
On the Incomplete Results for the Multi-Server Slow

Server Problem∗

Francis de Véricourt Yong-Pin Zhou

Fuqua School of Business Business School

Duke University University of Washington

Durham, NC 27708 Seattle, WA 98195-3200

U.S.A. U.S.A.

(p) 1-919-660-7818 (p) 1-206-221-5324

(f) 1-919-923-4924 (f) 1-206-543-3968

fdv1@duke.edu yongpin@u.washington.edu

August 2005

Abstract

In this note, we show that existing results for optimal routing policies in the slow

server problem with more than two heterogeneous servers are incomplete.

Key Words: Multiple Heterogeneous Servers, Slow Server Problem, Call Centers

∗Short Title: Multi-Server Slow Server Problem

1



1 Introduction

The multi-server slow server problem refers to a queueing control problem in which the job

arrival follows a stationary Poisson process with rate λ, and there are K heterogeneous ex-

ponential servers with rates µ1 ≥ µ2 ≥ . . . ≥ µK. The objective is to find a non-preemptive

routing policy that minimizes the long-run average time in the system. A particular inter-

esting application is to the call routing problems that occur in contact centers where the

service speed varies significantly among the customer representatives. For recent work see

for instance Armony [1] or de Véricourt and Zhou [2].

The optimal routing policy for the special case of K = 2, the threshold policy, has been

extensively studied (e.g. Larsen [5], Larsen and Agrawala [6], Hajek [3], Lin and Kumar

[7], Walrand [10], and Koole [4]), where the faster server is always preferred, and the slow

server will be used only when the faster server is busy and the number of jobs in the queue

exceeds a certain threshold policy. The condition of two servers limits the application of

such models, however. In many instances, it is natural to use this model with more than

two servers.

Results concerning the optimal policy for K ≥ 3 are much more challenging to obtain.

The growing dimensionality of the underlying state space accounts for the difficulty. We-

ber [11] uses a coupling argument to show that whenever a job is routed, it should always

be routed to the fastest available server; but he only provides a conjecture that the opti-

mal routing follow a state-dependent threshold policy. Recently, two papers claim to have

proved the optimality of the state-dependent threshold policy for K ≥ 3. The first one,

Rykov [9], uses value iteration to show that the optimal value function satisfies monotonicity

properties. The second one, Luh and Viniotis [8] uses a Linear Programming formulation

and sample path analysis. We show in this note, however, that the results in both papers

are incomplete. We hope that our observations should motivate future research in the field

to tackle this fundamental queuing control problem.

2 Value Iteration Approach

Rykov [9] assumes a finite system with K servers and N spaces for jobs including those in

service. He denotes by x = (q, d1, . . . , dK), the state of the system where q is the number

2



of jobs waiting in the queue and dj is the state of Server j (dj = 1 if Server j is busy,

and dj = 0 otherwise). He also introduces the sets of indices J0(x) = {j : dj(x) = 0},
J1(x) = {j : dj(x) = 1} and A0(x) such that,

A0(x) =

{
J0(x) ∪ {0} for x with q(x) < N −K

J0(x) for x with q(x) = N −K
,

He then consider the shift operators S0 and Sj,

S0x = x + e01{q(x)<N}

Sjx = x + ej1{j∈J0(x)}

where ej is the (K +1)-dimensional vector whose jth coordinate (beginning from 0th) is one

and all others are zeros. Their respective inverse operators are denote by S−1
0 and S−1

j (with

S−1
0 x = x if q(x) = 0 and S−1

j x = x if j ∈ J0(x)).

S−1
0 x = x + e01{q(x)<N}

S0x = x + ej1{j∈J0(x)}

Based on these definitions, the following operators are introduced:

T0w(x) = max[w(Skx) : k ∈ A0(x)] (1)

Tjw(x) =





T0w(S−1
0 S−1

j x) for j ∈ J1(x), q(x) > 0,

w(S−1
j x) for j ∈ J1(x), q(x) = 0,

w(x) for j ∈ J0(x).

(2)

He then formulates the problem as a Markov Decision Process and derives the following

optimality equations (equation 9),

w(x) = r(x) + λT0w(x) +
∑

1≤j≤K

µjTjw(x) = Bw(x),

where w(x) is the revenue function, and T0 and Tj are defined in (1) and (2).

Rykov’s proof depends on showing that the value iteration preserves the following two

properties of the value function:

(i) the function is non-increasing, and

(ii) the function has monotone increments.

3



That is, he must show that T0, Tj, and B preserve (i) and (ii). Rykov [9] shows that the

operator B preserves properties (i) (Theorem 2) and (ii) (Theorem 3), if T0 and Tj preserve

(i) and (ii).

Therefore, he also needs to show that operators T0 and Tj preserve properties (i) and

(ii). He provides detailed proofs for T0 (Lemmas 1 for (i) and Lemma 2 for (ii)), and

deduces directly that Tj also preserves these properties. We show in the following that such

deductions are not straightforward and his proof is incomplete.

3 Tj and Lemma 1

For Theorem 2 to be true, operators Tj,∀j, needs to preserve property (i) (Lemma 1), as

stated in the Remark on Page 397. In particular, if h(·) is a non-increasing function such

that h(Sjx) ≤ h(x) for all j ∈ J0(x), then we need to show that Tih(Sjx) ≤ Tih(x) for all i

and j ∈ J0. However, for i = j,

Tjh(Sjx) = T0h(S−1
0 x)

= max(h(S−1
0 Slx) : l ∈ A0(x))

≥ h(S−1
0 S0x)

= Tjh(x).

Unless Tjh(Sjx) = Tjh(x) for all x and j such that j ∈ J0(x) and N −K > q(x) > 0, which

is unlikely to be true with this formulation (there are strictly more jobs in the system in

state sjx than in State x), Tj does not satisfy Lemma 1.

One approach to fixing this problem is to re-formulate the problem by allowing the

decision maker to route multiple calls at the same time (see the definition of T̂0 below). Note

that T0 makes the best single routing in state S0x, and T̂0 makes the best multiple routings

in state x. Since in steady state it is optimal to route at most one job at a time (see de

Véricourt and Zhou [2]), we have T0w(x) = T̂0w(S0x) in the recurrent region of the state

space (elsewhere, T0w(x) ≤ T̂0w(S0x)). We then have the following optimality equations

B̂w(x) = r(x) + λT̂0w(S0x) +
∑

j

µjT̂jw(x) = w(x),

4



where B̂ is the optimal operator and the operators T̂0 and T̂j,∀j, are recursively defined as:

T̂0w(x) =

{
w(x) if q(x) = 0 or J0(x) = ∅,
min{T̂0w(SkS

−1
0 x), w(x) | k ∈ A0(x)} if q(x) > 0 and J0(x) 6= ∅,

and

T̂jw(x) =

{
T̂0w(S−1

j x) for j ∈ J1(x)

w(x) for j ∈ J0(x)
.

It is then possible to show that the optimal operator B̂ propagates non-increasing func-

tions (see Theorem 1 in de Véricourt and Zhou [2], which shows this property for their

corresponding cost minimization problem).

4 Tj and Lemma 2

Similarly, for Theorem 3 to be true operators Tj needs to preserve Property (ii), monotone

increments (Lemma 2). That is, for k = arg max{µl : l ∈ J0(x)}, ∆0kT0w(x) = T0w(S0x) −
T0w(Skx) is non-increasing in x if ∆0kw(x) is non-increasing in x. (The fact that k is equal

to arg max{µl : l ∈ J0(x)} is used in cases 2 and 4 of the proof of Lemma 2 in [9].)

Consider then j such that µj > µk. From the definition of k, j belongs to J1(x). For x

such that N −K > q(x) > 0, ∆0kTjw(x) = ∆0kT0w(S−1
0 S−1

j x). If we could apply Lemma 2,

then the desired result would be immediate. However server j is now free in state S−1
0 S−1

j x

(i.e. j ∈ J0(S
−1
0 S−1

j x)) and we have k 6= arg max{µl : l ∈ J0(S
−1
0 S−1

j x)} = j. Therefore,

Lemma 2 cannot be applied to ∆0kT0w(S−1
0 S−1

j x), and there is no guarantee that Tj satisfies

Lemma 2.

Unfortunately, allowing multiple routing at the same time, as we proposed for Lemma 1,

does not fix this problem, and the proof still needs to be completed.

5 Sample Path Approach

In their paper, [8], Luh and Viniotis formulate the finite-horizon routing problem as a Linear

Program. Then they use a sample path argument (similar to a coupling argument) to show

that the optimal policy is a state-dependent threshold policy: for any policy that is not

5



the state-dependent threshold policy, one can construct a corresponding state-dependent

threshold policy that is both feasible (for the Linear Program) and has a better objective

function value. Specifically, they show in Lemma 4 that it is optimal to always route a job

to the fastest server whenever possible. Then Lemma 4 is used in later proofs to show the

optimality of threshold policy.

Since the statement of Lemma 4 (esp. the phrase “whenever possible”) is vague, we show

in the following that either the proof of Lemma 4 is incomplete, or it does not cover all the

possible cases so that it cannot be used in the later proofs. In either case, as it stands, the

results in Luh and Viniotis [8] are also incomplete.

Luh and Viniotis use the following Linear Program (call it LP) in the proofs of both

Lemmas 4 and 5:

max{vi
j(ω

j)} c · v <20>

A · v ≤ b(x0) <21>

0 ≤
∑j

k=l∗(ωj−1) vi
k(ω

k) ≤ 1 <21a>

where 1 ≤ i ≤ N,ωj = ωj−1D/ i.

Here, ωj is a sample path of j uniformized events and all the vi
js are the decision variables:

vi
j = 1 represents allocating a call to server i at the jth uniformized event, and vi

j=0 represents

not allocating a call to server i at the jth uniformized event (for more details see [8]).

The equations are numbered as in [8] except for <21a> which is not numbered in the

original paper (note that constraints <21a> plays a crucial role in the proof). Constraints

<21> correspond to the constraint that the queue cannot be negative. Constraints <21a>

represent the fact that the state of a server cannot be negative before an action and cannot

be overfull after an action.

Based on LP, Luh and Viniotis then show Lemma 4 which states that “there exists an

optimal policy that activates faster than slower servers, whenever possible”. To prove this

result, the authors establish that, if server i is faster than server j (i.e., µi > µj), then the

corresponding costs in the objective function are such that ci
k(ω

k) > cj
k(ω

k). Moreover, they

consider a vector of decision variables s̄ that is feasible for the LP, and a corresponding

vector s that differs from s̄ only in one component k for which s̄ allocates a call to server j

6



while s allocates a call to server i:

s̄i
k(ω

k) = 0 s̄j
k(ω

k) = 1, (3)

si
k(ω

k) = 1 sj
k(ω

k) = 0. (4)

Decisions for all other events are the same (s̄i
l(ω

l) = si
l(ω

l), l 6= k). The authors then argue

that, since s̄i
k(ω

k) and sj
k(ω

k) appear together in every constraint of LP, s is also feasible

for LP (it is indeed clear that they appear together only in <21>). Because s gives a larger

objective function value than s̄, the authors deduce then that s is a better solution.

The proof of Lemma 4 does not check that vector s, as constructed in (3) and (4), also

satisfies constraints <21a> of LP. As a result s is not necessarily feasible for LP. Actually,

there are many vector s̄ that satisfy <21>, <21a>, and (3), but for which the associated s

given by (4) is not feasible for <21a>. For example, let s̄ satisfies <21>, <21a>, and

s̄i
k(ω

k) = 0, s̄j
k(ω

k) = 1, and s̄i
k+1(ω

kA) = 1. (5)

Then the s constructed according to (4) should satisfy

si
k(ω

k) = 1, sj
k(ω

k) = 0, and si
k+1(ω

kA) = 1. (6)

The s in (6) satisfies <21> but it clearly does not satisfy <21a>. Intuitively, Luh and

Viniotis’s proof states that if a policy corresponding to s̄ assigns a job at time k to server j

instead of server i, then one can do better by assigning this job to server i instead of server

j. This intuition is correct, but the proof fails to consider all the cases that may occur after

time k. It only considers the cases in which the new assignment policy (s) can be completely

coupled with the original assignment policy (s̄) after time k. The example we give above

is one in which s̄ assigns a job to server j at time k, and assigns another job to server i at

time k +1 when the event at time k +1 corresponds to an arrival. The policy corresponding

to s should assign a job to server i (instead of j) at time k, but obviously it cannot assign

another job to server i at time k + 1 as s̄ does.

Therefore, Lemma 4 does not cover all the possible sample paths. So it is flawed. Of

course, the phrase “whenever possible” in the statement of Lemma 4 can be interpreted as

“whenever feasible” so that the example we construct above does not apply. In this case,

Lemma 4 is correct but since it does not cover all the cases, it cannot be used in the later

proofs.

7



6 Conclusion

The slow server problem with more than 2 heterogeneous servers is still an open problem

with important applications. Rykov [9] and Luh and Viniotis [8] have proposed different but

incomplete approaches to tackle this issue. Despite these flaws, their approaches are quite

insightful, and they have sparked some renewed interest in the slow server problem.

Acknowledgment

The authors are grateful to Ger Koole, Paul Luh, and Vladimir Rykov for their valuable

comments.

References

[1] M. Armony, Dynamic routing in large-scale service systems with heterogenous servers,

Working Paper, NYU (2004).

[2] F. de Véricourt and Y.-P. Zhou, Managing response time and service quality in a call

allocation problem, Forthcoming Operations Research (2004).

[3] B. Hajek, Optimal control of two interacting service stations, IEEE Transactions on

Automatic Control 29 (1984) 491-499.

[4] G. Koole, A simple proof of the optimality of a threshold policy in a two-server queueing

system, Systems & Control Letters 26 (1995) 301-303.

[5] R. Larsen, Control of multiple exponential servers with application to computer systems,

Ph.D. Dissertation, Department of Computer Science, University of Maryland, College

Park, 1981.

[6] R. Larsen and A. K. Agrawala, Control of a heterogeneous two-server exponential

queueing system, IEEE Transactions on Software Engineering 9 (1983) 522-526.

[7] W. Lin and P.R. Kumar, Optimal control of a queueing system with two heterogeneous

servers, IEEE Transactions on Automatic Control AC-29 (1984) 696-703.

8



[8] H. Luh and I. Viniotis, Threshold control policies for heterogeneous server systems,

Mathematical Methods of Operations Research 55 (2002) 121-142.

[9] V.V. Rykov, Monotone control of queueing systems with heterogeneous servers, Queue-

ing Systems 37 (2001) 391-403.

[10] J. Walrand, A note on “Optimal control of a queueing system with two heterogeneous

servers”, Systems & Control Letters 4 (1984) 131-134.

[11] R. Weber, On a conjecture about assigning jobs to processors of differing speeds, IEEE

Transactions on Automatic Control 38 (1993) 166-170.

9


