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We consider a queueing system, commonly found in inbound telephone call centers, that processes two types of work. Type-H jobs arrive
at rate �H , are processed at rate �H , and are served first come, first served within class. A service-level constraint of the form E �delay�� �
or P �delay� �	 � � limits the delay in queue that these jobs may face. An infinite backlog of type-L jobs awaits processing at rate �L,
and there is no service-level constraint on this type of work. A pool of c identical servers processes all jobs, and a system controller must
maximize the rate at which type-L jobs are processed, subject to the service-level constraint placed on the type-H work.

We formulate the problem as a constrained, average-cost Markov decision process and determine the structure of effective routing
policies. When the expected service times of the two classes are the same, these policies are globally optimal, and the computation time
required to find the optimal policy is about that required to calculate the normalizing constant for a simple M/M/c system. When the
expected service times of the two classes differ, the policies are optimal within the class of priority policies, and the determination of
optimal policy parameters can be determined through the solution of a linear program with O(c3) variables and O(c2) constraints.
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1. INTRODUCTION

Consider the following Markovian queueing system that
processes two types of work. Type-H work arrives accord-
ing to a Poisson process of intensity �H and has indepen-
dent and identically distributed (i.i.d.), exponentially dis-
tributed processing times of mean 1/�H . Type-H jobs are
served first come, first served (FCFS) within class, and
they queue for service. A service-level constraint of the
form E �delay��� or P �delay< �	�� limits the delay in
queue that type-H jobs may face. Type-L jobs have i.i.d.,
exponentially distributed processing times of mean 1/�L,
and there exists an infinite backlog of type-L jobs, so that
there is always type-L work to be processed. There is no
service-level constraint on type-L work. A system con-
troller routes type-H and type-L jobs to one of c identical
servers. The controller’s objective is to maximize the rate
at which type-L jobs are processed, subject to the service-
level constraint placed on type-H jobs.
The primary motivation for analyzing this problem

comes from a situation commonly found in inbound tele-
phone call centers. (Inbound calls originate from outside
clients calling “in” to a center, while outbound calls origi-
nate from employees in a center calling “out.”) The prob-
lem is one of how best to use pockets of excess capacity,
and it originates with a two-step staffing procedure that is
embedded in the software packages used to manage many
of these centers.
In the first stage of the staffing procedure, the Erlang-

C formula (or a variant) is used to determine the mini-
mum numbers of customer service representatives (CSRs)
required to be on hand at different times of the day. More

specifically, the arrival process is traditionally modeled as
a Poisson process in which the rate changes every 30 min-
utes; within each of these increments the process is con-
sidered to be stationary. Service times are assumed to be
exponentially distributed. The call center sets a service-
level standard for the delay distribution of incoming calls,
and the Erlang-C formula is used to find the minimum num-
ber of CSRs required to meet the service-level standard in
steady state. (For example, see Fleischer 2000, item 29.)
In the second stage, the minimum staffing requirements

for these 30-minute increments become the right-hand side
of a set-covering integer program (IP) that assigns CSRs
to work schedules. Each feasible schedule defines which
half-hour increments during the week a CSR will work
and which s/he will not. The IP’s decision variables are
the numbers of CSRs assigned to each of the feasible
schedules, and the constraints ensure that the sum of the
CSRs working in every half-hour are sufficient to meet
the staffing requirements. For example formulations of this
mathematical program, see Pinedo et al. (2000) or Gans
and Zhou (2002).
Because of limits on the schedules used in the proce-

dure, the IP’s solution typically includes half-hour inter-
vals that are overstaffed. That is, the number of CSRs that
are available to work exceeds the number required to meet
the service-level constraint. During these times, call-center
managers often assign lower-priority, postponable work to
CSRs. In some organizations, the postponable work may be
“outbound” calls, either for sales or to call back customers
who have left a message. In other organizations, this work
may be responding to emails, processing insurance claims,
or performing other clerical work. In our model, inbound
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calls are of type H, postponable work is of type L, and
CSRs are servers.
Suppose that during some interval, only i < c CSRs are

required to meet the service-level constraint imposed on
type-H work. A feasible scheme would be to assign i CSRs
to take incoming calls and �c− i� CSRs to handle type-L
work. Given the objective of maximizing the throughput of
type-L work, however, this scheme is suboptimal; there are
times during which all i CSRs dedicated to type-H work
may be idle, and at these times some of the i may be used to
process type-L work without violating the type-H service-
level constraint. Even when i = c, additional productive
capacity to process type-L jobs may be found by oppor-
tunistically routing type-L work at appropriate moments.
Indeed, the latest generation of call-center switches can

be programmed to perform these types of routing functions.
They handle multiple types of work—inbound calls, out-
bound calls, emails, and other computer-mediated tasks—
and route work to agents based on preprogrammed scripts.
For examples of systems that advertise this capability, see
Avaya Communications (2001) and Genesys Telecommuni-
cations Laboratories (2001). In this paper, we seek to char-
acterize effective work-routing schemes for managing these
systems.
We first analyze systems in which �H = �L, and we

prove that the following stationary scheme is optimal:
(1) type-H jobs are given priority over type-L jobs; and
(2) type-L jobs are admitted into service according to a
randomized “threshold reservation” policy. In a determin-
istic version of the policy, type-L work is routed to a CSR
only when there are no type-H jobs in queue and the num-
ber of busy CSRs falls below some fixed threshold number
i � c. In the randomized version of the policy, the thresh-
old level is randomized between two adjacent numbers i
and i+ 1 � c. In this system, the computation required to
find the optimal policy is about the same as that required
to compute the normalizing constant of an M/M/c queue.
Thus, the computational effort to calculate the optimal pol-
icy parameters is modest, and the resulting policies are
straightforward to understand and implement.
We then evaluate analogous systems for which �H �=�L.

In these systems, the amount of work present in the system
depends on the composition of the jobs, rather than simply
the total number of jobs. In turn, the policies that admit
type-L jobs based on the number of busy servers—which
were optimal when �H = �L—are not necessarily optimal.
Here the problem of finding the desired routing policy can
be formulated as a linear program (LP) with O(c3) variables
and O(c2) constraints. This policy is optimal among all
those which give priority to type-H jobs.
In this case, performance should continue to be excel-

lent, although the computational effort required to calculate
optimal policy parameters grows substantially. For exam-
ple, for a pool of 100 CSRs, the LP formulation requires
roughly 179,000 variables and 5,250 constraints. While this
size of problem is well within the capabilites of current

LP solvers and can be automated in a straightforward fash-
ion, additional structural results that reduce the scale of the
problem are warranted.
In the discussion at the end of the paper, we briefly dis-

cuss a class of threshold-type policies that, if implemented,
would further reduce the number of variables in the LP by
an order of magnitude, so that it would require O(c2) deci-
sion variables and O(c2) constraints. We conjecture that this
subset of policies is optimal (within the class of priority
policies).
The remainder of the paper is organized as follows. In

§2 we review related literature, and we discuss the assump-
tion that the underlying stochastic process is stationary and
Markovian. Then §3 analyzes the case in which �H = �L,
and §4 the case in which �H �= �L. In §5 we discuss our
results as well as directions for future research.

2. RELATED LITERATURE

In this section, we describe two sets of related literature.
First, we discuss research articles whose models are similar
to the one analyzed in this paper. Next, we discuss papers
that address some of the limits inherent in our model’s
assumption that the underlying system is stationary and
Markovian.
The work most closely related to this is that of Bhulai

and Koole (2000), who have independently analyzed the
same problem. For the case of �H =�L, their results match
ours. The paper differs from ours in two broad respects,
however. First, it uses value iteration as the basis for anal-
ysis, while we use an LP formulation of the underlying
MDP. Second, for the case of �H �=�L it analyzes a heuris-
tic that is based on system occupancy, rather than the opti-
mal policy. In contrast, we develop a procedure for finding
the optimal routing policy.
Armony and Maglaris (2003) consider a closely related

system in which arriving customers are informed of the
expected delay and may elect to balk (exit the system upon
arrival) or to be called back by a CSR, rather than waiting
in queue to be served. In this setting, type-H customers are
willing to wait, type-L customers elect to be called back,
balking customers are lost, and �H =�L. Furthermore, each
arriving customer decides which type s/he becomes, based
on personal preferences. The objective is to minimize the
expected delay of type-H calls, in equilibrium, subject to
a delay constraint on type-L calls. The paper demonstrates
the asymptotic optimality of a threshold policy in which
type-L calls are given priority if and only if the type-L
queue exceeds a certain threshold.
Brandt and Brandt (1999) analyze another closely related

system in which �H = �L. In this system, arriving type-H
calls are live customers and are impatient, while type-L
calls are “callbacks”—messages left by customers for the
call center to return the call—and are patient. After a ran-
dom amount of time spent waiting in queue, the impatient,
type-H calls may turn into type-L calls or abandon (exit)
the system without being served. Given a fixed threshold-
reservation policy, the paper develops a system of integral
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equations that characterizes the steady-state distribution of
the numbers being served and in the type-H queue. It also
develops an approximate characterization of the steady-
state number in the type-L queue.
These two papers differ from ours in three respects. First,

the models developed in Armony and Maglaras (2003) and
Brandt and Brandt (1999) seek to characterize systems in
which there is not enough capacity and underserved type-H
customers do not wait in queue. The model we present,
however, aims to characterize a complementary situation
in which there is ample capacity for type-H calls and lit-
tle or no abandonment by type-H callers. Rather, the pri-
mary question is how best to use excess capacity with-
out adversely affecting the service level of type-H calls.
Second, the dynamics of the systems analyzed in the two
papers differ somewhat from those of the system analyzed
in our paper. Finally, the two papers do not address cases
in which �H �= �L.
In the telecommunication literature, there are also rout-

ing control problems similar to the system described in
this paper and, again, the models typically assume that
�H = �L. Blanc et al. (1992) describe a system in which
type-L jobs arrive according to a Poisson process and are
subject to admission control. Once admitted, type-L jobs
queue together with type-H jobs, and the objective is to
maximize a discounted total reward associated with the
number of jobs accepted. A “threshold" type policy—in
which type-L calls will be admitted only when the total
calls in the system (type-H plus admitted type-L calls) does
not exceed a fixed limit—is proved to be optimal. Guérin
(1988) models a cell phone network in which type-L calls
are those that originate from within the current cell and
type-H calls are those being handed off from another cell.
Because type-H calls are already in process, if they are not
immediately served upon arrival they are lost, and a limit
is imposed upon their loss probability. For this system, the
paper analyzes policies for reserving channels that are ana-
logues of the threshold reservation schemes in our paper.
Guérin (1988) does not address the optimality of this class
of policies, however.
Berman and Larson (2000) consider retail operations in

which type-H work takes the form of customers arriving to
cash registers, and type-L work awaits in a “back room” in
which restocking and other maintenance activities must be
performed. In this model, back room work does not con-
sist of a number of separate jobs, but rather a total quantity
of work that must be attended to each period, and switch-
ing time is incurred each time servers change from cus-
tomer checkout to back-room tasks. The paper proposes
two heuristics for managing servers that are hysteresis ver-
sions of threshold reservation policies. The paper does not
address the optimality of these policies, however.
Earlier work by Schaack and Larson (1986) uses gener-

ating functions to characterize the performance of thresh-
old reservation policies for systems in which m� 2 classes
of customers, all with the same, exponential service time
distribution. Again, the paper concentrates on performance

analysis and does not introduce a notion of optimality as it
analyzes policies. In addition, it does not explicitly address
service-level constraints, and it does not characterize sys-
tems in which service time distributions may vary among
customer classes.
Carr and Duenyas (2000) study a job admission and

sequencing problem for a single-server queue in the inven-
tory/production setting. Their system has two streams of
jobs with different service standards.
Akşin and Harker (2001) consider the impact of the

addition of background work to congestion in the informa-
tion systems that support the agents that handle calls. They
model this effect using a processor-sharing loss system.
The standard call-center staffing procedure described in

the introduction models the arrival and service process of
type-H calls as that of a stationary M/M/c queue. While
these assumptions are not wholly correct, we adopt them
in the interest of analytical tractability. We address each of
them in turn.
The arrival process at many call centers is nonstationary,

and this process may be affected by various factors, such
as line of business, geography, type of technology in use.
Recent empirical work by Brown et al. (2002) characterizes
the arrival process at one inbound call center as a nonsta-
tionary Poisson process. There is also stream of research
that addresses the fact that standard procedures “discretize”
nonstationarities in the arrival process, and they attempt to
adjust staffing levels to reflect nonstationarities within half-
hour increments. For example see Jennings et al. (1996),
Green et al. (2000), and the references therein.
Similarly, much call-center software and research has

assumed that the service-times of calls are exponentially
distributed. In particular, there is an active stream of
research, based on earlier work by Halfin and Whitt (1981),
that uses asymptotic analysis for systems with many expo-
nential servers. For example, see Borst et al. (2000) and
Garnett et al. (2002). Recent empirical evidence, however,
suggests that service times may not be exponentially dis-
tributed. In particular, Bolotin (1994) and Mandelbaum et
al. (2000) have both found the duration of talk times to be
lognormally distributed. To capture effects such as these,
Puhalskii and Reiman (2000) have recently generalized the
original, asymptotic analysis of Halfin and Whitt to cover
the class of GI/PH/c queues.

3. IDENTICAL SERVICE-TIME DISTRIBUTIONS:
�H = �L

In this section we analyze systems in which the service-
time distributions of the two types of calls are identical:
�H = �L ≡ �.

3.1. Model

Again, we assume that type-H jobs arrive according to a
Poisson process of intensity �H , that there exists an infinite
backlog of type-L jobs and that service times are exponen-



258 / Gans and Zhou

tially distributed with rate �H = �L ≡ �. Let �= �H/c�H
be the offered load of type-H jobs. Clearly, whenever �< 1
there exist stable policies.
The fact that interarrival times and service times are

exponentially distributed implies that, rather than analyz-
ing the continuous time Markov chains (CTMCs) induced
by control policies, we can uniformize the event rate of the
CTMC to analyze an equivalent discrete time Markov chain
(DTMC) that is embedded at a uniformized set of event
epochs (see Puterman 1994). In particular, uniformization
ensures that the transition rate out of any state is always
the same, so that the fraction of time the CTMC spends
in a given state corresponds exactly to the fraction of tran-
sitions that the embedded (after action) DTMC spends in
that state.
We let the uniformization rate equal �H + c�. Further-

more, without loss of generality, we define the time scale so
that �H + c�= 1. Therefore, we may view transition rates
as probabilities. For example, �H = �H/��H + c�� equals
the expected number of type-H arrivals per period, as well
as the probability that the next event is a type-H arrival.
Because �H = �L ≡ � the state of the system at discrete

event epoch t can be described using two dimensions: the
number of busy servers i, and the number of type-H calls
in queue q. We define the state space to be S = ��i� q�� 0�
i � c� q � 0	 and st ∈ S to be the state of the system at
event epoch t, before any action is taken.
In any state, a system controller may put one or more

calls into service, or it may do nothing. Accordingly, let
j and k be the numbers of type-H and type-L calls put
into service at an arbitrary event epoch. We define the set
of feasible actions in state s ∈ S to be As = ��j� k�� 0 �
j �min�c− i� q	� 0 � k � c− i− j	, as well as the action
taken at time t to be at ∈ Ast . We denote the superset of
all feasible actions as A = ��j� k�� 0 � j � c� 0 � k � c�
j+k � c	⊇ As for all s ∈ S. Observe that A is finite.
Because of the correspondence between the CTMC and

the after-action DTMC, at times it will be more convenient
to consider the state of the system after an action is taken,
rather than before. Accordingly, we define the after-action
state space, s̄t ∈ 	S = ��ı̄� q̄�� 0 � ı̄ � c� q̄ � 0	, to be the
system state after an action is taken at event epoch t.
The relationship between s̄t and st+1 is as follows:

�it+1� qt+1�=


�ı̄t� q̄t+1�� w. p. �H ;
�ı̄t−1� q̄t�� w. p. ı̄t �; and
�ı̄t� q̄t�� w. p. �c− ı̄t��.

(3.1)

Two points are worth noting. First, when ı̄t = 0, the sec-
ond transition, to �ı̄t−1� q̄t�, occurs with probability zero.
Second, the transition in which �it+1� qt+1�= �ı̄t� q̄t� is the
result of uniformization at rate �H + c�.
A policy is a set of decision rules that the system con-

troller uses when choosing an action to take at each event
epoch t. Define the history of the system up to event epoch
t to be �t = ��s0� a0�� � � � � �st−1� at−1�∪st	, the record of all
states entered and actions taken up through event epoch t.
A nonanticipating policy is a rule that, given �t , chooses

an action at , possibly at random, among the actions of Ast .
We consider only such nonanticipating policies.
Furthermore, we limit ourselves to the class of policies

that stabilizes the expected number of type-H calls in the
backlog. This eliminates from consideration policies that
on certain sample paths may let the expected backlog grow
without bound.
More formally, we define  H�n� to be the number of

type-H arrivals over the first n transitions. Similarly, we let
	H"�n�, 	L"�n�, and n̄"�n� = 	H"�n�+	L"�n� be the (after
action) numbers of type-H, type-L, and all jobs put into
service by policy " through event epoch n. In turn, we let
q̄"�n� =  H�n�− 	H"�n� be the number of type-H jobs in
the queue after the first n transitions. Because it is bounded
by  H�n�, the expected queue length must grow at most
linearly under any policy: lim supn→� E �q̄"�n�� /n � �H .
A stabilizing policy further restricts this limit to be zero.

Definition 1. Let # denote the class of admissible poli-
cies. These are nonanticipating policies for which the limit
limn→� E �q̄"�n�� /n exists and equals zero.

Note that 	H"�n�= H�n�− q̄"�n� and that
lim
n→�E � H�n�� /n= �H�
Therefore, we must have

lim
n→�E

[	H"�n�]/n= �H� ∀ " ∈#� (3.2)

as well.
Thus, we seek an optimal policy " among the class of

admissible policies, #. A stationary policy takes the same
(possibly randomized) action at ∈Ast , based only on st and
not the previous history through �t−1�. A stationary policy
induces a Markov chain on S. We will show that there
exists a stationary policy " ∈# that is optimal.
The objective is to maximize the rate at which type-L

calls are served. For a given state s define the reward asso-
ciated with action a to be R�s�a�. We let R�s�a�= k, the
number of type-L jobs put into service. In turn, we define

	R"�s� def= lim inf
n→�

1
n
E"

[
n−1∑
t=0
R�st� at�

∣∣∣∣ s0 = s
]

(3.3)

to be the long-run average rate at which a policy " ∈ #
serves type-L calls.
To account for the service-level constraint, we denote by

D�s�a� the “delay cost” associated with state-action com-
bination �s� a�, and we let D�st� at�= d�q̄t� for some non-
negative function of the after-action state of the type-H
queue, q̄t . In turn, we define

	D"�s� def= lim sup
n→�

1
n
E"

[
n−1∑
t=0
D�st� at�

∣∣∣∣ s0 = s
]
� (3.4)

and we require that 	D"�s� � D∗, where D∗ is an exoge-
nously defined upper bound on the average backlog cost.
This is the service-level constraint.
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Two facts concerning D�s�a� are important to note. First,
D�s�a� and 	D"�s� are defined as functions of queue occu-
pancy, rather than delay in queue. Given the form of the
class of optimal policies, however, we will be able to show
that common versions of occupancy and delay constraints
are equivalent. We do this in §3.5. Second, the form of
d�·� may vary with the particular type of service-level con-
straint desired. For example, for a constraint on the average
number of type-H calls in queue we let d�q̄t�= q̄t , and for
a limit on the probability of the type-H queue exceeding
length q∗, we let d�q̄t�= 1 if q̄t > q∗ and zero otherwise.
To maintain the analytical tractability of the problem, we

impose the following mild set of restrictions on the form
of d�·�.
Assumption 1. (i) d�0� = 0 and d�q̄� is nondecreasing
in q̄;
(ii) supq̄ d�q̄� > D

∗; and

(iii) d̃���
def=∑�

q̄=0 �
q̄ d�q̄� <� for all � ∈ �0�1�.

Item (i) implies that the cost never decreases as the back-
log grows. Together items (i) and (ii) are sufficient to ensure
that any sample path for which limn→� 	H�n�/n < �H is
also one for which limn→� d�q̄�/n > D∗. Finally, item
(iii) defines the generating function d̃ and implies that the
service-level cost of occupancy grows subexponentially. All
these restrictions are satisfied by formulations of standard
service-level constraints, such as bounds on expected occu-
pancy and on the probability of occupancy exceeding a pre-
specified limit.
Given these definitions of policy, reward, and cost, we

can state the system controller’s problem as

sup
"∈#

	R"�s� s.t. 	D"�s��D∗� (3.5)

Problem (3.5) is called a constrained optimization problem
(COP). Any policy " that satisfies the constraint in Prob-
lem (3.5) is called feasible. If it also achieves the supre-
mum in Problem (3.5), then it is constrained optimal (or,
it solves the COP). To characterize the form of an opti-
mal class of policies, we follow Sennott (2001), who uses
Lagrangian relaxations of the COP to construct a station-
ary, randomized policy that is optimal.
For finite �S� and �A� the general idea works as follows.

First, it is well known that stationary policies for MDPs
may be computed using LPs in which the decision variables
are the relative frequencies associated with the state-action
pairs ��s� a� � s ∈ S� a ∈As	. Furthermore, each determinis-
tic policy corresponds to a basic solution to the correspond-
ing LP. Because exactly one action is taken in each state,
the rank of the basis is �S�. Second, consider the LP asso-
ciated with a stationary, deterministic policy that is opti-
mal. By introducing a single service-level constraint, the
COP forces the basis of the LP to grow to rank �S� + 1,
and there must be one state in which an optimal policy
randomizes its action. Equivalently, one may think of this
optimal policy as a randomization between two stationary,
deterministic policies whose actions are the same in every
state except one. While in our case �S� is infinite, the same
intuition holds.

3.2. Optimality of Type-H Priority Policies

As a first step in the analysis, we use a coupling argument
to prove the optimality of priority policies. This optimal-
ity provides some insight into what makes a routing policy
effective: priority systems route the “important” jobs first,
and the proof identifies that the important jobs in our sys-
tem are the ones for which there exists a service-level con-
straint. Furthermore, the system behavior that results from
priority policies will allows us to apply the LP-based intu-
ition described in §3.1 in a straightforward way to derive
additional, important structural results.
More formally, we define priority and work-conserving

policies as follows.

Definition 2. A type-H priority policy never puts type-L
jobs into service when there is a type-H job in queue.

Definition 3. A type-H work-conserving policy always
serves waiting type-H calls whenever there are idle CSRs.

Given these definitions we have the following lemma.

Lemma 1. If there exists a feasible policy, " ∈ #, then
there exists a type-H priority, type-H work-conserving pol-
icy that is optimal.

Proof. Please see the appendix. �

Two assumptions are central to the lemma’s proof. First,
the fact that �H = �L allows us to couple the service
time of a type-L job put into service in one (nonpriority,
nonwork-conserving) system with that of a type-H job put
into service in an alternative system that satisfies Defini-
tion 2. This, in turn, implies that the alternative policy will
be feasible. Second, the fact that there is always a type-L
job waiting to be served implies that, by routing type-H
jobs ahead of type-L jobs, no type-L jobs will be lost. This
assures that the alternative policy will be optimal.
Thus, the lemma shows that it should be possible to

give priority to type-H calls without hurting the through-
put rate of type-L work. This implies that the search for
optimal policies—which opportunistically put type-L work
into service—may be restricted to policies that put type-H
calls into service whenever a CSR becomes available.
The lemma has important computational implications.

If a policy gives priority to and is work conserving with
respect to type-H calls, then it must be the case that
ı̄ < c⇒ q̄ = 0 and q̄ > 0⇒ ı̄= c. This implies that we may
model the state-space as one dimensional.
To do so, we let S = �0�1� � � � 	. In s ∈ �0�1� � � � � c	� s= i

CSRs are busy and no type-H jobs are in queue, and in
s > c, all c servers are busy and q > 0 type-H jobs are
in queue. Note that at event epoch 0 the system may have
i < c servers busy and q > 0 type-H jobs in queue. Because
every type-H priority policy requires that min�q� c − i	
type-H calls immediately be put into service, however,
without loss of generality we may also assume that at epoch
0 the system’s before action state falls within the reduced
form of S.
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We then simplify the state transition equations (3.1) to
reflect the priority of type-H jobs:

st+1 =


s̄t+1� w. p. �H ;
s̄t−1� w. p. ı̄t �; and
s̄t� w. p. �c− ı̄t��.

(3.6)

Note that, while the notation has changed, only the first
transition equation’s dynamics change from Equation (3.1)
to Equation (3.6). The new equation reflects the fact that,
when a type-H job arrives, if a server is available, it is
immediately put into service.
Given a type-H priority, work-conserving scheme, the

only before-action states in which the optimal action is not
well defined are those for which i < c. In these c states one
must decide whether to put one or more type-L jobs into
service or to do nothing, and the resulting decision prob-
lem is far simpler that the general problem of finding an
optimal policy. Over the c states, there are �c+1��c+2�/2
−1 possible actions that the system may take: routing c or
fewer type-L jobs when the system is empty, routing c−1
or fewer type-L jobs when one server is busy, and so forth.
We modify the action space accordingly. For before-

action state s, we let As = �0� � � � � �c− s�+	, where a ∈ As
represents the number of type-L jobs put into service and
�·�+ =max�·�0	. When s < c, as many type-L jobs may be
routed as there are idle CSRs. When s � c and all c CSRs
are busy, however, As = �0	� and no type-L jobs can be
routed.
Finally, we note that because no action may be taken in

states s � c, the portion of the DTMC governing system
evolution in these states is fixed. Furthermore, the evolu-
tion of the system in these states is that of a birth and death
process with birth rate �H and death rate c�. While the
set of these states is infinite, we can use simple algebraic
substitution to develop closed-form expressions for essen-
tial quantities related to them. This allows us to formulate
the problem of finding an optimal policy as the solution of
a finite-dimensional LP with O(c2) variables and O(c) con-
straints.

3.3. Analysis of �-Optimal Policies

Sennott (2001) shows that in certain cases one may use
Lagrangian relaxations of the COP to identify two station-
ary, deterministic policies that should be randomized, and
she provides a method of implementing the scheme using
value iteration. In this section we study the Lagrangian
relaxation and develop essential structural properties for the
relaxed version of our specific COP. These properties pro-
vide further insight into the nature of the optimal control,
and they provide the basis for a computationally efficient
policy-iteration method for solving the COP.
We define the Lagrangian relaxation as follows. Given a

fixed Lagrange multiplier ) ∈ �0��� let

F)�s� a�
def= R�s�a�−)D�s�a�� ∀ s ∈ S�a ∈ As� (3.7)

be a new one-period reward function with associated long-
run average:

J"�)�s�= lim inf
n→�

1
n
E"

[
n−1∑
t=0
F)�st� at�

∣∣∣∣s0 = s
]

� 	R"�s�−)	D"�s�� ∀ s ∈ S� (3.8)

In turn, we define

J)�s�
def= sup

"

J"�)�s�� ∀ s ∈ S� (3.9)

Definition 4. A policy " ∈ # is )-optimal if J)�s� =
J"�)�s�= 	R"�s�−)	D"�s�� ∀s ∈ S.
By definition, a )-optimal policy will have to achieve

the supremum in Equation (3.9) as well as the equality in
Equation (3.8).
Note that in the Lagrangian relaxation, the objective

function is modified and the service-level constraint is elim-
inated. The system dynamics under any policy remain the
same, however. For this relaxed problem, we demonstrate
that there exists a member of the following class of (sta-
tionary) policies that is optimal.

Definition 5. A generalized threshold reservation policy
with parameters i∗ ∈ �0� � � � � c−1	 and a∗ ∈ �0� � � � � c− i∗	
puts a∗ type-L jobs into service when and only when the
system enters state i∗.

Given any stationary policy " ∈ #, let ,"�s�a� be
the stationary probability of being in state s and taking
action a. That is, fix a stationary policy ", so that in every
state s a (possibly randomized) action is fixed. Let M" be
the DTMC induced by ", so the vector ," is the solution
to , = ,M" , ,1= 1. Then we have Lemma 2.
Lemma 2. Suppose � < 1. Then there exists a stationary,
deterministic policy that is )-optimal. Furthermore, each
stationary deterministic policy ":
(i) induces a single, positive recurrent class of states,

and the expected absorption time into that class is finite;
(ii) has limiting state-action frequencies which corre-

spond to the stationary distribution of the induced Markov
chain: limn→�

1
n

∑n−1
t=0 1��st� at�= �s� a�	= ,"�s�a� w.p. 1∀ s0;

(iii) has uniformly integrable one-period revenues:∑
s∈S�a∈As

,"�s� a��R�s�a�−)D�s�a��<�- and

(iv) corresponds to a generalized threshold reservation
policy.

Proof. Please see the appendix. �

Parts (i)–(iii) of the lemma allow us to apply Altman and
Schwartz’s (1991) Theorem 7.1 to demonstrate that there
is a one-to-one correspondence between stationary policies
and feasible solutions to an appropriately defined infinite-
dimensional LP. The lemma’s main statement—that there
exists a stationary policy that is )-optimal—ensures that
the optimal solution to the LP finds a )-optimal policy.
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Remark 1. The lemma’s proof that there exists a sta-
tionary, deterministic policy that is )-optimal reduces the
formulation of the infinite-state-space MDP to that of a
finite-state-space semi-Markov decision process (SMDP).
In the SMDP, states c+1� c+2� � � � are eliminated, and the
expected length of time and revenue associated with vis-
its to state c are functions of the “busy-period” behavior
of the system each time it hits state c. Indeed, for sys-
tems with �H = �L it is not difficult to explicitly calcu-
late the statistics associated with visits to state c and to
directly solve the SMDP. When �H �=�L, however, the cal-
culations become difficult, and an approach that formulates
and solves the associated infinite-dimensional LP becomes
preferable. This latter approach is the one we take in this
section as well.

To formulate the LP we define decision variables ,�s�a�
that correspond to the state-action frequencies associ-
ated with a randomized, stationary policy and let Ki

def=
��i′� a� � i′ ∈ S� a ∈ Ai′ � i′ +a= i	 be the set of state-action
pairs �i′� a� that takes the system from state i′ to state i.
Then we have

max
c−1∑
s=0

c−s∑
a=0
a,�s�a�−)

�∑
s=c+1

d�s− c�,�s�0�� (3.10)

s.t.
�c−s�+∑
a=0

,�s�a� = �H
∑

�i′� a�∈Ks−1
,�i′� a�

+ �c− s�+� ∑
�i′�a�∈Ks

,�i′� a�

+min��s+1�� c	� ∑
�i′�a�∈Ks+1

,�i′� a�

s ∈ �0� � � � � c+1	� (3.11)

,�s�0�= �H,�s−1�0�+ c�,�s+1�0�
s ∈ �c+2� c+3� � � � 	� (3.12)

�∑
s=0

�c−s�+∑
a=0

,�s�a�= 1� (3.13)

,�s�a�� 0 ∀ s ∈ S�a ∈ As� (3.14)

Note that whenever Ki =� we define the associated sum-
mation in Equation (3.11) to equal zero.
The LP can be interpreted as follows. The objective func-

tion (3.10) is the average number of type-L jobs put into
service per period minus the )-cost of the average back-
log per period. The c+ 2 constraints (3.11) represent bal-
ance equations that include states in which one or more
type-L jobs may be put into service, and the infinite set
of constraints (3.12) represents the balance equations for
states in which all c CSRs are busy. The left-hand sides
of Equations (3.11) and (3.12) are the flows out of each of
the states, and the right-hand sides are the flows in: from
one state below (if there is one), from the same state (due
to uniformization), and from one state above. Constraint
(3.13) ensures that the state-action frequencies sum to one.

Observe that
∑c
a=0 ,�c−a�a� equals the steady-state dis-

tribution of being in state c after action. Similarly, because
only action a = 0 is available in states s > c, ,�s�0� rep-
resents the steady-state distribution on being in state s > c
after action (as well as before action).
Therefore, the substitution ,�s�0�=∑c

a=0 ,�c−a�a��s−c
satisfies the balance equations for states s � c+1 in which
there is a positive queue length. In particular, for s = c+1
we may substitute for Equations (3.11), and for s � c+ 2
we may substitute for all the balance Equations (3.12).
In turn, this implies that we may collect terms to write
the second summation in the maximand of the objective
function as

)
�∑

s=c+1
d�s− c� ,�s�0�

= )
�∑

s=c+1

[
d�s− c�

c∑
a=0
,�c−a�a��s−c

]

= )d̃���
c∑
a=0
,�c−a�a�� (3.15)

Here d̃��� is defined as in Assumption 1. Similarly, we may
simplify the left-hand side of constraint (3.13) as follows:

�∑
s=0

�c−s�+∑
a=0

,�s�a�

=
c∑
s=0

c−s∑
a=0
,�s�a�+

�∑
s=c+1

c∑
a=0
,�c−a�a��s−c

=
c∑
s=0

c−s∑
a=0
,�s�a�+

c∑
a=0
,�c−a�a� �

1−�� (3.16)

Then, having eliminated the ,�s�0�� s > c terms from
Equations (3.12) and (3.13), we may also eliminate the bal-
ance constraints (3.12).
Thus, rather than solving the original, infinite-dimen-

sional LP, we may solve the following finite LP—with
�c+1��c+2�/2 decision variables and c+1 constraints—
to find a )-optimal policy

max
c−1∑
s=0

c−s∑
a=0
a,�i� a�−)d̃���

c∑
a=0
,�c−a�a�� (3.17)

s.t.
c−s∑
a=0
,�s�a� = �H

∑
�i′�a�∈Ki−1

,�i′� a�

+ �c− s�� ∑
�i′�a�∈Ki

,�i′� a�

+ �s+1�� ∑
�i′�a�∈Ki+1

,�i′� a�

s ∈ �0� � � � � c−1	� (3.18)

c∑
s=0

c−s∑
a=0
,�s�a�+

c∑
a=0
,�c−a�a� �

1−� = 1� (3.19)

,�s�a�� 0 ∀ s ∈ S�a ∈ As� (3.20)
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Note that the formulation does not include a constraint
(3.18) in which ,�c�0� appears on the left-hand side. This
reflects the fact that LP formulations of average cost MDP’s
are overconstrained, and one balance constraint may be
dropped (see §8.8 in Puterman 1994).
In addition, the fact that the problem can be formulated

as a finite-state LP allows us to exploit the close relation-
ship between basic solutions of LPs and stationary, deter-
ministic policies for MDPs. By further analyzing the prob-
lem in this context, we can demonstrate the )-optimality of
threshold reservation policies that put at most one type-L
job into service at a time.
Recall that the class of generalized threshold reservation

policies is )-optimal. We demonstrate that, for any such
policy with threshold i∗ and routing number a∗ > 1, there
exists an alternative, randomized (nonthreshold) policy with
the same performance that routes at most one type-L job at
a time:

Lemma 3. Given a generalized threshold reservation pol-
icy with parameters �i∗� a∗� where a∗ > 1, there exists
an alternative (randomized) policy with the same perfor-
mance that routes at most one job in each of the states
i∗� i∗ +1� � � � � i∗ +a∗ −1.
Proof. Please see the appendix. �

Therefore, in the search for )-optimal policies we can
restrict our attention to policies that, though they may ran-
domize, route at most one type-L job at a time. In the
context of the LP, we may eliminate all decision variables
,�s�a� for which a > 1.
Now consider an optimal, basic feasible solution to a

reduced version of the LP (3.17)–(3.20) in which As =
�0�1	 for all 0 � s � c − 1. This solution corresponds
to a stationary, deterministic policy. Furthermore, given
Lemma 3, we know that this policy corresponds to an
optimal solution of the original LP (3.17)–(3.20) in which
As = �0� � � � � c− s	 for all 0 � s � c− 1. Thus, from part
(iv) of Lemma 2 we know that this policy is of the gen-
eralized threshold reservation type. Thus, we have proved
the following lemma.

Lemma 4. If the LP (3.17)–(3.20) is feasible, then there
exists a generalized threshold reservation policy with
threshold i∗ and routing number a∗ = 1 that is )-optimal.
We call the threshold reservation policy with a∗ = 1

“simple” and define these simple policies as follows.

Definition 6. A simple threshold reservation policy with
threshold ı̄∗ = i puts one type-L job into service whenever
the (before action) system state falls to i−1.
Note that in generalized threshold reservation policies i∗

is the before action system state, and the after action state
equals i∗ +a∗. In these simple threshold policies, however,
ı̄∗ is an after-action state—the number in system after the
type-L job has been routed. This use of the after-action
state to index the policy parameter will make more straight-
forward the discussion of which ı̄∗ is optimal.

To determine a )-optimal policy, we need only eval-
uate at most c+ 1 of these simple threshold reservation
policies—with thresholds from 0 to c. Furthermore, each
threshold reservation policy is straightforward to evaluate.
Because there is always a type-L job waiting to be served,
after-action states for which the number of busy servers
fall below ı̄∗ are transient, and a policy with threshold ı̄∗ is
the analogue of an M/M/c system in which ı̄∗ servers are
always busy. By working from ı̄∗ = 0 to ı̄∗ = c, we may
evaluate all c+ 1 policies at once. In the following sec-
tion, in which we prove that randomized versions of these
policies are constrained-optimal, we make the calculations
explicit.

3.4. Solution to the COP

We are now ready to complete our characterization of the
solution of the COP. As in Sennott (2001), we use the
following relationship between )-optimal policies and the
COP to construct an optimal solution to the latter.

Lemma 5 (Beutler and Ross 1985). If for some fixed
) ∈ �0��� there exists a )-optimal policy " such that, for
all s ∈ S, 	R"�s� < � and 	D"�s� = D∗, then " is con-
strained optimal.

From §3.3 we know the form of )-optimal policies.
To use Lemma 5, however, we need to calculate the
	R"�s�’s and 	D"�s�’s associated with each threshold level
ı̄∗. Because we consider only stationary, deterministic poli-
cies 	R"�s�≡ 	R" and 	D"�s�≡ 	D" for all s ∈ S. For a policy
with reservation threshold ı̄∗ = i, we denote 	R" by 	Ri and	D" by 	Di.
Given � < 1 and a fixed threshold ı̄∗ = i, we know that

states s � i are positive recurrent and states s < i are tran-
sient. We again modify the definition of the state space
and transition equations to reflect the simplified system
dynamics. For threshold ı̄∗ = i let Si = �i� i+1� � � � 	. Simi-
larly, given a fixed ı̄∗ = i, there are no additional actions to
be determined, and without loss of generality we redefine
the transition from epoch t to t+ 1 to take place between
before-action states:

st+1 =


st+1� w. p. �H ;
max�st−1� i	� w. p. min�st� c	 ·�; and
st� w. p. �c− st�+�.

(3.21)

Finally, for a fixed simple threshold ı̄∗ = i we let ,i�s� be
the stationary probability that the system is in state s ∈ Si.
That is, because the policy is already fixed, the state s refers
to that of the Markov chain induced by policy ı̄∗ = i. (Alter-
natively, we may think of ,i�s� as being a slight abuse of
notation in which the subscript i simultaneously defines the
actions in all states and the state s refers to an after-action
state.)
Analysis of the balance equations induced by Equa-

tion (3.21) allows us to determine the ,i�s�s, and in turn
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	Ri and 	Di, in a straightforward fashion. More specifically,
for states i � s < c we have

,i�s�=
(
�

�H

)c−s (
c!

�c− s�!
)
,i�c�� (3.22)

and for states in which s > c jobs are in the system we have

,i�s�= ,i�c��s−c� (3.23)

Then using Equations (3.22), (3.23), and the fact that prob-
abilities sum to one, we define

,i�c�=
1∑c−1

s=i
[
� �
�H
�c−s� c!

�c−s�! �
]+ 1

1−�
(3.24)

to be the steady-state probability that the system is in state
c, given a threshold of ı̄∗ = i. Together, Equations (3.22)–
(3.24) completely define the stationary distribution of the
system, just as one would for an M /M /c queue.
Given these relationships, we define 	Ri, the long-run

average rate at which a policy with threshold ı̄∗ = i pro-
cesses type-L jobs, as follows:

	Ri = c�−�H −
(
c−1∑
s=i
�c− s�,i�s�

)
�� (3.25)

The first term of the right-hand side equals the expected
number of jobs processed per epoch by all c CSRs. The
second term equals the expected number of type-H calls
served per period. The last term equals average idle capac-
ity per period—expressed in terms of processing rate per
period. The net difference between the first and last two
terms is the rate at which type-L jobs are served.
Similarly, we define 	Di, the expected backlog cost, to be

	Di =
�∑
s=c
,i�s�d�s− c�= ,i�c�d̃���� (3.26)

Again, the second equality follows from Equation (3.23)
and the definition of d̃ in Assumption 1.
Note that as ı̄∗ = i increases, strictly positive terms are

removed from the denominator of Equation (3.24), so ,i�c�
is strictly increasing in i. Further analysis then implies
Lemma 6.

Figure 1. Example of )-optimal policies when c = 3.
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Lemma 6. Suppose � < 1. Then,
(i) 0≡ 	R0 < 	R1 < · · ·< 	Rc ≡ c�−�H ;
(ii) 0< 	D0 < 	D1 < · · ·< 	Dc ≡ �1−��d̃���.

Proof. Please see the appendix. �

Thus, a given threshold i obtains a pair �	Ri� 	Di� that is
independent of ), and as i increases both the intercept and
the (negative of the) slope of the line 	Ri−)	Di increase as
well. Furthermore, when � < 1 both 	Ri and 	Di are finite
for all feasible i, and we can define

)i
def= 	Ri−	Ri−1

	Di− 	Di−1
� (3.27)

to obtain the following corollary to Lemma 6. For a graph-
ical view of the corollary’s statement, see Figure 1.

Corollary 1. Suppose � < 1. Then )i is decreasing in i.
Furthermore,
(i) for ) ∈ �0� )c� a policy with threshold of ı̄∗ = c is

)-optimal;
(ii) for )∈ �)i� )i−1�, i= 2� � � � � c a policy with threshold

of ı̄∗ = i−1 is )-optimal; and
(iii) for ) ∈ �)1��� a policy with threshold of ı̄∗ = 0 is

)-optimal.

Lemma 6 and Corollary 1 establish the fundamental rela-
tionships that allows us to completely solve the COP. If
there exists an i such that 	Di = D∗ then a deterministic
policy that gives priority to type-H jobs and has a sim-
ple threshold reservation level of ı̄∗ = i for type-L jobs is
constrained optimal. Because the set of thresholds is finite,
however, it is almost surely the case that 	Di �= D∗ for all
i, and we must randomize between two threshold levels to
solve the COP.
Note that when 	Di < D∗ < 	Di+1 for some i, reservation

thresholds of both i and i+ 1 are )-optimal at the break-
point )i+1. Furthermore, once the system enters a state
s � i, the only difference between the two policies is that
when i CSRs are busy, the ı̄∗ = i+ 1 policy puts an addi-
tional type-L job into service, while the ı̄∗ = i policy does
nothing. In this case, by appropriately randomizing between
the two thresholds, we can construct a policy " that is
)-optimal for )= )i+1 and has 	D" =D∗.
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Definition 7. A randomized threshold reservation policy
with threshold i∗ and probability p∗ acts as follows at each
(before action) event epoch in which there are not type-H
calls waiting to be served: (i) if there are i∗ + 1 or more
busy CSRs, then the policy does nothing; (ii) if there are i∗

or fewer busy CSRs, then with probability 1−p∗ the policy
puts enough type-L jobs into service so that i∗ jobs are in
service after action, and with probability p∗ the policy puts
enough type-L jobs into service so that i∗ + 1 jobs are in
service after action.

Theorem 1. Suppose �< 1. Then one of four cases exists:
(i) if 	D0 >D∗ then the COP is infeasible;
(ii) if 	Di = D∗ for some i = 0� � � � � c, then a simple

threshold reservation policy with threshold ı̄∗ = i is con-
strained optimal;
(iii) if 	Dc < D∗ then a simple threshold reservation pol-

icy with threshold ı̄∗ = c is constrained optimal; or
(iv) if 	Di < D∗ < 	Di+1 for some i = 0� � � � � c− 1, then

a randomized threshold reservation policy which threshold
i∗ = i and probability

p∗ =
(
�H
�

)c−i(
�c− i�!
c!

)(c−1∑
s=i

[(
�

�H

)c−s(
c!

�c− s�!
)]

+ 1
1−� − d̃���

D∗

)
(3.28)

is constrained optimal.

Proof. Parts (i)–(iii) of the theorem follow directly from
Lemmas 5 and 6 and Corollary 1.
To calculate the probability in part (iv) one proceeds

as follows. First, note that for any p ∈ �0�1� the random-
ized routing drives transitions from state i+ 1 to i to be
exponentially distributed with mean ��i+ 1���1− p��−1.
In turn, the local balance equations imply that ,i�i� =(
�i + 1���1 − p�/�H

)
,i�i + 1�, so that Equation (3.24)

becomes

,i�p�c�≡
{(

�

�H

)c−i
c!

�c− i�! �1−p�

+
c−1∑
s=i+1

[(
�

�H

)c−s
c!

�c− s�!
]
+ 1
1−�

}−1
� (3.29)

Observe that ,i�0�c�d̃��� < D∗, ,i�1�c�d̃��� > D∗, and
,i�p�c� is increasing in p. Thus, we can set ,i�p�c�d̃��� =
D∗ and solve for p to complete the proof. �

The determination of the optimal policy requires about
the computational effort needed to calculate the normaliz-
ing constant of an M/M/c queue (Equation (3.24) with
i = 0). To make the calculation explicit, we first transform
the problem as follows.

To find ı̄ = max�i �,i�c�d̃��� � D∗	, we substitute for
,i�c� using Equation (3.24) and rearrange terms as follows:

ı̄=max
{
i

∣∣∣∣∣
c−1∑
s=i

��/�H�
c−s

�c− s�! �
1
c!

(
d̃���

D∗ − 1
1−�

)}

=min
{
i

∣∣∣∣∣
i∑
s=1

��/�H�
s

s! �
�̃���

c!

}
� (3.30)

where

�̃���
def=

�∑
q=0
�q
(
d�q�−D∗

D∗

)
=

�∑
q=0
�q
d�q�

D∗ −
�∑
q=0
�q

= d̃���

D∗ − 1
1−� (3.31)

is a shifted and scaled version of the expected backlog cost.
Then to find the optimal policy parameters, one first cal-

culates the right-hand side of the inequality inside the min-
imization of Equation (3.30). If it is less than or equal to
zero, then a simple threshold of ı̄∗ = c is optimal. Other-
wise, one adds terms to the left-hand side one at a time
until the left-hand side satisfies the inequality. If no ı̄ satis-
fies the inequality, then the COP is infeasible. If for some
ı̄ ∈ �1� � � � � c−1	 the left-hand side satisfies the inequality
exactly (with equality), then a simple threshold of ı̄∗ = ı̄
is optimal. Otherwise, a randomized threshold policy with
i∗ = ı̄−1 and

p∗ = 1−
(
�̃���

c! −
i∗∑
s=1

��/�H�
s

s!

)
�i∗ +1�!
��/�H�

i∗+1 (3.32)

is optimal.
It is also interesting to note that if we multiply both sides

of the inequality inside the minimization of Equation (3.30)
by e−�/�h , then the left-hand-side becomes the probability
that a sample of a Poisson distribution of mean �/�H falls
between 1 and ı̄.

3.5. Service-Level Constraints
Based on Delay

The service-level constraints developed in this section,
although quite general, are formulated as functions of the
number in queue. Typically, however, service-level con-
straints are formulated as a function of the delay (time) in
queue. We therefore briefly demonstrate how the two most
common examples of both types of constraints can be for-
mulated as functions of ,i�c�, the steady-state probability
that all c servers are busy.
In call centers, service-level constraints based on the

average delay in queue are commonly called constraints on
the average speed of answer (ASA). Typically, the � for
ASA is set at 20 or 30 seconds. We can use Little’s law to
transform an ASA-based constraint to an occupancy-based
constraint as follows.
Let Q denote the number in queue in steady state so that

ASA � �⇔ E �Q� � �/�H . Then using d�q̄�
def= q̄ so that
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d̃���=∑�
q=0 q�

q = �/�1−��2, we have
	Di def= ,i�c�

�

�1−��2 � (3.33)

and D∗ def= �/�H . Then 	Di � D∗ if and only if ,i�c� �
�1−��2�/��H .
Call centers may also use a lower-bound constraint, �,

on the fraction of customers that are delayed less than �
units of time. The most common numbers used for � and
� are 20 seconds and 0.8, so that “at least 80% of the
customers are served in 20 seconds or less.” Mandelbaum
(2001) has conjectured that these numbers result from a
(mis)application of the “80-20 rule.” For another history of
how this standard was arrived upon, see Fleischer (2000,
item 71).
Given the priority of type-H jobs, we know that when

there is a positive queue length the system behaves as a
standard M/M/c queue with arrival rate �H and service
rate �. For this system it is well known that the con-
ditional distribution of delay of an arriving customer—
�delay � delay> 0	—is exponentially distributed with mean
�c�−�H�−1 (for example, see Wolff 1989, §5.9).
From PASTA and Equation (3.24), we also know that

the probability that an arriving call finds all c servers
busy and is delayed equals

∑�
s=c ,i�s� = ,i�c�

∑�
q=0 �

q =
,i�c�/�1−��. Therefore,
P �delay> �	= ,i�c�

1−� e
−�c�−�H �� � �1−�� (3.34)

if and only if ,i�c�� �1−�� �1−��e�c�−�H ��.
Thus, we can let d�q̄�

def= 1�q̄ > 0	 so that d̃��� =∑�
q=0 d�q��

q=∑�
q=1 �

q=�/�1−��, and 	Di=,i�c��/�1−��.
Similarly, we can let D∗ def= ��1− ��e�c�−�H ��. Together,
these definitions of 	Di and D∗ mimic the delay-based con-
straint.

4. DIFFERENT SERVICE-TIME DISTRIBUTIONS:
�H �= �L

In this section we assume that type-H and type-L calls
have different service-time distributions: �H �=�L. Accord-
ingly, we increase the state space dimension by one so that
S = ��i� j� q� � 0 � i+ j � c� q � 0	. Here i and j are the
numbers of CSRs serving type-H and type-L jobs, and q
is the number of type-H jobs in queue. We also uniformize
state transitions at rate �H + c�H + c�L = 1.
While the state space expands, the other elements of the

model developed in §3 remain the same. In particular, we
continue to define the COP as in Equations (3.3)–(3.5), and
we continue to assume that the backlog cost behaves as
defined in Assumption 1.
The fact that the service time distributions for type-H

and type-L jobs differ prevents us from proving that type-H
priority policies are optimal, however. When �H �=�L then
the coupling argument used in the first part of the proof of
Lemma 1 breaks down.
Still, this class remains attractive. It is both natural and

common to give higher priority to the work for which there

exists a strict service-level constraint, rather than to the
work that is postponable. Furthermore, given the priority of
type-H calls, the argument used in Lemma 1 to prove the
optimality of type-H work-conserving policies can be used
without modification.

Lemma 7. Among type-H priority policies, type-H work
conserving policies are optimal.

Proof. Please see Step 2 in the proof of Lemma 1, in the
appendix. �

Then given the class of type-H priority, type-H work-
conserving policies, we can again, with some effort, col-
lapse the infinite-dimensional state space of the original
problem into one of finite dimension and formulate a finite
LP. While the optimal solution to the LP is not guaranteed
to be optimal among all policies, it is optimal within the
class of type-H priority policies.
Thus, given priority policies, we can again formulate a

reduced-dimensional state space and embed the priority of
type-H calls into the state transition equations. More specif-
ically, we let S = ��i� j� � 0� i� 0� j � c	, where i repre-
sents the number of type-H jobs in service or in queue, and
j represented the number of type-L jobs in service. Note
that min�i� c− j	 represents the number of type-H jobs in
service. Then the state transition equation becomes

�it+1�jt+1�=




�ı̄t+1�̄t�� w. p. �H ;
�ı̄t−1�̄t�� w. p. min�ı̄t�c− ̄t	·�H ;
�ı̄t�̄t−1�� w. p. ̄t ·�L; and
�ı̄t�̄t�� w. p. �c−min�ı̄t�c− ̄t	�·�H

+�c− ̄t�·�L.
(4.1)

These transition equations parallel Equation (3.1). Note
that when ı̄t = 0 the transition to �ı̄t − 1� ̄t� occurs with
probability zero, and when ̄t = 0 the transition to �ı̄t� ̄t−1�
occurs with probability zero. In addition, the transition in
which �it+1� jt+1�= �ı̄t� ̄t� is the result of uniformization at
rate �H + c�H + c�L = 1.
To formulate the LP when �H �= �L we proceed as

before. First, we formulate the infinite-dimensional LP that
explicitly represents states in which there exists a positive
queue length and relaxes the service-level constraint using
a Lagrange multiplier. Then, we characterize the distribu-
tion of the number of type-H jobs in queue as a function
of the states in which all servers are busy and no jobs
are queued. Note that, because �H �= �L, there are now
�c+1� such states in which i+ j = c, and the characteriza-
tion is based on a linear combination of �c+1� geometric
series. Finally, given this characterization, we reduce the
infinite-dimensional LP to a finite-dimensional formulation
and reintroduce the service-level constraint.

4.1. The Infinite-Dimensional LP
When �H �= �L

We can extend the arguments of Lemma 2 to prove analo-
gous results when �H �=�L. More specifically, we again let
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the vector ," be the solution to , = ,M" , ,1 = 1 so that,
for any stationary policy " ∈#, ,"�s�a� is the stationary
probability of being in state s and taking action a. Then we
have Lemma 8.

Lemma 8. Suppose �=�H/�c�H�< 1. Then among type-H
priority policies, there exist stationary, deterministic poli-
cies that are )-optimal. Furthermore, each stationary deter-
ministic policy ":
(i) induces a single, positive recurrent class of states,

and the expected absorption time into that class is finite;
(ii) has limiting state-action frequencies which corre-

spond to the stationary distribution of the induced Markov
chain: limn→�

1
n

∑n−1
t=0 1��st� at�= �s� a�	= ,"�s�a� w.p. 1

∀ s0; and
(iii) has uniformly integrable one-period revenues:∑

s∈S�a∈As
,"�s� a��R�s�a�−)D�s�a��<��

Proof. Please see the appendix. �

Again, parts (i)–(iii) of the lemma allow us to apply
of Altman and Schwartz’s (1991) Theorem 7.1 to demon-
strate that there is a one-to-one correspondence between
stationary policies and feasible solutions to an appropri-
ately defined infinite-dimensional LP. The fact that station-
ary policies are optimal allows us to conclude that an opti-
mal solution to an infinite-dimensional LP finds a )-optimal
policy.
As in §3, we split into two sets the LP constraints that

define the system balance equations. For states in which
i+ j < c, we let K�i�j� def= ��i′� j ′� a� � �i′� j ′� ∈ S� a ∈ A�i′�j ′��
i = 1� j ′ +a = j	 be the set of state-action pairs �i′� j ′� a�
that takes the system from state �i′� j ′� to state �i� j� by
admitting a type-L jobs. For states in which i+ j � c, the
priority of type-H jobs implies that there are no decisions to
be made, and the state transition equations (4.1) completely
determine the behavior of the system. Figure 2 shows the

Figure 2. Transition diagram for states i+ j > c with
c = 2.
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relevant portion of the corresponding state transition dia-
gram for a system with c = 2 servers.
Then we have

max
c−1∑
i=0

c−i−1∑
j=0

c−i−j∑
a=0

a,�i� j� a�

−)
c∑
j=0

�∑
i=c−j+1

d�i+ j− c�,�i� j�0�� (4.2)

s.t.
�c−i−j�+∑
a=0

,�i� j� a�

= �H
∑

�i′�j ′�a�∈K�i−1�j�
,�i′� j ′� a�

+min�c− j� i+1	�H
∑

�i′�j ′�a�∈K�i+1�j�
,�i′� j ′� a�

+ �j+1��L
∑

�i′�j ′�a�∈K�i�j+1�
,�i′� j ′� a�

+ �max�c− i� j	�H + �c− j��L�
× ∑
�i′�j ′�a�∈K�i�j�

,�i′� j ′� a� ∀0� i+ j � c+1�

(4.3)

,�i� j�0�= �H,�i−1� j�0�+ �c− j��H,�i+1� j�0�
+�j+1��L,�i� j+1�0�
+�j�H + �c− j��L�,�i� j�0�

∀ j � c−1� i+ j � c+2� (4.4)

,�i� j�0�= �H,�i−1� j�0�+ c�H,�i� j�0�
∀ j = c� i � 2� (4.5)

�∑
i=0

c∑
j=0

�c−i−j�+∑
a=0

,�i� j� a�= 1� (4.6)

,�i� j� a�� 0 ∀ i� j� a ∈ A�i�j�� (4.7)

Again, whenever Ki =� we define the associated summa-
tion to equal zero.
The formulation is a direct analogue to the infinite

dimensional LP when �H = �L. The objective function
(4.2), the constraint that probabilities sum to one (4.6), and
the nonnegativity constraints (4.7) are straightforward. Bal-
ance constraints when i+ j � c+ 1 (Equation (4.3)) are
also direct analogues. There are now two sets of balance
constraints for the tail of the queue, however. For states in
which j < c and there is at least one type-H job in service,
Equation (4.4) holds; and for states in which j = c and
there are no type-H jobs in service, Equation (4.5) applies.
Note that the last term on the right-hand side of all bal-
ance constraints (4.3)–(4.5) is flow into a state due to uni-
formization.

4.2. The Number in Queue When �H �= �L

To reduce the infinite dimensional problem (4.2)–(4.7) to a
finite LP we must find a finite form for the infinite sets of



Gans and Zhou / 267

balance constraints (4.4)–(4.5) and, as before, we can find
an appropriate set of geometric series to substitute for these
equations. Because there are now �c+1� states associated
with each queue length, the single geometric series of §3
now becomes a set of �c+1� geometric series.
We begin the analysis by restating the balance equations

(4.4)–(4.5) as follows. First, we write the left-hand side
of both equations as ��H +c�H +c�L�,�i� j�0�. Then, we
carry the uniformization terms on the right-hand sides to
the left, equivalently restating the equations as they would
appear in the standard formulation of a CTMC. Finally, we
divide the equations by the remaining coefficients on the
left-hand sides so that we have

,�i� j�0�= p1�j�,�i−1� j�0�+p2�j�,�i+1� j�0�
+p3�j�,�i� j+1�0�

∀ i+ j � c+2�0� j < c� (4.8)

,�i� j�0�= p1�c�,�i−1� c�0� ∀ i+ j � c+2� j = c�
(4.9)

where

p1�j�
def= �H
�H + �c− j��H + j�L

� (4.10)

p2�j�
def= �c− j��H
�H + �c− j��H + j�L

� and (4.11)

p3�j�
def= �j+1��L
�H + �c− j��H + j�L

� (4.12)

Next, for each j we consider the quadratic equation

g�j� z�
def= p2�j�z2j − zj +p1�j�= 0 (4.13)

with roots zj � z
′
j . These roots will become the rates at

which the geometric series converge (or diverge) as the size
of the backlog grows large. From elementary considerations
we can derive the following properties of the roots of the
c+1 equations.
Lemma 9. (i) z0 = �H/�c�H�= � < 1 and z′0 = 1;
(ii) 0< zj < 1< z

′
j for 0< j < c;

(iii) zc = �H/��H + c�L� < 1 and z′c is not defined.
Proof. Please see the appendix. �

It can be shown that, as long as � < 1 so that the sys-
tem is stable, the generating functions associated with c+1
series �,�i� j�0� � i � c− j + 1	 for j = 0� � � � � c-are well
defined in terms of the smaller roots and can be used to
derive the steady state probabilities. The following lemma
summarizes the results.

Lemma 10. Suppose � < 1. Then one of two cases exists.
(i) If �H � �L or �H �= c��H −�L�, then zi �= zj for

i �= j , and for any 0� j � c,

,�c− j+q� j�0�=
c∑
k=j
aj�kz

q
k� ∀ q � 1� (4.14)

where

ac�c =
c∑
a=0
,�0� c−a�a�� (4.15)

aj�j =
j∑
a=0
,�c− j� j−a�a�

+ p3�j�
p2�j�

j+1∑
a=0
,�c− j−1� j+1−a�a�

+ p3�j�zj

p2�j��z
′
j − zj�

∑
l�j+1

aj+1�l
1− zl/zj

− p3�j�z
′
j

p2�j��z
′
j − zj�

∑
l�j+1

aj+1�l
1− zl/z′j

j = 0� � � � � c−1� (4.16)

aj�k =
−p3�j�

p2�j��1− zj/zk��1− z′j/zk�
aj+1�k�

∀ 0� j < k � c� (4.17)

(ii) If �H > �L and �H = c��H −�L�, then zj = 1−
�L/�H�∀j and z′j = c/�c− j��∀j < c. Letting z∗ = 1−
�L/�H , we have

,�c− j+q� j�0�

=
c−j+1∑
k=1

aj�k+j−1

(
q+k−1
k−1

)
z∗q� ∀ q � 1� (4.18)

where aj�k can be computed by taking the �c− j+1−k�th
derivative of fj�z��1− z∗z�c−j+1 and evaluating at 1/z∗.
Proof. Please see the appendix. �

Remark 2. To prove Lemma 10, we extend the balance
Equations (4.8) and (4.9) to include q = 1. This implies
that Equations (4.14) and (4.18) hold for q = 0 as well. For
details, please see the proof of Lemma 10 in the appendix.

Note that the summations
∑
a ,�·� · − a�a� in Equa-

tions (4.15) and (4.16) represent the steady-state probabili-
ties of being in boundary states ��c− j� j� �0� j � c	 after
action. Thus, Lemma 10 allows us to express the tails of
the steady-state distribution of the queue as linear combi-
nations of the after-action probabilities of being in these
boundary states, and it enables us to reduce the infinite
LP representation of the MDP to one with a finite num-
ber of states and constraints. We note that the conditions
assumed in part (i) of the lemma occur almost surely, and
in the remainder of the paper we focus on this case. Simi-
lar results can be derived for case (ii).
More generally, observe that for any fixed j , the tail

distribution of the number-in-system can be described
as the linear combination of c − j + 1 geometric series
with rates zj� � � � � zc. Indeed, the flows detailed in Fig-
ure 2 clearly reflect this recursive structure. For exam-
ple, for the states on the bottom row, in which j = c
type-L and no type-H jobs are in service, the rate of
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decay of the tail, ,�i+1� c�0�= ,�i� c�0�zc or equivalently
,�i + 1� c�0� = ,�i� c�0���H/��H + c�L��, reflects this
structure. Next, flows into states in which j = c−1 type-L
and one type-H jobs are in service have flows in from states
within the same row and from states in the row below
(where j = c). Therefore, the tail decays with a combina-
tion of rates zc and zc−1. As we move from j to j − 1
type-L jobs in service, we add another series, zj−1. Induc-
tively, this holds true for all rows.
This structure clearly holds whenever such a system

is operated under a priority policy that is work conserv-
ing for the high-priority class. The resulting closed-form
expressions—and the calculations that lead to them—are
likely to be useful in contexts beyond the specific system
analyzed in this paper.

4.3. The Finite-Dimensional LP
When �H �= �L

When � < 1 the conditions of case (i) of Lemma 10 hold
almost surely. In this case, the reduction to a finite dimen-
sional LP is straightforward.
We first (numerically) find the roots of p1�j�, p2�j�, and

p3�j� for 0� j � c. Then, for each 0� j � c and i+ j � c
we can use Equation (4.14) to substitute for the ,�i� j�0�s.
This allows us, in turn, to develop closed-form expres-
sions for the terms involving the tail probabilities in Equa-
tions (4.2) and (4.6). More specifically, for the left-hand
side of Equation (4.6), we have

�∑
i=0

c∑
j=0

�c−i−j�+∑
a=0

,�i� j� a�

=
c∑
i=0

c−i∑
j=0

c−i−j∑
a=0

,�i� j� a�+
c∑
j=0

�∑
i=c−j+1

,�i� j�0�

=
c∑
i=0

c−i∑
j=0

c−i−j∑
a=0

,�i� j� a�+
c∑
j=0

�∑
i=c−j+1

c∑
k=j
aj�kz

i+j−c
k

=
c∑
i=0

c−i∑
j=0

c−i−j∑
a=0

,�i� j� a�+
c∑
j=0

c∑
k=j
aj�k

�∑
i=c−j+1

z
i+j−c
k

=
c∑
i=0

c−i∑
j=0

c−i−j∑
a=0

,�i� j� a�+
c∑
j=0

c∑
k=j
aj�k

zk
1− zk

� (4.19)

Similarly, for the second term in the objective function
(4.2), we have

)
c∑
j=0

�∑
i=c−j+1

d�i+ j− c�,�i� j�0�

= )
c∑
j=0

�∑
i=c−j+1

d�i+ j− c�
(

c∑
k=j
aj�kz

i+j−c
k

)

= )
c∑
j=0

c∑
k=j
aj�k

�∑
i=c−j+1

z
i+j−c
k d�i+ j− c�

= )
c∑
j=0

c∑
k=j
aj�kd̃�zk�� (4.20)

Finally, we use Equations (4.14)–(4.17) to substitute for
the infinite sets of constraints (4.4) and (4.5), as well as
the 2�c+ 1� constraints (4.3) for which i+ j equals c or
c+ 1. For the c+ 1 states in which i+ j = c+ 1, Equa-
tions (4.15)–(4.17) can be directly substituted to eliminate
the constraints (4.3). For states in which i+ j = c, we use
Equation (4.14) to modify the constraints Equation (4.3) as
follows:

,�c− j� j�0�
= �H

∑
�i′�j ′�a�∈K�c−j−1�j�

,�i′� j ′� a�

+ �c− j��H,�c− j+1� j�0�
+ �j+1��L,�c− j� j+1�0�
+ �j�H + �c− j��L�

∑
�i′�j ′�a�∈K�c−j�j�

,�i′� j ′� a�

= �H
∑

�i′�j ′�a�∈K�c−j−1�j�
,�i′� j ′� a�+ �c− j��H

c∑
k=j
aj�kzk

+ �j+1��L
c∑

k=j+1
aj+1�kzk

+ �j�H + �c− j��L�
∑

�i′�j ′�a�∈K�c−j�j�
,�i′� j ′� a�� (4.21)

Thus, with the addition of the �c+1��c+2�/2 variables
�aj�k �0 � j � k � c	 we can reduce the infinite LP to a
finite one, and for any fixed )∈ �0���, the optimal solution
to the reformulated LP will find a type-H priority policy
that is )-optimal.
In turn, if we eliminate the Lagrangian term (4.20) from

the objective function and, instead, reintroduce the con-
straint
c∑
j=0

c∑
k=j
aj�kd̃�zk��D

∗� (4.22)

then the optimal solution to the LP will generate a dual
price )∗ for the new constraint. Furthermore, the optimal
solution of the LP will be )-optimal for )∗. Thus, from
Lemma 5 we know that, among type-H priority policies,
the following LP finds a constrained optimal policy:

max
c−1∑
i=0

c−i−1∑
j=0

c−i−j∑
a=0

a,�i� j� a�� (4.23)

s.t.
c−i−j∑
a=0

,�i� j� a�

= �H
∑

�i′�j ′�a�∈K�i−1�j�
,�i′� j ′� a�

+ �i+1��H
∑

�i′�j ′�a�∈K�i+1�j�
,�i′� j ′� a�

+ �j+1��L
∑

�i′�j ′�a�∈K�i�j+1�
,�i′� j ′� a�

+ ��c− i��H + �c− j��L�
∑

�i′�j ′�a�∈K�i�j�
,�i′� j ′� a�

0� i+ j � c−1� (4.24)
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,�c−j�j�0�=�H
∑

�i′�j ′�a�∈K�c−j−1�j�
,�i′�j ′�a�

+�c−j��H
c∑
k=j
aj�kzk+�j+1��L

c∑
k=j+1

aj+1�kzk

+�j�H+�c−j��L�
∑

�i′�j ′�a�∈K�c−j�j�
,�i′�j ′�a�

0� j�c−1� (4.25)

ac�c=
c∑
a=0
,�0�c−a�a�� (4.26)

aj�j=
j∑
a=0
,�c−j�j−a�a�

+ p3�j�
p2�j�

j+1∑
a=0
,�c−j−1�j+1−a�a�

+ p3�j�zj

p2�j��z
′
j−zj�

∑
l�j+1

aj+1�l
1−zl/zj

− p3�j�z
′
j

p2�j��z
′
j−zj�

∑
l�j+1

aj+1�l
1−zl/z′j

∀ 0� j�c−1� (4.27)

aj�k=
−p3�j�

p2�j��1−zj/zk��1−z′j/zk�
aj+1�k

∀ 0� j <k�c� (4.28)

c∑
j=0

c∑
k=j
aj�kd̃�zk��D

∗� (4.29)

c∑
i=0

c−i∑
j=0

c−i−j∑
a=0

,�i�j�a�+
c∑
j=0

c∑
k=j
aj�k

zk
1−zk

=1� (4.30)

,�i�j�a��0 ∀ 0� i+j+a�c� (4.31)

Here, the objective function (4.23) drops the Lagrangian
term (4.20). The c�c+1�/2 constraints (4.24) correspond
exactly to those in Equation (4.3) for which i+j�c−1.
The c constraints (4.25) correspond to (4.21), and the
�c+1��c+2�/2 constraints (4.26)–(4.28) define the aj�k
terms as in (4.15)–(4.17). The service-level constraint
(4.29) follows from (4.22), and the constraint (4.31) that
probabilities sum to one follows from (4.19). Again, the LP
formulation drops one redundant balance constraint, (4.25)
for j=c. (See Puterman 1994, §8.8).
This proves our main result for cases in which �H �=�L.

Theorem 2. Suppose that �<1 and that either �H��L
or �H �=c��H−�L�. If the LP (4.23)–(4.31) is feasible,
then its optimal solution finds a policy that is constrained
optimal among all type-H priority policies.

If the LP is feasible and the dual price of (4.29) )∗>0,
then the optimal solution is )-optimal for )∗. Here, )∗ is
the extra throughput of type-L calls that can be achieved
per unit that the service-level constraint D∗ is relaxed. If

the dual price of (4.29) )∗=0, however, then the service-
level constraint is not tight, and it is optimal to put a type-L
job into service whenever a server becomes idle and there
are no type-H calls in queue.
If the LP (4.23)–(4.31) is not feasible, then there exists

no feasible type-H priority policy. In particular, a type-H
work-conserving policy that never puts type-L jobs into
service is not feasible. This implies that when the LP is not
feasible, the COP itself has no feasible solution.
Note that the LP (4.23)–(4.31) has �c+1��c+2��c+6�/

6+1 variables: �c+1��c+2��c+3�/6 of the variables are
the ,�i�j�a�s, �c+1��c+2�/2 are the aj�ks, and one is the
slack variable in (4.29). Similarly, adding up the constraints
(4.24)–(4.30) we find there are c�c+3� constraints.
We can reduce the size of the LP, however, by eliminat-

ing the variables �aj�k �j �=k	. To do this we first substitute
the right-hand sides of Equation (4.28) for the appropri-
ate aj�ks found in the constraints (4.25)–(4.27). In turn, this
allows us to eliminate the variables �aj�k �j �=k	 and the
constraints (4.28). The result of this substitution reduces
the LP to one with �c+1��c+2��c+4�/6+1 variables and
c�c+5�/2 constraints. (Similar substitution would allow us
to eliminate the aj�js as well.)

4.4. Service-Level Constraints
Based on Delay

Again, we can use Little’s law to formulate occupancy
based equivalents of constraints based on ASA, the average
delay in queue. Suppose the upper limit on expected delay
is �. Then we can define d�q̄�= q̄ so that
c∑
j=0

�∑
i=c−j+1

c∑
k=j
aj�kz

i+j−c
k d�i+j−c�

=
c∑
j=0

c∑
k=j
aj�k

�∑
i=c−j+1

z
i+j−c
k �i+j−c�

=
c∑
j=0

c∑
k=j
aj�k

zk
�1−zk�2

��H�

is the appropriate service-level constraint.
When �H �=�L the distribution of delay becomes more

difficult to characterize. One such constraint that can
be defined exactly in a straightforward fashion, how-
ever, is P�delay>0	. In particular, from PASTA we have
P�delay>0	⇔P�i+j�c	. Then if � is an upper bound
on the probability of delay upon arrival, we can define

1− ∑
i+j+a<c

,�i�j�a���

as the service-level constraint.

5. DISCUSSION

For cases in which �H=�L the results are fairly complete.
We have been able to demonstrate the optimality of ran-
domized threshold reservation policies and to reduce the
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problem of finding the optimal policy parameters, i∗ and p∗,
to computation that grows (pseudo) linearly with the num-
ber of servers.
Together, the small number of parameters and the ease of

their computation make these policies attractive to imple-
ment in call centers. In these environments, estimated
arrival rates and staffing levels change every 15 or 30 min-
utes. Even for very large call centers, new policy parame-
ters can easily be calculated and implemented within this
timeframe.
At the same time, limiting results for the case of �H=�L

would be of further theoretical interest and would allow
for closed-form expressions for (approximately) optimal
threshold values. We note that §3.4’s characterization of
the optimal (deterministic) threshold as the inverse of the
cumulative distribution of a Poisson random variable may
be of use in this respect.
For the case in which �H �=�L� we view our results as

promising. The optimal solution to the LP can be used
to calculate both the optimal actions and the steady-state
distribution of the induced Markov chain. (See Puterman
1994, §8.8.) Although we have proved only the optimal-
ity of LP (4.23)–(4.30) among type-H priority policies, we
believe that they should perform quite well on an absolute
basis.
In this case, the computational effort required to calcu-

late optimal policy parameters grows substantially, how-
ever. For example, for a pool of 100 CSRs, a reduced ver-
sion of the LP, which eliminates the aj�ks, requires roughly
176,850 variables and 5,150 constraints. Furthermore, the
LP’s optimal solution describes a routing policy with 5,250
actions, one for each state of the MDP.
Although this size of problem is well within the capa-

bilites of current LP solvers, for large call centers these
types of policies may be difficult to implement. Therefore,
additional work is warranted to develop effective policies
that are less burdensome to compute and implement.
Indeed, we believe that further characterization of the

structure of optimal (type-H priority) routing policies is
possible and would be of both theoretical and practical
interest. We note that the reduced state space S=�0�
i+j�c	 used by the LP (4.23)–(4.30) corresponds to that
of a loss system. Recent work on related loss systems
such as, Altman et al. (1998), Savin et al. (2000), and
Örmeci et al. (2000), suggests that )-optimal routing poli-
cies for our system may be further characterized as state-
dependent versions of a simple threshold policy. That is,
given i type-H jobs are in service, there is a threshold num-
ber j∗�i� such that it is optimal to put �j∗�i�−j�+ type-L
jobs immediately into service.
These state-dependent threshold policies require O(c2)

decision variables, thereby reducing the computational
complexity by an order of magnitude. The policies them-
selves are also far easier to implement. They require only
c+1, rather than c�c+1�/2, parameters; for each i there is
just one j∗�i�.

We also note that in systems in which at most one job
may be routed at a time, this same order-of-magnitude
reduction in the number of decision variables occurs. In
these cases, for each of the O(c2) system states in which
a job may be routed there are two decision variables. One
represents the action of routing a type-L job (upon entry to
the state) and the other the action of doing nothing.
Finally, length considerations for the paper have pre-

cluded us from including numerical investigations of the
performance of the policies we have derived. It will be
interesting to see how the throughput of type-L jobs
changes with parameters such as the size of the system, c,
and the relative load imposed by type-H calls, �, as well as
by differences in the processing rates of the two types of
work, �H and �L. It will also be interesting to understand
how violations of the assumptions concerning stationarity
and exponentiality affect the performance of the policies.

APPENDIX

The appendix can be found at the INFORMS home page
in the Operations Research online collection at �http://
or.pubs.informs.org/Pages/collect.html�.
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