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Proof of Lemma 1  

 When r+Q≤0, Equation (2) reduces to [ ]( ) 0hQ h Q
Q
λ π λπ− + + = > . Therefore, it is never 

optimal to delay the orders.  This is intuitive as when r+Q<0, all orders are backordered and any delay 

in the ordering will only increase additional penalty cost, with no savings in holding cost. When 

r+Q>0, the optimal delay will satisfy 0FO = .  So from (2) we get: 
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Proof of Lemma 2  

 First, let X have DFR, then by Definition 1.2 in Barlow and Proschan (1976, page 55), 
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Since the CDFs are increasing, we must also have: 
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Therefore,  
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Proofs of the other two cases are similar.        �  

Proof of Theorem 1  

 From Lemma 1, we know that for constant and decreasing failure rate functions, ( )r tτ  is non-

decreasing in t.  So rttrr ∀>∀>⇒> ,0,0)(0)0( ττ . This means that if it’s sub-optimal to order at a 

demand epoch, then it remains sub-optimal to order until the next order epoch. � 

 

Proof of Corollary 1  

 This follows from Theorem 1 and the fact that the inter-demand time of a Poisson process is 

exponentially distributed, which has CFR.     � 

 

Proof of Lemma 3  

 For r+1, the first order derivative in equation (2) can be written as (using a generic variable x): 
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Now fix x. Since ( )tγ  is increasing, 
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 Note that 1( )t
kG x+  is increasing in t.  This immediately implies that the H function, hence also 

the first order derivative in (A1), are increasing in t.  Thus, 1( )r tτ +  is decreasing in t, and since it’s 

bounded by zero, the limit must exist.   
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Next, we study the relation between 1lim ( )rt
tτ +→∞

 and (0)rτ .  Since the failure rate function 

( )xγ  is increasing, there can only be two cases: (Case 1) lim ( )
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= ∞ . This is satisfied by, for example, the uniform distribution and the Weibull 

distribution (when the parameters are such that it’s IFR). 
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+ ⎯⎯⎯→ ∀ ∀ ≥ .  Now let’s examine the first order 

derivatives (as in equation 2) for r+1 and r (using x as the variable): 
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 It is clear then that when t →∞ , the first order derivative for r+1 converges to that for r (with t=0), 
i.e., ( 1, ) ( ,0)FO r t FO r+ → .  Therefore, we must have 1lim ( ) (0)r rt
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    Case 2: lim ( )

x
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= < ∞ . This is satisfied by Erlang distributions.  For example, for an 

Erlang(λ/Q,Q) distribution, the failure rate function converges to λ/ Q. 
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─ if 0k ≥ , then 
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arrival converges to an exponentially distributed random variable.  Therefore, 
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To summarize, we have:  1lim ( ) ( )t
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(A1) and (A2), we conclude that 1lim ( ) (0)r rt
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Proof of Theorem 2  

 We observe that since )0(lim rr
τ
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= ∞, r  exists. The conclusions of the theorem are 

straightforward given the definitions of R, T, and )(trτ .     � 

 

Proof of Lemma 5  

 Let’s examine Erlang(λ/Q, Q) for any λ and Q>1. Its PDF can be expressed 
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which is clearly a decreasing function in t.  Therefore, it has increasing failure rate function.     � 

 

Proof of Lemma 6  
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 We will let )(tek  and )(tEk  denote the PDF and the CDF of an Erlang(λ/k, k) random variable. 

Suppose retailer 1 has just placed an order.  We let U denote the time to next order for any other 

retailer.   

At the time retailer 1 places an order, the inventory position at any other retailer is uniformly 

distributed on {R+1, R+2, …, R+Q}.  Therefore, U is equally likely to be an Erlang(λ/k, k) random 

variable for Qk ≤≤1 .  
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. It suffices to show that h(x, t) is decreasing in t for all x.  The case 

of Q=1 is trivial, so we will focus on Q≥2.  Differentiating h(x,t), we get:  
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with equality holding true only when x=0.  Therefore h(x, t) is decreasing in t for all x≥0, and strictly so 

for x>0. We conclude that U has strictly increasing failure rate function.    � 

 

Proof of Lemma 7  

 Let mUUU ,...,, 21  be independent IFR random variables, with )()...,(),( 2211 mm FfFfFf  being 

their corresponding PDF(CDF).  Clearly, their failure rate functions 
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Hence, the failure rate function of U  is: 
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which is increasing.  � 

 

Proof of Proposition 1  

 Suppose that retailer 1 has just placed an order and its time till next order is Erlang(λ/Q, Q), 

which has IFR.  The time to next order for all the other retailers is U, which also has IFR. The time to 

next order at the supplier is the minimum of all these random variables, which, by Lemma 7, also has 

IFR.            � 


