2’s inventory is more likely to incur leftover cost at the end of the season. Therefore, a good 

policy would also account for each store’s remaining inventory as well as time left in the period when 

making routing decisions. We call such policies dynamic routing policies. 

In the next two sections, we will study a static and a dynamic routing policy respectively. Each offline 

store uses either the ST or the NT rationing policy. 

4.5.1.1. Static Routing Policy 

Since our offline stores differ only in the handling cost, a static routing policy would rank them by 

such that  is the store with smallest  and  is the store with largest . We call this a k-ranked

static routing heuristic.  

With the routing policy in place, each offline store must establish its own rationing decision for when 

online orders are routed its way. Given their effectiveness in earlier numerical studies, we will assume that 

the offline stores use ST and NT rationing policies, adjusted for the fact that there are multiple offline stores 

as follows: 

- For ST heuristic: when online orders are routed to store n  ( ) for the first time, the offline 

store will calculate a single ST threshold as in described 3.2.1. If its inventory is below the threshold, 

it’ll stop rationing for the rest of the season, and online orders will be routed to store  instead. 
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If its inventory is above the threshold, however, it will accept online orders until its inventory drops 

below the threshold – after which point store n  will stop rationing and all online orders will be 

routed to , and so on. When  and the threshold is reached, then all online orders will be 

rejected from that point on. 

- For NT heuristic: each time an online order needs to be routed to an offline store, each offline 

store’s inventory is checked against its threshold (as in Section 3.2.2). The store with the lowest 

rank whose inventory is above its threshold will be routed the online demand and satisfy it. 

Note that under ST, each offline store has a single threshold, once it’s reached, that offline store is 

closed to all future online demand. So, the routing will be sequential. Under NT, however, because each 

store’s threshold changes over time, a closed store n  may be open later, so the online orders can be routed 

to different offline stores in a back-and-forth order.  

For each of the 243 cases, we jointly optimize the retailer’s inventory levels at the online and all the 

offline stores using a numerical search. Their performance comparison with the (NP, ) policy is given in 

Table 8 below. 

Table 8 Retailer’s Average Profit Deviation % / Optimal Inventory Deviation % from the (NP, ) Policy 

N=1 N=2 N=3 N=4 

(NP,ST) Policy 2.29% / 1.40% 2.09% / 1.22% 1.86% / 0.99% 1.57% / 0.81% 

(NP,NT) Policy 2.30% / 1.41% 2.25% / 1.22% 1.91% / 1.00% 1.60% / 0.81% 

Table 8 shows that while rationing by itself increases profit between 0.81% and 1.41%, optimizing 

stock levels contributes an additional 0.8% to profit increase. It is notable that as the number of offline 

stores used to back up online sales increases, profit deviation % decreases. Since figures are reported as 

percentages, this decrease is driven by an increased denominator (profit of all N stores) and not by a 

decreased numerator (the profit deviation is higher in absolute values as N increases). Nonetheless, this 

decreased % average profit improvement has important managerial implications. It illustrates that adding 

more offline stores to the store fulfillment program has a diminishing return. As it is costly to make a 

traditional offline store capable of fulfilling online demand (e.g., the facility and training for pick, pack, 

and ship), the diminishing return in Table 8 suggests that it’s not always optimal to convert as many offline 

stores as possible to online backups.  
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This is expected as there is limited additional online demand that can be captured by using offline stores 

as backup. Therefore, as number of offline stores increase at some point there will be more than enough 

backup inventory available.  

Also since offline stores are ranked by  for online orders fulfillment, stores on the bottom of the list 

with high  contribute marginally to online order fulfillment. Therefore, the percentage of online orders 

fulfilled by offline stores is also decreeing by store rank (Table 9). Furthermore, Table 10 shows that when 

4 offline stores are ready to serve as the online store’s backup, it reduces the optimal amount of inventory 

that should be carried in the online store. Thus, more inventory will be carried in the offline stores. This 

certainly is consistent with the trend in practice regarding store fulfillment. Note that while the first two 

store’s inventory is adjusted up meaningfully, stores 3 and 4 do not see much increase in inventory. 

Together with observations from Tables 8 and 9, we conclude that, in this example, adding the 4th offline 

store as an online backup does not provide meaningful inventory backup or profit improvement. It may not 

be needed at all!

Table 9 Expected O2O Fulfillment for N=4 

Store 1 Store 2 Store 3 Store 4 

(NP,ST) Policy 13.87% 2.00% 0.53% 0.18% 

(NP,NT) Policy 13.62% 2.08% 0.56% 0.19% 

Table 10 Optimal Store Inventory Average Deviation (%) from (NP, ) Stocking Level for N=4

 Store 0 Store 1 Store 2 Store 3 Store 4 

(NP, ST) Policy -34.24% 9.50% 1.56% 0.62% 0.46% 

(NP, NT) Policy -34.28% 9.18% 1.56% 0.62% 0.46% 

Table 10 shows, in the case of N=4, how inventory gets redistributed for a retailer using store fulfillment 

strategy. In Table 11 we can see further that the total inventory across all the stores is reduced by about 

4.25% as a result of store fulfillment and rationing. It also shows how this total inventory reduction varies 

with the number of offline stores. It is not a monotone function, however. As N increases, marginal 

inventory reduction diminishes, but the total inventory increases (as there are more stores). The big-

denominator effect leads to smaller inventory reduction percentage. 
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Table 11 Average Total Inventory Deviation (%) from (NP, ) 

N=1 N=2 N=3 N=4 

(NP, ST) Policy -4.87% -5.35% -5.06% -4.26% 

(NP, NT) Policy -5.32% -5.48% -5.03% -4.25% 

4.5.1.2. Dynamic Routing Policy 

With a dynamic routing policy, many factors must be considered when deciding which offline store’s 

inventory should be used to satisfy an online demand. These should include dynamic information such as 

how much time is left in the sales period and which offline store has the most amount of “excess” inventory 

(and thus most likely to have leftover). 

Next, we develop a simple dynamic policy that routes an online order to the offline store with the most 

excess inventory at that time, where excess is defined as the number of inventory units above the rationing 

threshold level at that time. Specifically, an online order at time t will be routed to store n, which maximizes 

the following quantity: 

where  represents inventory level in store n at time t, and   is the optimal protection threshold 

under NT or ST policy at time t. We numerically calculated each store’s threshold levels, optimal rationing 

(within the given ST or NT heuristics) and stocking decisions for each of the 243 cases. The overall 

performance measures are given in Tables 14 and 15 (for the ST and NT heuristics respectively). We 

provide static and dynamic routing policies side-by-side for easier comparison. Since the routing policy 

doesn’t come into play when there is only one offline store, we report results for . 

Table 12 Average Performance Measures for (NP,ST) Policy: Deviation % from (NP, ) 

N=2 N=3 N=4

Dynamic Static Dynamic Static Dynamic Static

Profit Dev. 2.24% 2.09% 2.16% 1.86% 1.85% 1.57%

Inventory Dev. -5.53% -5.35% -5.48% -5.06% -4.93% -4.26%

O2O Fulfillment 24.74% 14.01% 36.21% 16.01% 43.15% 16.04%
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Table 13 Average Performance Measures for (NP,NT) Policy: Deviation % from (NP, ) 

N=2 N=3 N=4 

Dynamic Static Dynamic Static Dynamic Static

Profit Dev. 2.84% 2.25% 2.88% 1.91% 2.73% 1.60%

Inventory Dev. -6.92% -5.48% -7.11% -5.03% -6.72% -4.25%

O2O Fulfillment 24.77% 14.04% 36.31% 16.02% 43.63% 16.59%

As shown in Table 12 and Table 13, the proposed dynamic routing policy can significantly improve the 

retailer’s performance. Between the two rationing policies, we observe that NT does much better than ST. 

This is not surprising, however, as routing decision can be applied to every online demand if the stores use 

NT rationing. Under ST rationing, once a store is chosen, all online demand will be routed only to that store 

until its threshold level is reached. Then the routing moves on to the next-ranked store. There is thus less 

routing flexibility under ST.  

In conclusion, we show in this section that the ST and NT rationing policies are easily extendable to an 

N-Store case setup. Using a wide range of parameters we show that both extended policies (NP,ST) and 

(NP, NT) perform very well when compared with no rationing. Managerially we find that it is not always 

necessary to have as many offline stores to back up the online store. Using a static routing policy, retailers 

can choose a few very efficient offline stores to add to its store fulfillment infrastructure and achieve most 

of the store fulfillment benefits. Using a dynamic routing policy, the retailer should add more offline stores 

to the store fulfillment infrastructure, and its performance should also improve considerably. 

As an indirect validation of our parameter values, we note that the range of O2O fulfillment is in line 

with that being reported in practice. For example, Target reported in February 2016 that around 30% of its 

online orders are filled by offline stores (Chao 2016). 

5. Summary and Future Research Directions 

In this paper we study the inventory management problem of an omni-channel retailer who already has 

an established offline store and is looking to leverage it to help with online sales. Our model incorporates 

relevant decision factors at three different levels: fulfillment structure (strategic), inventory (tactical), and 

rationing (operational). We derive the optimal rationing policy structure and develop two simple heuristics 

that we demonstrate, through an extensive numerical test, to be very effective. Integrating the rationing 
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policy into higher-level decisions, we showed that it can have significant impact on the retailer’s stocking 

and fulfillment structure decisions. The integrated (NP, ST) and (NP, NT) policies – where the retailer has 

an inventory stock dedicated to online sales, but can also use offline inventory as backup when needed, 

subject to the ST or NT rationing heuristic – is proved to be simple, effective, and robust. 

Being a first model in our attempt to analyze the omni-channel strategies, this paper also points to 

several directions for future research. The current paper focuses on the store fulfillment approach, where 

inventory backup is uni-directional; it would be interesting and important to extend the study to bi-

directional backup and rationing. This requires the retailer to invest in store staffing to actively capture 

potential lost sale in the store. The retailer could also invest in technology (i.e., QR codes, apps, online 

portal in the store) so that customers can order items online directly when shopping in the offline store (e.g.,

Athletha). This trend is slowly taking hold in practice, so a rigorous analytical study would offer guidance. 

Another possibility is to incorporate the option of in-store pickup into the analytical model. We can 

extend our model by having three classes of demand to the offline store. A nested threshold policy may be 

optimal, but a rigorous study is needed to find out its impact on the stocking decisions as well as the overall 

cross-channel fulfillment structure for the retailer. 

Finally, we consider a retailer that owns both channels, so the decisions are centralized to maximize 

total profit. Practically, however, each channel may have its own profit target and consideration, even within 

the same retailer. In such a case, one must consider incentive issues: for example, when an offline store fills 

an online order who gets the credit and how much credit? Getting a good handle on this is essential to the 

success of an omni-channel approach. 
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Electronic Companions 

 

Proof of Proposition 1  

Because there is no rationing, online and offline demands are satisfied on a first-come-first-served basis. 

Therefore, retailer in the P structure can view demand as coming from only one source with a weighted 

margin of ( )1 0
1 0
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, similar to Ben-Zvi and Gerchak (2012). Moreover, the retailer 

behaves as a newsvendor with margin of w , leftover cost of 1h  and Poisson demand with rate of 0,1l . 

Therefore optimal stocking level of retailer can be calculated using critical ratio. Please refer to Hadley and 

Within (1963) on page 298 for proof of optimal stocking level for newsvendor model. 

 

Proof of Proposition 2  

For this proof, we need some technical results on the Poisson distribution function, and will prove them in 

Lemma A1 and Lemma A2 below. 

Lemma A1: 
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Next, define ( , ( , )[1 ( , )] ( , ))G n P n P n np nll l l- - . Since 
)( ,

( , ( 1,) )
G n

L n p n l
l
l

l
¶

= -
¶

,  ( , )G n l  is 

decreasing for Al < , and increasing for Al > . Noting that ( ,0) lim ( , ) 0G n G n
l

l
¥

= = , we conclude that 

0( , )G n l £  for n  and l . Since ( 1, ) ( , )p n np nl l l- = , we complete the proof.   

 

Now, we return to the proof of Proposition 2. As a reminder, k  is assumed to be bounded such that 0w ³ . 

(1) Define 
( )
( )

1 0,1
0

1 0,1

,
(

1 ,
)

NP

NP

P S
J

P S

w l

l
l

-
  where 0,1 0 1l l l+= . We know

( )

( ) ( )
1 10

1 1
1 1

1 1 1 1 1 1 1
11 10

1

0,1 0,1
10 0

0

1

,
l

, ,

)im (
P P
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S S

y y

h h
p p

p P S T p h p h
J h

p
p y T p y T p h

l

l

l l

l
- -

= =

+ +
= ³ ³ =

+å å
  and  

0
0lim )(J

l
l

¥
= ¥ . 

Moreover,   

( ) ( ) ( ) ( )
( )

( ) ( ) ( ){ }
( )

0 1 0,1 1 0,1 0,1 1 0,1

0
0,1 1 0,1

0,1 1 0,1 1 0,1 1 0,1

0

0
2

0

,1 1 0,1

2

, 1 , 1,(

1 ,

1, , 1 ,
  due to Lemma A2 and .

1

)

0
,

NP NP NP

NP

NP NP NP

NP

p k P S P S p SJ

P S

p S P S
p

S
k

P S

P

w l l wl l

l l l

w l

l

l l l

l l

é ù- - + - + -¶ ê úë û=
¶ é ù-ê úë û

é ù- - -ê úë û
é ù-ê úë û

= ³ >

 

Therefore, 0 1)(J hl >  for all 1
NPS  and 0l , which means ( ) 1

1 0,1
1

,NP h
P S

h
l

w
<

+
.  Furthermore, 1pw £  implies 

1 1

1 1 1

h h

h h pw
³

+ +
.  These two facts together lead to 1 1

P NPS S³ .   

(2) Define ( ) ( )1 0 1
P NP NPB k S S S= - + . As 0 1

NP NPS S+  is independent of k , 
( )

0
B k

k

¶
<

¶
 holds 

because 1 0
PS

k

¶
<

¶
. In the limit of k  ¥ , ( )1 1

1 0,1 0,1

0
1

1

, 1, 0lim limP

k k

h
S

h
P T P T

w

w
l l- -

¥ ¥

=æ ö÷ç ÷= = =ç ÷ç ÷ç +è ø
. 

Thus, lim ( 0)
k

B k
¥

< . There are two possible cases, depending on the value of 
1
PS  at 0k = : 

a) 1 0 1
P NP NPS S S> + . In this case, we define 0k >  to be the unique solution to 1 0 1

P NP NPS S S= + . Due 

to strict monotonicity in k , we must have 1 0 1
P NP NPS S S> +  for all k k<   and 1 0 1

P NP NPS S S£ +  

for all k k>   . 



 

 
 

b) 1 0 1
P NP NPS S S£ + . In this case we simply define 0k =  and automatically get, due to strict 

monotonicity in k , that 1 0 1
P NP NPS S S£ +  for all 0k ³ . 

Therefore, we have shown that  for all k k³  .  

 

Proof of Corollary 1 

We will first show that  when 

 
( )

1 1 0
1 0

1 1 1 0 0

h h h

h k h p h p
a a

w
£ +

+ + +
.  (A1) 

To see that, we apply the mean value theorem and find that there exists 

( ) ( )0 0 0 1 0,1( , ) , (1 ) ,NP NP NPu v c S c S Sl l= + - +  for some 0 1c£ £  such that 

( ) ( ) ( ) ( )1
( , ) (

0 1 0,1 0 0
)

1
,

, ,NP NP NP

u v

NP

u v

P S S P S S
P P

S
l l l

l
¶ ¶

¶
+

¶
+ = + .  (A2) 

Using a continuous ( , )P S l , we know ( , )

( , )
| ( , )u v

P S
p u v

S

l¶
= -

¶
 and ( , )

( , )
| ( , )u v

P S
p u v

l
l

¶
=

¶
. So (A2) becomes 

( ) ( ) ( )0 1 0,1 0 0 1 1, , ( , )NP NP NP NPpS P S SuP vS l ll+ = - - .   (A3) 

Similarly, there exists ( ) ( )1 1 0 1 0,1( , ) , (1 ) ,NP NP NPx y d S d S Sl l= + - +  for some 0 1d£ £  such that 

( ) ( ) ( )0 1 0,1 1 1 0 0, , ( , )NP NP NP NPpS P S SxP yS l ll+ = - - .   (A4) 

A weighted sum of (A3) and (A4) gives us 

 ( ) ( ) ( ) ( )( ) ( )( )0 1 0,1 0 0 0 1 1 1 0 1 1 1 0 0, , , , ,NP NP NP NP NP NPP S S P S P S p u v S p x y Sl a l a l a l a l+ = + - - - - . 

Because NP
n nS l³  for 0,1n = ,  

                 ( ) ( ) ( ) 0 1
0 1 0,1 0 0 0 1 1 1 10

0 0 1 1

, , ,NP NP NP NP h h
P S S P S P S

h p h p
l a l a l a a£+ + = +

+ +
.  (A5)  



 

 
 

Combine (A1) and (A5) we get  ( ) 1
0 1 0,1

1

,NP NP h
P S S

h
l

w
+ £

+
 ,  and  follows.   

 

Now return to the proof of Corollary 1. We see that, after some algebraic manipulation, (A1) is equivalent to  

 
( ) ( ) ( )

( ) ( )
0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

1 1 0 0 0 0 1 1

p p h h p p h h p h p h p h h p
k

h h p h p h

a a a

a a

é ù é ù é ù- + + - + + + -ë û ë û ë û
+ + +

³ . (A6) 

When the right hand side of (A6) is non-positive, then for any 0k ³  we have ; that is, pooling 

reduces inventory. This condition is satisfied, in particular, when 0 1p p£ , 0 1h h£ , and 0 1

0 1

h h

p p
£ . Since 

0 1h h£  is typically true in practice a special case is when the retailer matches online and offline prices (i.e., 

0 1p p= ).   

 

Proof of Proposition 3 

Part (1) Please note that for any fixed k , ( )P SP  can be also written as  

( ) ( ) ( ) ( )( )0,1 1 0,1
P S k D T S h S D Tw l l

+é ùP =  - -ë û . Since k  is a variable now, ( ) ( )max ,P

S
k S kP = P .   

 
( ) ( ) ( ), ,P PP

k
k S k S kS

k S k k

¶P ¶P ¶P¶
= +

¶ ¶ ¶ ¶
.    (A7) 

Please note ( ),P S kP is strictly concave in S . Considering that ( ),
0

P
k

P

S S

S k

S
=

¶P
=

¶
, we can simplify (A7) as 

follow:   

( ) ( )
( )0,1

,
0

P P
k P

k

S kk
D T S

k k k

w
l

¶P¶P ¶ é ù= =  <ê úë û¶ ¶ ¶
.         (A8) 

Because under the NP structure there is no handling cost k, we have 
( )0 1,

0
NP NP NPS S

k

¶P
=

¶
. Therefore, the 

profit difference ( ) ( )1 0 1,P P NP NP NPS S SP -P  is decreasing in k.  



 

 
 

Part (2) Moreover, it is clear that as k  ¥ , we have    , hence ( )1 0P PSP  . So

( ) ( ) ( )1 0 1 0 1 0l m ,i ,P P NP NP NP NP NP NP

k
S S S S S

¥
P - P = -P <  . At 0k = , there are two possible cases: 

a) ( ) ( )1 0 1,P P NP NP NPS S SP > P . In this case, we define k  to be the unique solution to 

( ) ( )1 0 1,P P NP NP NPS S SP = P . Due to strict monotonicity in k , we must have 

( ) ( )1 0 1,P P NP NP NPS S SP > P  for all k k<  and ( ) ( )1 0 1,P P NP NP NPS S SP < P  for all k k>  . 

b) ( ) ( )1 0 1,P P NP NP NPS S SP £ P . In this case we simply define 0k =  and automatically get, due to strict 

monotonicity in k , that ( ) ( )1 0 1,P P NP NP NPS S SP < P  for all 0k > .   

 

Proof of Proposition 4 

Both k  and 0l  are variables in this proposition, so we include them as additional function arguments whenever 

necessary. For example: we denote  ( ) ( )0 0, max , ,P

S
k S kl lP = P  and let its optimizer be denoted as 

0,
P
k
S

l ; thus, ( ) ( )
0

0 0,
, , ,P P

k
k S k

l
l lP = P . 

 
( ) ( ) ( ) ( )

, 0

0

0 0

0,0
0,1, ,

0

, ,,
,

P
k
SP P

k P P
k k

x

S kk
S S x p x T

k k k

l
l

l l

ll w
l

=

æ ö÷ç¶P ÷¶P ç¶ ÷ç ÷= = - -ç ÷ç ÷¶ ¶ ¶ ÷ç ÷ç ÷è ø
ò   (A9) 

Then:      
( ) ( ) ( )

0

, ,0 0

2 2 2
,0 0 0

0 0

, , , , ,

P P
k k

PP P
k

S S S S

Sk S k S k

k k S k k
l l

ll l l

l l
= =

¶¶ P ¶ P ¶ P
= +

¶ ¶ ¶ ¶ ¶ ¶ ¶
           (A10) 

which using (A9) can be written as follow: 

 
( ) ( ) ( ) ( )

, 0

0

0 0

, 0

2 2
,0

0,1 0,1, ,
0 0 00

,
, ,

P
k
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k

S P
kP P

k k
x x S

Sk
S S x p x T p x T

k k k

l

l

l
l l

l w w
l l

l l l

¥

= =

æ ö æ ö÷ ÷ç ç¶÷ ÷¶ P ç ç¶ ¶÷ ÷ç ç÷ ÷= - - +ç ç÷ ÷ç ç÷ ÷¶ ¶ ¶ ¶ ¶ ¶÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø
ò ò   (A11) 

Since 0,

0

0

P
k
S

l

l

¶
³

¶
, 

2

0

0
k

w
l
¶

£
¶ ¶

, and 0
k

w¶
£

¶
, the proof is complete.     



 

 
 

 

Proof of Theorem 1  

Based on Lemma 1, protection thresholds are non-increasing unit step function throughout the season. At the 

indifference points we have 

      ( )1 0,i iV i t p k-D = - .      (A12) 

It is intuitive as it says a unit of inventory should be open to share with online when ( ) 0,iV i t p kD < -  and 

protected when ( ) 0,iV i t p kD ³ - . Since Lemma 1 shows that ( ),iV i tD is decreasing in t  and i , therefore 

1 1 0...l lt t t t-< < < .  So it remains to show that there exist a 0t  close enough to end of season such that retailer 

would prefer to protect no unit after that. Because ( ),iV i tD is decreasing in i , if it is optimal to not protect 

last unit of inventory close enough to the end of season, it will also be optimal to not protect if we have more 

inventory available ( 1i > ). Therefore, it suffices to show 0t  exist when only one unit of inventory left, i.e. 

( ),iV i tD is at its maximum for a given t .  

Now consider an online demand that arrives at time 0t t>  when the offline store has one unit of inventory. If 

the retailer accepts the online demand, then he receives a sure 0p k-  from that unit of inventory. If the retailer 

rejects the online demand, however, he may expect to sell it later at a higher profit of 1p . This happens with a 

probability of at most ( )( )11,P T tl -  (“at most” because policy   may reject other online demands that arrive 

after t). On the other hand, the unit may be left over at the end of the season and incur a cost of 1h- . This 

happens with a probability of at least ( )( )10,p T tl - . 

Therefore, if we define 
( )1 0

1 1 1

1
ln
p p k

t T
p hl

æ ö- - ÷ç ÷ç= + ÷ç ÷÷ç +è ø
, then for any t t> , we have 

( )( ) ( )( )0 11 1 11, 0,p k P Tp t h p T tl l- - - -³ . 

Thus, the retailer would make less expected profit if he rejects the online demand at t t> . Defining 

0 | it is optimal to accept an online demand for allmin{ [ , ]}t t tt TÎ= , then we know it’s optimal not to 

protect any offline inventory after 0t .       

 



 

 
 

Proof of Lemma 2 

The first order difference of ( ),STH it q  with respect to t is as follow:  

 
( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

1 1 1 0,1
1

1 1 1 1 1 1 0
0

, ,

,  , 1 ,,

ST

i

n

H i h p h P i T

p h p n i T F i n i T

t
t

t

t q t l q

a t l q t t l q
-

- -

=

D = - + + - -

- + + - - - + - + - -å
   

where by convention ( )1 1 ; ;F a b z  indicates a confluent hypergeometric function. Then 

( ) ( )( ) ( ) ( )( ) ( )( )2
1 1 1 1 1 1 0, 1,  , 1 1, 0.

iSTH i p h p i T F i i T
t

t t q a l q t l q
- -

D = - + - - - - + - - £  Moreover, 

 ( ) ( )( ) ( ) ( )( ) ( )( )1
1 1 1 1 1 1 0, 1,  , , 0.

iST
i H i p h p i T F i i T

t
t t q a l q t l q

- - -
D D = - + - - - - - £   

 
( ) ( )( ) ( ) ( )( ) ( )( )1

0,1 1 1 1 1 1 1 0

,
1,  , , 0.

ST
i rH i

p h p i T F i r i Tt t q
l a l q l q

q
- - -D

¶ =- + - - - - - £
¶

   

 

Proof of Proposition 5 

The second order difference of ( ),STH it q  with respect to t is as follow: 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( )

2
0 0 1 1 0,1

12
0 1 1 1 0,1 1 1 0

, 1,

1,  , 2,

ST
rH i p k h p i T

p h p i T F I T
t

t q a t l q

a a l q t l q
-

D = - - + - + -

- + + - + -
 

Both terms are negative, as a result ( )2 , 0ST
rH it qD £ , meaning ( ),STH it t qD is decreasing in t . 

Therefore, there are two cases: 

Case 1) If ( )1 , 0STH it t qD = <  then ( ), 0ST it q = . 

Case 2) If ( )1 , 0STH it t qD = ³ then ( ): , 0STH itt t q¢$ D <  for t t ¢" > . Therefore 

( ) ( ){ }, max : , 0ST STi Htt q t t q= D ³ . 



 

 
 

 

Proof of Lemma 3 

To prove ( ),NTH i t  is concave in i  and submodular in ( ),i t , we use induction. We start from the end of the 

season (T ) and work our way backward with tD  steps. Let’s first look at ,t T t Té ùÎ -Dë û . Assume tD  is 

small enough such that there is only a single protection level active in this period ( ( )NT tt ). When 

( )0 NTi tt£ £ , we can write 
( ),NT

iH i t

t

D
¶

¶
 and ( )2 ,NT

iH i tD  as follow: 

 
( )

( ) ( )( )1 1 1 1

,
1,

NT
iH i t

p h p i T t
t

l l
D

¶ = - + - -
¶

,  (A13) 

 ( ) ( ) ( )( )2
1 1 1, 1,NT

iH i t p h p i T tlD = - + - - . (A14) 

When ( )NTi tt> , we can write 
( ),NT

iH i t

t

D
¶

¶
 and ( )2 ,NT

iH i tD  as follow: 

 
( )

( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( ) ( )( )
0 0 1 0,1

2

0,1 1 1 1 0,1 1 1 0

,
1,

1,  , , ,
NT

NT
i NT

i t NT

H i t
p k h p i t T t

t

p h p i T t F i t i T t
t

l t l

l a l t l
- - -

D
¶ = - - + - - -

¶
- + - - - -

 (A15) 

 
( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( )( )

2
0 0 1 0,1

2

1 1 1 1 1 1 0

, 1,

1,  , , .
NT

NT NT
i

i t NT

H i t p k h p i t T t

p h p i T t F i t i T t
t

a t l

a l t l
- - -

D = - - + - - -
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  (A16) 

(A13), (A14), (A15), (A16) tell us that 
( ),

0
NT

iH i t

t

D
¶ £

¶
 and ( )2 , 0NT

iH i tD £  for all i , therefore 

( ),NT
iH i tD  is decreasing in t  and i  on ,t Té ùë û  where T t t- £ D .  

Next we extend the analysis to show that ( ),NT
iH i tD  is decreasing in t  and i  on ,t Té ùë û  where 2 .T t t- £ D  

When ( )0 NTi tt£ £ ,  we can write 
( ),NT

iH i t

t

D
¶

¶
 and ( )2 ,NT

iH i tD  as follow: 
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-
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D
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¶
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  (A17) 
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  (A18) 

When ( )NTi tt> , we can write 
( ),NT

iH i t

t

D
¶

¶
 and ( )2 ,NT

iH i tD  as follow: 
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(A19) 
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 (A20) 

By definition, ( )( ) 01,NT
iG t T t p ktD + -D < - . Previously, we showed that ( )2

1 , 0iG i tD £ , and 

( )2 , 0NT
iH i tD £  on ,t T t Té ùÎ -Dë û . Therefore, ( ),NT

iH i tD  is decreasing in i  and t  on ,t Té ùë û  where 

2 .T t t- £ D  We can repeat this process for 3 tD , 4 tD , … and eventually cover the whole season, 0,Té ùë û . 

Therefore ( ),NTH i t is submodular in i  and t  , also concave in i  on 0,t Té ùÎ ë û .             

Part (2): We know ( ) 1
0

lim 1,NT
i

t
H t p


D   and ( ) 1lim 1,NT

i
t T

H t h


D - . In part (1), we showed 

( ),
0

NT
iH i t

t

¶D
£

¶
, therefore ( ),NT

iH i tD  is decreasing in 0,t Té ùÎ ë û . As a result, ( )1,NT
iH tD  for ( )0,t TÎ

is either below or above 0p k- . When ( ) 01,NT
iH t p kD < - , ( ) 0NT tt =  for 1i" ³  since 

( )2 , 0NT
iH i tD £ . When ( ) 01,NT

iH t p kD ³ - , then ( ) 0: 1,NT
jj H j t p k$ D + £ - . Therefore 

( ) ( ){ }0max : ,NT NT
it i H i t p kt = D ³ -  for all [0, ]t TÎ .        



 

 
 

 

Proof of Proposition 6 

Please recall that solution to indifference points of optimal rationing policy is identified using 

( )1 0,i iV i t p k-D = - . ( )1 0,NT
i iH i t p k-¢D = -  will be used to calculate indifference points for NT policy. At 

indifference points, we know ( ) ( )1 1 1, ,NT
i iH i t G i t- -=  since all units will be protected for remaining of 

season. Therefore ( ),NT
iH i tD  on 0,t Té ùÎ ë û  is simplified as follow, just as in the classic newsvendor model: 

 ( ) ( ) ( )( )
1

1 1 1 1
0

, ,
i

NT
i

n

H i t p p h p n T tl
-

=

D = - + -å . (A21) 

By Lemma 3, ( ),NT
iH i tD  is decreasing in t . Therefore at a given i  either ( ),NT

iH i tD  is always below 

0p k-  or there exist a time ( 1it -¢ ) after which it goes below 0p k- . When the former happens 1 0it -¢ = , 

while in the latter case 1 0it -¢ > . We know at the limits (A21) becomes: 

 ( ) 1lim , ,NT
i

t T
H i t h


D = -    

 ( ) ( ) ( )( )
1

1 1 1 1 1
0

0

lim lim , lim , ,
i

NT
i

T t T
n

H i t p p h p n T t pl
-

¥  ¥ =

æ ö÷ç ÷çD = - + - =÷ç ÷ç ÷çè ø
å    

since ( ),NT
iH i tD is monotonically decreasing in i  as proved earlier. Therefore, starting from 1i =  there 

exit a 0t ¢  such that ( )0 01,NT
iH t p k¢D = - . We know  is also decreasing in i  (i.e. concavity) 

therefore following holds: 

 ( ) ( )0 0 02, 1,NT NT
i iH t H t p k¢ ¢D £ D = - .  

This means that there exists a 1 0t t¢ ¢£  such that ( )1 02,NT
iH t p k¢D = - . This procedure continues until we 

reach a level of inventory ( 2i n= +  ) where 1 0nt +¢ £ . Then all the indifference points have been identified 

as follows: ' ' '
1 00 ...nt t t T= < < < < .         

( ),NT
iH i tD



 

 
 

Moreover, Equation (A21) using ( )1 0,NT
i iH i t p k-¢D = -  can be further simplified as 

( ) ( )( )
1

1 1 1 1 0
0

,
i

n

p h p n T t p p kl
-

=

+ - = - +å . In the last step, it can be written as 

( )( ) 0 1
1

1 1

, i

p k h
P i T t

p h
l

- +
- =

+
 to complete the proof.       

 

Proof of Corollary 2 

We first prove the following lemma which is used in the proof of Corollary 2. 

Lemma A3: ( ) ( )1, ,i iV i G iq qD ³D  for any q  and 0i ³ .  

Proof: Let ( ) ( ) ( )1, , ,i V i G iq q qd = - . Since ( ),V i q  is the optimal value function on ,Tqé ùë û , we know that 

( ) 0,id q ³ for all q  and i . It remains to be show that ( ), 0i id qD ³  for all q  and 0i ³ .  

 When 1i = , ( ) ( )1, ,i iV i G iq qD ³D  holds easily because ( ) ( )10, 0, 0V Gq q= = . 

 When 1i > , the proof is more complicated. We follow a backward induction and start from end of 

the season where 0,t Tq é ùÎ ë û . In this period, first order and second order differences with respect to i  

can be written as follow: 

 ( ) ( ) ( )( ) ( ) ( )( )1 0,1 1 1 1, , , 0i i h P i T p h P i T iq w l q l qdD = + - - + - " ³ ,  

 ( ) ( ) ( )( ) ( ) ( )( )2
1 0,1 1 1 1, 1, 1, 1.i i h p i T p h p i T iq w ld l q qD =- + - - + + - - " ³  

Now define a ratio 
( ) ( )( )
( ) ( )( )

( )0

1
1 0,1 1 0

1 1 11 1 1

1,
1 .

1,i

i
Th p i T h

R e
p hp h p i T

l qw l q w l
ll q

-
- - æ ö+ - - + ÷ç ÷= = +ç ÷ç ÷ç++ - - è ø

 It is easy to see that 

( )2 , 10i ii Rd q £  ³D . It is also easy to see that iR  is positive and strictly increasing in i . Depending on 

the initial value of iR , there are two possible cases: 

Case I- 1 1R ³ . In this case 1,iR i³ " , because it’s increasing in i. Therefore,  

 ( ) ( )( ) ( ) ( )( )1 1 0,1 1 1 1n, , for 0h p T p h p n T nw l q l q+ - ³ + - " ³ .  

Summing over n we get: 



 

 
 

 ( ) ( )( ) ( ) ( )( )1 1 0,1 1 1 1, , for i 0
n i n i

h p n T p h p n Tw l q l q
¥ ¥

= =

+ - ³ + - " ³å å .  

That is, ( ) ( )( ) ( ) ( )( )1 1 0,1 1 1 1, ,h P i T p h P i Tw l q l q+ - ³ + - . Thus, ( ), 0i id qD ³ . 

Case II- 1 1R < . Because iR  is increasing and lim i
i
R

¥
= ¥ , there must exist an i¢  such that 1iR <  for 

0 i i ¢£ <  and 1iR ³  for i i ¢³ .   

Case II(1): For i i¢³ , 1iR ³ . As in Case I, we immediately have ( ), 0i id qD ³ . 

Case II(2): For 0 i i ¢£ < , 1iR <  and ( ),id q  is convex in i. Because we know ( )0, 0d q = , and 

( ), 0id q ³ , it must be the case that ( ),id q  is increasing in i  for all 0 i i ¢£ < . (That is, the decreasing part 

of a convex function is not possible here.) 

Therefore, combining both cases we get ( ), 0i id qD ³  for all i and 0,t Tq é ùÎ ë û .  

We now extend the analysis to 1 0,t tq é ùÎ ë û . Since ( ) 1tt =  on 1 0,t tq é ùÎ ë û , we know ( ) ( )11, 1,i iV Gq qD = D . 

Similar to what we did earlier, we can show that ( ) ( ) ( )1, , ,i V i G iq q qd = -  is always increasing in i for 

2i ³ . Knowing ( )1, 0iJ qD = , we conclude that ( ), 0i iJ qD ³  for all i on 1 0,t tq é ùÎ ë û .  

This proof process can be repeated for 2 1,t tq é ùÎ ë û  …  to show that ( ), 0i iJ qD ³  for all i  and q .   

 

Now we return to the proof of Corollary 2. As a recall, we describe how the indifference points are calculated 

under the optimal rationing policy. Then we compare that with NT heuristic. 

For the optimal rationing policy, indifference points are calculated using . To find the 

first indifference point, 0t , we will use following: 

 ( ) ( ) ( )( )0 1 1 1 1 0 01, 0,iV i t p p h p T t p klD = = - + - = - . (A22) 

Then we calculate ( )0,V i t for 1i" ³ . The second indifference point, 1t , is calculated using following: 

 ( ) ( ) ( )( )
1

1 1 0 1 1 0 1 0
0

2, 2 , ,i i
n

V i t p V n t p p n t t p kl
=

é ùD = = + D - - - = -ë ûå . (A23) 

( ) 0,i iV i t p kD = -



 

 
 

Then we calculate ( )1,V i t for 1i" ³ . The procedure continuous till ( ), 0V i for 1i" ³ is calculated. 

Now, we compare the procedure with that of NT heuristic. While equation (A22) stays the same, equation 

(A23) changes to: 

 ( ) ( ) ( )( )
1

1 1 1 0 1 1 1 0 0
0

2, 2 , ,NT
i i

n

H i t p G n t p p n t t p kl
=

é ù¢ ¢ ¢ ¢D = = + D - - - = -ë ûå .  (A24) 

Therefore, both policy match up until first indifference point ( 0 0t t ¢= ), which means: 

 ( ) ( ) 00  ,NT OPTt t t t Tt t é ù¢= = " Î ë û .   

In the next step to find 1t ¢using (A24), we need marginal value at 0 0t t ¢=  which is calculated using  ( )0,iV i tD  

and ( )1 0,iG i t ¢D  respectively in optimal and NT heuristic. Comparing (A23) and (A24), we find 

( ) ( )( ) ( ) ( )( )
1 1

1 0 1 1 1 0 0 1 1 0 1
0 0

2 , , 2 , ,i i
n n

G n t p p n t t V n t p p n t tl l
= =

é ù é ù¢ ¢ ¢D - - - = D - - -ë û ë ûå å . 

Because of Lemma A3 and 0 0t t ¢= , it is clear that 1 1t t¢ ³ . This means under NT heuristic, protection level of 

one is optimal action for a longer period compared to that of optimal policy. Similarly, this analysis can be 

extended to show that  n nt t³ . Therefore, there are fewer protection levels under the NT heuristic than under 

the optimal policy.        

 

Proof of Proposition 7 

We first prove the following lemma which is used in the proof of Proposition 7: 

Lemma A4: ,
0 1( , )NPOPT S SP  is concave in 1S  and submodular in 0S  and 1S . 

Recall that we define 1G  to be the newsvendor profit function for the offline store:  

( ) ( ) ( ) ( )( )1 1 1 1 10
, , .

i

j
G i t p i p h i j p i T tl

=
= - + - -å  

We now similarly define 0G  to be the newsvendor profit function for the online store:  

( ) ( ) ( ) ( )( )0 0 0 00 0, , .
i

j
G i t p i p h i j p i T tl

=
= - + - -å  



 

 
 

We can write the (NP,OPT) profit function as follows: 

 
( )( ) ( )

( )
1

,
0 1 0 0 1 1 0 0 1 1 0 0 00

1 1 0 0 00
0

( , ) ( ,0) ( ,0) 1 , ( ) 1,

, ( , ) ( 1, )

T
NP OPT

ST

u

S S G S G S P S T p E D S p S d

V S u p u p S d

q

q

l q l l q q

q l q l l q q

=

=
=

é ùP = + - +  -ë û
ì üï ïï ïï ï+ - -í ýï ïï ïï ïî þ

ò

åò
   

Its first order difference with respect to 1S is as follow:  

 
( )( )

( )
1 1

1

1

,
0 1 1 1 0 0

1

1 1 1 1 1 0 0 00
0

( , ) ( , 0) 1 ,

( , ) , ( , ) ( 1, )

NT OPT
S S

S
T

S
u

S S G S P S T

p P S V S u p u p S d
q

l

l q q l q l l q q
-

=
=

D P = D -
ì üï ïï ïï ï+ + D - -í ýï ïï ïï ïî þ

åò
   

And the second order difference with respect to 1S is as follow:  

 

( )( )

( )
1 1

1

1

2 , 2
0 1 1 1 0 0

1
2

1 1 1 1 1 0 0 00
0

( , ) ( , 0) 1 ,

( 1, ) , ( , ) ( 1, ) .

NT OPT
S S

S
T

S
u

S S G S P S T

p p S V S u p u p S d
q

l

l q q l q l l q q
-

=
=

D P = D -
ì üï ïï ïï ï+ - - + D - -í ýï ïï ïï ïî þ

åò
   

Since both 1 1( ,0)G S  and ( )1 ,V S u q- are concave (Propositions 1 and 5), we conclude that ,OPT
0 1( , )NT S SP is 

concave in 1S .           

Next, the (NP,OPT) profit function can be also written as follow: 

 ( ) ( )( )
1

, ,
0 1 0 1 1 1 1 1 0 0 00

0

( , ) ( , ) , , ( , ) ( 1, ) .
S

T
NP OPT NP

u

S S S S V S u G S u p u p S d
q

q q l q l l q qÆ

=
=

ì üï ïï ïï ïP = P + - - - -í ýï ïï ïï ïî þ
åò    

We first show that the following two inequalities hold: 

 0 0 0 0( 1, ) ( 2, ) 0p S p Sl q l q- - - £ ,     (A25) 

 ( ) ( )
1 11 1 1, , 0S SV S u G S uq qD - -D - ³ .  (A26) 

Considering our assumption that the service levels are more than 0.5, we have ,
0

NP
n nS Tl l qÆ é ù é ù³ ³ê ú ê ú , and 

(A25) holds.  (A26) follows from Lemma A3.  

Next, the profit function’s cross difference with respect 0S  and 1S  can be written as follow: 



 

 
 

( ) ( )( ) ( )
1

0 1 1 1

1
,

0 1 1 1 1 1 0 0 0 0 00
0

( , ) , , ( , ) ( 1, ) ( 2, ) .
ST

NP OPT
S S S S

u

S S V S u G S u p u p S p S d
q

q q l q l l q l q q
-

=
=

ì üï ïï ïï ïD D P = D - - D - - - -í ýï ïï ïï ïî þ
åò  

  

Thus 
0 1

,
0 1( , ) 0NP OPT

S S S SD D P £ because of (A25) and (A26). That is, the profit function is submodular.  

 

Now we return to the proof of Proposition 7. 

Part (1)  Because  is a feasible rationing policy, its performance by definition is no better than the 

optimal rationing policy. Therefore, we have , ,
1 1( ) ( )P P OPTS SfP P£  and , ,

0 1 0 1( , ) ( , )NP NPOPTS S S SÆP P£ . 

Part (2)  Please note the following: 

( ) ( ) ( )( )
1

1 1 1 1

1
,

0 1 1 1 1 1 1 1 0 0 00
0

( , ) , 0 , , ( , ) ( 1, ) .
S

T
NP OPT

S S S S
u

S S G S V S u G S u p u p S d
q

q q l q l l q q
-

=
=

ì üï ïï ïï ïD P = D + D - - D - -í ýï ïï ïï ïî þ
åò  

Plugging in ,
1 1

NPS S Æ= , we note 
1

,
1 1( ,0) 0NP

S G S
ÆD =  and Lemma A3 imply that the LHS is also positive: 

1

, ,
0 1( , ) 0NPOPT NP

S S S ÆD P ³ . Then, because
1

, ,
0 1( , ) 0NPOPT N PTP

S
OS SD P ³ , the concavity of ,

0 1( , )NPOPT S SP  in 

1S  (Lemma A4) means , ,
1 1
NPOPT NPS S Æ³ .  

 

Please also note the following:  

( ) ( )
1

0 0

,
0 1 0 0 1 1 1 1 0 0 0 0 00

0

( , ) ( , 0) , , ( , ) ( 1, ) ( 2, ) .
ST

NPOPT
S S

u

S S G S V S u G S u p u p S p S d
q

q q l q l l q l q q
=

=

ì üï ïï ïï ïé ù é ùD P = D + - - - - - -í ýë û ë ûï ïï ïï ïî þ
åò  

For any ,
0 0

NPS S Æ³ , the assumption of 0.5LS ³  means ,
0 0 0

NP
nS S Tl l qÆ é ù é ù³ ³ ³ê ú ê ú . So 

0 0 0 0( 1, ) ( 2, )p S p Sl q l q£- - .  Plugging in ,
0 0

NPS S Æ= , we get 
0

,
0 1( , ) 0OPT NP

S S SÆD P £  for all ,
0 0

NPS S Æ³ , 

because 
0 0

,
0( , 0) 0NP

S G S ÆD =  and ( ) ( )1 1 1, ,V S u G S uq q³- - . Since 
0

,
0 1( , )NPOPT

S S SD P is decreasing in 0S  

(Lemma A4) on ,
0 0

NPS S Æ³ , we must have , ,
0 0
NPOPT NPS S Æ£ .      
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