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Abstract

We develop and test an integrated forecasting and stochastic programming approach to workforce man-

agement in call centers. We first demonstrate that parametric forecasts, discretized using Gaussian quadra-

ture, can be used to drive stochastic programs whose results are stable with relatively small numbers of

scenarios. We then extend our approach to include forecast updates and two-stage stochastic programs with

recourse and provide a general modeling framework for which recent, related models are special cases. In

our formulations, the inclusion of multiple arrival-rate scenarios allows call centers to meet long-run aver-

age quality-of-service targets, while the use of recourse actions help them to lower long-run average costs.

Experiments with two large sets of call-center data highlight the complementary nature of these elements.

1 Introduction

Inbound telephone call centers handle service requests that originate from customers calling in, and they use

a hierarchical staffing and scheduling system (Gans et al. 2003, Akşin et al. 2007). The process begins with

forecasts of the arrival rate of calls over a planning horizon for scheduling agents, which may range from a day

to several weeks. The forecasts then drive queueing models that determine how staffing levels affect system

congestion over short, 15-minute to 1-hour, time intervals within the horizon. The queueing formulae determine

staffing levels over the short time intervals, and, in turn, constraints to be met as the call center develops staff

schedules. A rostering process then matches employees with required schedules. Through this sequence, the

forecasted arrival process of calls to the center drives employee schedules.

Traditionally, call centers assume that arrival-rate forecasts are correct. They use point forecasts of arrival

rates to determine staffing levels and, in turn, deterministic staffing-level requirements to drive scheduling

decisions. But arrival-rate forecasts are often not perfect, and when realized arrival rates do not match those
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forecasted, system performance naturally deviates from managers’ expectations. Higher-than-expected arrival

rates lead to understaffing, which drives up waiting times and abandonment rates, while unexpectedly low

arrival rates result in overstaffing and the “overservice” of customers.

Work within the statistics and operations management literatures has begun to address the problem of how

call centers – and other high volume service businesses – can better manage the capacity-demand mismatch

that results from arrival-rate uncertainty. Earlier papers have explored the impact of arrival-rate uncertainty

(Grassman 1988, Chen and Henderson 200, Jongbloed and Koole 2001, Ross 2001), and more recent work has

explicitly modeled arrival-rate uncertainty and its effects (Robbins et al. 2006, Steckley et al. 2009). Statistical

models in Whitt (1999), Avramidis et al. (2004), Brown et al. (2005), Weinberg et al. (2007), Shen and Huang

(2008), Aldor-Noiman et al. (2009), Taylor (2012), Ibrahim et al. (2012), Ibrahim and L’Ecuyer (2013), Kim

and Whitt (2014), Oreshkin et al. (2014), and others have sought to better characterize the distribution of arrival

rates, by time of day, as they evolve.

Operations management papers account for uncertainty when making staffing and scheduling decisions.

Maman (2009) extends many-server heavy-traffic limits to explicitly account for an arrival-rate distribution.

Papers by Harrison and Zeevi (2005), Bassamboo et al. (2005), Bassamboo et al. (2006), Bassamboo and Zeevi

(2009), Bertsimas and Doan (2010), Gurvich et al. (2010), Zan et al. (2013), and Ding and Koole (2014)

have used stochastic programming (Birge and Louveaux 1997) and related approaches to account for arrival-

rate uncertainty when making short-run staffing and call-routing decisions. Jouini et al. (2010) propose an

alternative on-line formulation that does not use arrival rate information at all. More recent papers, such as

Robbins et al. (2010), Robbins and Harrison (2010), and Liao et al. (2012) extend the stochastic programming

framework to employee scheduling, and Mehrotra et al. (2010) uses mid-day recourse actions to adjust pre-

scheduled staffing levels in reaction to realized deviations from arrival-rate forecasts.

While each of these streams of research has made progress in addressing elements of the problems caused

by arrival-rate uncertainty, none addresses the whole problem. Statistical papers dedicated to forecasting have

used traditional measures of fit for realized arrival counts to assess forecast quality. They have not, however,

considered the downstream cost and quality of service (QoS) implications of arrival-rate forecast errors. Fur-

thermore, the high dimensionality of within day arrival-rate profiles makes many of the more complex methods

difficult to use in the context of stochastic scheduling algorithms. While operations management papers have

looked carefully at the cost and QoS implications of stochastic scheduling methods, they have not considered

how to integrate sophisticated statistical forecasting methods to better capture the nature of arrival-rate uncer-

tainty. In turn, their measures of cost and QoS improvements may not accurately reflect the gains that can be

made when better forecasting and scheduling methods are used in concert.

In this paper we integrate these statistical and operations-management approaches, marrying the use of
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relatively sophisticated forecasting methods with stochastic programming formulations of call-center staffing

and scheduling problems. Our work is data driven, and we use two large sets of call-center data to evaluate

the elements of our approach. A first set of empirical results shows that parametric forecasting methods can

be used to more efficiently solve stochastic scheduling problems that have traditionally been solved using

sampling-based scenarios. A second set of empirical tests highlights the complementary roles that the use

of scenario-based stochastic programming and the use of recourse actions can play in addressing arrival-rate

uncertainty. More specifically, we make the following contributions.

In §2 we develop low-dimensional, parametric arrival-rate forecasts and use Gaussian quadrature to trans-

form their continuous distributions into discrete scenarios (Miller and Rice 1983). We apply this scenario gen-

eration scheme to demonstrate that only a small number of scenarios is needed to capture the bulk of arrival-rate

uncertainty in simple, one-stage stochastic workforce-scheduling problems.

Because scenarios are based on arrival rates, while updates are based on the realization of arrival counts

rather than rates, the development of forecasts suitable for two-stage stochastic programs with recourse is not

trivial. Nevertheless, in §3 we are able to use our parametric approach as the basis of such a procedure.

We first develop a Bayesian procedure that uses realized arrival counts in the early stage of the planning

horizon to derive an ex post update of the forecast distribution for arrival rates during the later stage. In turn,

the forecast update becomes an input to a second stochastic program that revises the initial staffing plan in a

manner that lowers costs while maintaining QoS performance.

While the ex post updating scheme above allows managers to react to forecast errors, it does not affect

initial schedules that are constructed without regard for the potential for later schedule revisions. To account

for this possibility, we use our problem’s Gaussian structure to develop two-stage forecasts that include a priori

anticipation of potential forecast updates. These forecasts, in turn, drive two-stage stochastic programs whose

initial schedules are able to further lower costs by exploiting the relative expense of anticipated recourse actions.

In Section 4 we test these joint forecasting-scheduling schemes using two sets of call center data. In both

sets of tests we find that the use of multiple scenarios helps to stabilize system performance and leads to average

abandonment rates that match a priori targets, while the use of recourse actions helps to systematically lower

average costs.

More broadly, our work provides a general scheme for the formulation and solution of joint forecasting-

scheduling models that support workforce management, a framework within which previous, related work

represents special cases. Our results show that effective solutions to these problems can take the form of

relatively simple, Gaussian arrival-rate forecasts married with computationally tractable stochastic programs

with recourse. This approach explicitly accounts for arrival-rate uncertainty, as well as the ability to change

scheduling decisions in response to forecast updates.
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2 Parametric Forecasts for Stochastic Programming

In this section, we formulate and solve simple, single-stage arrival-rate forecasting and workforce scheduling

models for call centers. While the scheduling model is nearly identical to that in Robbins and Harrison (2010),

our approach to scenario generation uses Gaussian quadrature to discretize continuous forecast distributions and

differs from the sampling schemes that are common to that paper, Bertsimas and Doan (2010), and others. This

section’s empirical tests show that, in fact, our Gaussian quadrature approach can greatly reduce the numbers

of scenarios needed to stably solve these stochastic programs.

We also show that, for measures of QoS that are convex in the number of agents staffed during a given

interval, we can further reduce the nonlinear constraints that model system performance across multiple scenar-

ios into a single set of piecewise linear constraints. The transformation does not rely on the method by which

scenarios have been generated – through discretization or via sampling – and allows us to efficiently perform

tests that compare the two methods on problems with large numbers of scenarios. The ability to work with few

scenarios, as well as to collapse large numbers of scenarios, when warranted, becomes particularly important

when solving the two-stage stochastic programs with recourse that we analyze in §3.

2.1 Parametric Forecast

Our historical data comprise a D × I matrix of arrival counts, γ = (γdi), where d ∈ D = {1, . . . , D} indexes

days and i ∈ I = {1, . . . , I} indexes (30-minute) intervals within each day. We refer to the dth row of γ,

denoted as γd = (γd1, . . . , γdI), as the intraday call volume profile of the dth day.

We model the distribution of each count, γdi, as a Poisson random variable (RV), Υdi, with an uncertain

arrival-rate Λdi. Denote Λd = (Λd1, . . . ,ΛdI) as the dth intraday arrival-rate profile. We are interested in

forecasting ΛD+h, the intraday arrival rate profile for a future day D+h, where h is a positive integer. Because

the underlying rate profiles are uncertain and unobservable, however, our forecasting model uses the count

profiles {γ1, . . . , γD} to form an I-dimensional time series that we use for forecasting.

We begin by using a square-root transformation to stabilize the variance of the count data and approxi-

mately normalize the observations. Together, these features improve forecast accuracy and make the trans-

formed counts amenable for standard statistical modeling. The proof of the following proposition can be found

in Brown et al. (2010).

Proposition 1 (Brown et al. 2010) Suppose an RV Υ has a Poisson distribution with deterministic arrival rate

λ. As λ→∞, Y ≡
√

Υ + 1/4 has a Gaussian distribution with mean
√
λ and variance 1/4.

Thus, instead of directly modeling the call volumes γdi, we build our forecasting model using the square
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root of the call volumes. Such a square-root transformation has been used in the call center forecasting lit-

erature (Brown et al. 2005, Weinberg et al. 2007, Shen and Huang 2008). We then view the square-root-

transformed count distributions, Ydi ≡
√

Υdi + 1/4 (d ∈ D, i ∈ I), as driven by a hidden arrival-rate process:

ωd − αld = β(ωd−1 − αld−1
) + ηd, ηd ∼ N(0, φ2),

ϑld,i ≥ 0,
I∑
i=1

ϑld,i = 1,

√
Λdi = ωdϑld,i,

Ydi =
√

Λdi + εdi, εdi ∼ N(0, σ2).

(1)

Here ωd is the daily total arrival rate (on the square-root scale), ld is day-of-the-week of day d, αld is a daily

(zero-centering) adjustment for the day of the week ld, ϑld,i is the fraction of the daily arrival rate that falls

over time interval i on day of the week ld, and Λdi is the arrival rate for interval i on day d, represented on

the natural scale. From Proposition 1, we know that the square-root counts Ydi have (approximately) Gaussian

distributions with mean
√

Λdi and variance σ2 ≈ 1/4.

Our forecasting model (1) can be understood as follows. First, on the square-root-transformed scale, the

daily total rate (ωd) follows an AR(1) (order-one autoregressive) time series model, adjusting for the day of the

week (αld). We assume that the AR(1) daily rate process {ωd} is Gaussian, which implies that, for a given day,

d, the within-day rates, {ωdϑld,i | i = 1, . . . , I}, are Gaussian as well. Second, each day of the week has its

own intraday arrival proportion profile, (ϑld,1, . . . , ϑld,I), and the square-root arrival rates
√

Λdi are assumed

to follow a multiplicative model. Third, arrival rates are hidden, and we observe only square-root scaled arrival

counts, rather than rates. Remark 1 in Online Supplement A describes how the use of a daily total arrival rate,

together with an intraday arrival-rate profile, reduces forecast dimensionality.

Thus, we model the arrival-rate process as a hidden, Gaussian, AR(1) process, with observed counts that

reflect Gaussian measurement errors. This representation is commonly called a Gaussian state space model

and can be estimated using maximum likelihood methods (Douc et al. 2011).

We use observed square-rooted call volumes, {ydi}, to generate simple parameter estimates that are unbiased

and have variance that is only slightly greater than that of computationally more intensive maximum likelihood

estimates (Brown et al. 2005),

ω̂d =
∑
i

ydi, α̂ld =

∑
{d′:ld′=ld}

∑
i yd′i

#{d′ : ld′ = ld}
, ϑ̂ld,i =

∑
{d′:ld′=ld}

yd′i∑
{d′:ld′=ld}

∑
i yd′i

, d = 1, . . . , D; i = 1, . . . , I.

(2)

We then estimate the autoregressive coefficient β̂ via linear regression. Estimates for the two variance parame-

ters σ̂2 and φ̂2 can be obtained from the residual sum of squares.

Once Model (1) is estimated, we use it to obtain the h-day-ahead forecast distribution, from day D for day
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D+h, which we denote as ωD,D+h and characterized below in Proposition 2.

Proposition 2 The distribution of ωD,D+h, h ≥ 1, is normal with mean ζD,D+h and variance ψ2
D,D+h:

ζD,D+h ≡ α̂lD+h
+ β̂h(ω̂D − α̂lD) and ψ2

D,D+h ≡ φ̂2
h−1∑
d=0

β̂2d. (3)

Thus, the forecast mean for day D+h is the same as the estimate for day D’s normalized mean, ω̂D− α̂lD , with

an adjustment for h days of AR(1) innovations, β̂h, and the day of the week on day D+h, α̂lD+h
. The forecast

variance reflects the estimated variance associated with h days of AR(1) innovations, φ̂2
h−1∑
d=0

β̂2d.

We define ΛD,D+h,i as the day-D forecast for ΛD+h,i. Observing from (1) that ΛD,D+h,i =
(
ωD,D+hϑlD+h,i

)2,

the forecast distributions for the arrival rates in intervals i ∈ {1, . . . , I} of dayD+h follow easily from ωD,D+h.

2.2 Gaussian Quadrature for Scenario Generation

To simplify notation, we now drop the day subscript in ωd, ϑld,i and Λd,i, and consider an arbitrary day. The

uncertain arrival rate during the ith time period satisfies

Λi = (ωϑi)
2 (4)

where ω has a (forecast) distribution that is Gaussian with mean ζ and variance ψ2. Note that, if we are at day

D and are forecasting h days ahead, the mean and variance should be replaced by ζD,D+h and ψ2
D,D+h in (3).

To account for the uncertainty of Λi, recent papers have used stochastic programs with scenarios generated

via random sampling from the forecast distribution (Bertsimas and Doan 2010, Robbins et al. 2010, Gurvich

et al. 2010, Robbins and Harrison 2010). It is well known, however, that a large number of scenarios may be

needed for the sampling approach to be effective (Shapiro and Philpott 2007, §2.2).

In this paper, we use Gaussian quadrature to derive a discrete approximation, ω∗, for ω, where ω∗ = ωk

with probability pk, k ∈ K = {1, . . . ,K}, and ω∗ and ω have identical first 2K − 1 moments. Given these ωks

and pks, the relation (4) naturally leads to the discrete approximation of Λi as

Λ∗i = λik ≡ ω2
kϑ

2
i with probability pk,

for k ∈ K. Details of the discretization procedure can be found in Miller and Rice (1983). The specific

expressions for our discretized Gaussian forecast distribution are provided in Online Supplement B.

Observe that (1) and (4) imply that, for all time periods within a given day, arrival-rate uncertainty is essen-

tially only driven by the one-dimensional random scaling factor ω. Thus, we are able to use Gaussian quadrature

efficiently for a one-dimensional distribution and avoid the usual “curse of dimensionality” problem.
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2.3 Stochastic Programming Formulation

In the retail banking setting from which we have collected data, there is no explicit customer waiting time or

abandonment cost. Rather, these types of call centers often minimize staffing costs, subject to explicit QoS

constraints. In this paper we impose a 3% limit on the expected fraction of incoming calls that abandon before

service, a QoS limit that can be regularly attained in larger, well-run call centers.

Let T be the length of the planning horizon, which may range from one day to several weeks. In the context

of the mathematical programs we solve in this section, we fix T to be one day (i.e. T = I), but in practice it

can exceed one day. As before, I = {1, . . . , I} is a set of equally-divided subintervals within a day.

Let J = {1, . . . , J} be the set of all feasible work schedules, each of which dictates which intervals within

the planning horizon an agent answers calls. For interval i ∈ I and schedule j ∈ J ,

aij =

 1, if schedule j ∈ J has an agent answer calls during interval i ∈ I, and

0, otherwise.

We let cj be the cost of assigning an agent to schedule j. Costs include hourly wages and overtime pay, if

the schedule requires it. Depending on the setting, costs may or may not include a prorated share of bene-

fit payments. The principal decision variables are the numbers of agents to assign to the various schedules:

{xj | j ∈ J }.

Recall that λik is the arrival-rate forecast during interval i ∈ I under scenario k ∈ K, which occurs with

probability pk. Observe that, whenK = 1, then pk = 1, and the stochastic program with one scenario collapses

to become a traditional, deterministic workforce-scheduling integer program (IP). For i.i.d. scenarios based on

sampling, each scenario, k, occurs with equal probability pk = 1/K and is determined by sampling ω and then

using the relation (4) to determine the λiks.

In any given interval, i, and scenario, k, our stochastic program determines the quality of service experi-

enced by arriving customers by using a stationary measure of performance from standard queueing models. In

particular, in this paper we track customer abandonment as the measure of QoS and use results from Mandel-

baum and Zeltyn (2007) that characterize the stationary behavior of the M/M/n+M (Erlang-A) model. Given

Poisson arrivals of constant rate λ, i.i.d. exponentially distributed service times with mean 1/µ, i.i.d. exponen-

tially distributed times until customer abandonment (sometimes called patience) with mean 1/θ, and n servers,

the paper provides explicit expressions for the calculation of the fraction of arriving customers that abandon

before being served, f(λ, µ, θ, n). We include these expressions in Online Supplement C.

In our context, the arrival rate during period i under scenario k is λik, and the number of agents on hand

during interval i is ni =
∑

j∈J aijxj . Together with µ and θ they determine the expected number of customers

abandoning during period i under scenario k, λikf(λik, µ, θ, ni). Green et al. (2001) call this the stationary

7



independent period-by period (SIPP) approach, and Remark 2 in Online Supplement A discusses its implicit

assumptions.

Let α∗ be an upper bound on the expected abandonment rate over the planning horizon. Then we wish

to solve the following nonlinear stochastic integer program, which minimizes total staffing cost, subject to a

constraint on expected abandonments.

min
∑

j∈J cjxj

s.t.
∑

k∈K pkλikf(λik, µ, θ,
∑

j∈J aijxj) = αi i ∈ I∑
i∈I αi ≤ α∗λ̄

xj ∈ Z+ j ∈ J ,

(5)

where λ̄ =
∑

k∈K pk
∑

i∈I λik is the expected number of arrivals over the planning horizon, and Z+ is the set

of non-negative integers. The first set of nonlinear constraints defines the expected number of abandoning calls

for each interval, i. The second constraint defines the upper bound on the expected global abandonment rate.

We note that the upper bound, α∗λ̄, holds only in expectation, across the entire arrival-rate distribution. If

we consider every potential abandonment to have the same (unknown) implicit cost, a Lagrangian relaxation

of (5) would minimize expected total cost of staffing and abandonment. Because the cost of abandonment is

unknown, however, call centers instead place direct constraints on expected QoS. Remarks 3 and 4 in Online

Supplement A discuss the long-run average interpretation of the constraint, as well as a Lagrangian analogue.

The fact that f(λik, µ, θ, ni) may be nonlinear in ni makes the stochastic program (5) potentially difficult to

solve. Nevertheless, Armony et al. (2009) show that, given µ ≥ θ, f(λik, µ, θ, ni) is nonincreasing in ni, with

decreasing differences (discretely convex). This is typically the case. For example, see Zohar et al. (2002) and

Brown et al. (2005). In Section 2.4 we will see that the desired relationship also holds in our data.

Given µ ≥ θ, we can use a common transformation to replace the nonlinear constraints with a larger set of

linear constraints that provides a lower bound on
∑

k∈K pkλikf(λik, µ, θ, ni). For each i ∈ I and n > 0 we

define slopes, min, and intercepts, bin,

min =
∑

k∈K pk [λik(f(λik, µ, θ, n)− f(λik, µ, θ, n− 1))]

bin =
∑

k∈K pkλikf(λik, µ, θ, n)− n ·min,
(6)

where mi0 = −µ and bi0 =
∑

k∈K pkλik. Then we replace each of the I constraints that define the αis in (5)

with a set of Ni = {0, . . . , Ni} linear constraints,

(
∑

j∈J aijxj)min + bin ≤ αi, n ∈ Ni,

whereNi is large enough that the expected abandonment count is nearly zero:
∑

k∈K pkλikf(λik, µ, θ,Ni) ≈ 0.
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The revised linear, integer stochastic program becomes

min
∑

j∈J cjxj

s.t. (
∑

j∈J aijxj)min + bin ≤ αi i ∈ I, n ∈ Ni∑
i∈I αi ≤ α∗λ̄

xj ∈ Z+ j ∈ J .

(7)

Essentially, we are replacing the abandonment rate function in (5) by the maximum of the linear functions

defined by all the mins and the bins, which is piece-wise linear and convex, a standard practice in mathematical

programming. In our case, this substitution is exact because the variables only take on integer values.

Thus, rather than solving the stochastic program (5), which is nonlinear and may have a large number of

scenarios, we use the definitions (6) to develop a deterministic, piecewise linear, “certainty equivalent” program

(7). Equation (6) suggests that the computational effort needed for the transformation is linear in the number of

scenarios. Computational results reported in Online Supplement G.1 are consistent with this observation.

We note that, while it is straightforward to define analogues of (5) for other QoS measures, such as de-

lay in queue, or to place limits on tail probabilities or require that QoS targets be met over sub-intervals

within the planning horizon or within individual scenarios, schemes that use these alternatives are likely to

be more computationally intensive. For example, in systems with abandonment, alternative QoS measures,

such as P{Delay > t}, often have a concave-convex structure. (It is often the case that the concave region of

these functions can be roughly modeled as a simple threshold, for example a fixed staffing level below which

P{Delay > t} = 1. See Figures 4-8 in Garnett et al. (2002).) While concave-convex functions can be modelled

to be piecewise-linear, we must introduce an additional 0-1 integer variable for each distinct concave segment

within a scenario, and we cannot collapse scenarios into a single “certainty equivalent” as we did above. Never-

theless, computational results reported in Online Supplement G.2 suggest that only small numbers of scenarios

are needed in the mathematical programs, and it may therefore be computationally practical to solve problems

for concave-convex measures of QoS in much the same fashion. To the extent that large numbers of scenarios

are needed, however, the L-shaped decomposition method (Birge and Louveaux 1997, §5.1) used in Robbins

and Harrison (2010) could be of value.

2.4 Setup for Empirical Tests of Quadrature and Sampling-Based Scenarios

With the machinery developed in §2.1–2.3 at our disposal, we are now in the position to perform large-scale

tests of the efficacy of our quadrature-driven scenarios. We run these tests using a dataset from a European

retail bank’s call center operations.

Our dataset consists of historical arrival counts, abandonment counts, and service-time averages for 30-
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minute intervals on each of 176 weekdays in 2007. Online Supplement D provides summary plots of arrival

counts over this horizon. The call center is open 13 hours each weekday, from 8 a.m. to 9 p.m. Hence, for each

day we have 26 intervals of data, and we set the planning horizon to be T = 26 intervals, or one day.

We also have the rules and parameters that the bank’s workforce management system uses to schedule

agents. Agents work either 7 or 9-hour days, without overtime, and with specific rules for meal breaks: a lunch

break lasts half an hour and must occur between 11 a.m. and 2 p.m.; a late lunch break also lasts half an hour

and must occur between 4:30 p.m. and 6 p.m. An agent qualifies for either of the two breaks if her/his shift

contains a half-hour period within that time window. If her/his shift contains a half-hour period within each

time window, then s/he qualifies for both breaks. Enumeration shows that there are J = 262 feasible schedules.

The bank did not share payroll information with us. The fact that it used no overtime in constructing

schedules motivates us to use a normalized cost of 1 for each half hour of work, and we let cj =
∑

i∈I aij .

We apply the approach described in §2.1 to forecast future arrival rates. Each forecast uses the previous

100 days of arrival counts to forecast the next day’s rates. Therefore we have 76 days (days 101 to 176) of

out-of-sample forecasts that we use to develop scenarios and run stochastic programs.

We use these parametric forecasts as the basis for quadrature and sampling-based scenario-generation

schemes. For the former, we follow the procedure detailed in Online Supplement B. For the latter, we sample

ω from its normal distribution, once for each scenario, and apply (4).

Other data used in the stochastic program include the following. The service times in our dataset average

121 seconds, so we set the service rate to be µ = 1800/121 ≈ 14.6 services per agent per 30-minute interval.

To estimate the abandonment rate, we divide the total number of abandoned calls in our dataset by the total

waiting time in queue for all served calls. This provides an upper bound on the abandonment rate of θ = 3.93

calls per 30-minute interval, or equivalently, a lower bound on average caller patience of 1800/3.93 ≈ 458

seconds. (For an explanation why this ratio is an upper bound, see Remark 5 in Online Supplement A.) This

implies that, on average, customers are willing to wait (at least) about 3.7 service times before abandoning the

queue. The data clearly satisfy the requirement that µ ≥ θ. All of the mathematical programs use an expected

daily abandonment rate target of α∗ = 3%. In most cases, the QoS constraint in the optimal solution is tight or

nearly tight.

2.5 Empirical Comparison of Quadrature and Sampling-Based Scenario Generation

We compare the results of stochastic programs that use scenarios generated using Gaussian quadrature to those

that use scenarios based on sampling of the forecast distribution. Our results suggest that the quadrature-based

approach is more efficient and stable, in that very few scenarios are needed to obtain performance that is reliable
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with respect to our two performance measures: cost and abandonment rate. Our comparison has three parts.

2.5.1 Distributions of Total Cost for One Day

We begin with a detailed look at the two methods’ performance for a single out-of-sample forecast day. Using

data from days 1 through 100 we generate a normally-distributed forecast for ω for day 101 and then use

the forecast to create 909 stochastic programs that we solve. We generate scenarios for 9 of the stochastic

programs – with 1, 4, 9, 16, 25, 49, 100, 225, and 400 scenarios – using Gaussian quadrature. For each of these

9 stochastic programs, we also create 100 analogous sets of scenarios for day 101, each set using an appropriate

number of i.i.d. samples from the arrival-rate forecast. Thus we generate, run, and evaluate 101 instances – 100

realizations of the sampling approach, plus one quadrature-based instance – of 9 stochastic programs for a total

of 909. For each of these instances, we record two statistics: the stochastic program’s objective function value,

which equals the total cost of staffing day 101, and the computation time required to set up and solve the IP. We

report cost results below and computation times in Online Supplement G.1.

Figure 1 summarizes the total costs (the objective function value) of the 909 solutions. Results are grouped

by number of scenarios along the horizonal axis, from 1 up to 400. For each number of scenarios, the vertical

axis reports total cost. Each box of the box-and-whisker plot shows the 25th, 50th, and 75th percentiles of

the cost of the 100 sampling-based instances of the problem for that number of scenarios. The whiskers are

1.5 times the interquartile range (75th percentile - 25th percentile) and are used as thresholds for determining

outliers. The circles above and below the whiskers are the outliers. The dashed lines running across the whiskers

display the 2.5% and 97.5% percentiles of the sampling-based results, and the solid line running across the plot’s

boxes shows the cost of the analogous quadrature-based program.
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Figure 1: Day 101 Costs, by Number of Scenarios
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Several features of Figure 1 are of note. As expected, as the number of scenarios increases, the distribution

of results for sampling-based instances becomes less dispersed. Similarly, it is not surprising that, as the

number of scenarios increases, the average cost of sampling-based programs and the cost of quadrature-based

programs, are (generally) non-decreasing. Formulations with fewer scenarios display a well-known, systematic

downward bias that results from solving a convex minimization problem with stochastic data (Shapiro 2000,

§5.2). Of more interest to us is the fact that the cost of quadrature-based solutions remains nearly constant from

4 to 400 scenarios, and for instances with 16 scenarios or more, the cost is nearly identical to the median costs

of the sampling-based programs.

2.5.2 First Differences in Total Cost for Each of 76 Days

Our second set of tests compares the results of all 76 out-of-sample days. In these tests, we formulate and solve

1,368 mathematical programs: 9 stochastic programs – with 1, 4, 9, 16, 25, 49, 100, 225, and 400 scenarios –

for each of the two scenario-generation schemes on each of the 76 days. For each of 18 of the optimal solutions

found on a given day, we record the total cost.

To develop a consistent measure of cost performance across all 76 days, we then use first differences. Given

the relative stability of results for 400 scenarios, we use the 400-scenario results as benchmarks against which

we compare those of formulations with fewer scenarios. For each type of scenario-generation scheme, on each

day, we record the first difference between the performance of schemes with 1 through 225 scenarios and that

with 400 scenarios.
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Figure 2: First Differences in Cost, by Number of Scenarios

Figure 2 plots the first differences of the total costs, by number of scenarios. The left panel plots the

differences for mathematical programs with quadrature-based scenarios, and the right panel plots the differences

for those using sampling-based scenarios. Each of the 76 lines in a panel plots the first differences for one day,

by number of scenarios. The black circles show the means of the first differences across all 76 days.
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Figure 2’s results again suggest that, for quadrature-based formulations with more than one scenario, the

means of the first differences are all quite close to zero; there is no apparent bias introduced by using fewer

scenarios, as long as there are more than one. Formulations using one scenario, again, display the expected bias

toward understaffing that was noted in Figure 1. Visual inspection also suggests that the results for sampling-

based formulations are systematically noisier than those using quadrature-generated scenarios.

2.5.3 Abandonment Rates Across 76 Days

Our use of the objective function value as a measure of solution stability is crude: two optimal solutions, x 6= y,

can have
∑

j∈J cjxj =
∑

j∈J cjyj . Nevertheless, Figures 1 and 2 both show that, even with this rough measure

of stability, sampling-based solutions appear to be relatively unstable for smaller numbers of scenarios.

We would similarly like to rule out the possibility that the apparent stability of quadrature-based solutions

is overstated by the use of objective function values. While one alternative would be to measure the difference

between pairs of optimal solutions using an L2 (or some other) norm, the possibility that an IP such as (7) has

multiple optimal solutions motivates us to look instead at differences in the abandonment rates across solutions.

For our third test, we therefore consider abandonment rates for the 1,368 problem instances tested in §2.5.2,

each of 18 problem instances on all 76 out-of-sample days. For each day we use each stochastic program’s

optimal solution to determine each half hour’s staffing level. We then generate a single sample path of arrival

times, virtual service times, and virtual times to abandonment that we use to drive a common set of discrete

event simulations for that day. Results of the discrete event simulations allow us to calculate a sample realization

of the abandonment rate for that day. More specifically, the numbers of agents on hand each half hour is

determined by the optimal solution to the IP (7). For each of the 76 out-of-sample days we simulate one sample

path of a 13-hour day. The simulated arrival process is driven by our dataset’s 30-minute arrival counts. Because

we do not have the arrival time of each call in the dataset, we turn each 30-minute count into the realization of

a Poisson arrival process by distributing the counted number of arrivals as i.i.d. samples, each of which has an

arrival time that is uniformly distributed over the half-hour. (See §2.3 in Ross (1996).) For each arrival, we also

sample a virtual service time and virtual patience time, each of which is exponentially distributed with mean

1/µ and 1/θ, respectively.

Within each simulation run, the number of agents on hand may decrease from one half hour interval to

the next. In such cases, we remove agents with shortest remaining service time first. (Idle agents have zero

remaining service times.) At the end of the simulated day, we also check to make sure that the number of

unserved calls left in queue is not large enough to bias abandonment-rate statistics, which are calculated as

fractions of arriving calls. Across 1,368 test simulations, the average number of calls left in queue at the end of
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the day was 1.21, out of a total of 8,435.79 average daily arrivals. The maximum across all simulations was 15,

on a day with 8,631 arrivals.

Figure 3 reports the abandonment-rate performance of the two discretization approaches: the left panel for

quadrature and the right panel for sampling. In both panels, the horizonal axis shows the number of scenarios

for a given test, and the vertical axis shows the realized abandonment rate. For each number of scenarios, each

panel plots the 95% confidence interval (CI) associated with the estimate of the long-run average abandonment

rate obtained over 76 days’ performance. The CIs are constructed assuming each day’s abandonments are

independent of the others’ and weighting each day’s abandonment performance by that day’s number of arrivals.
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Figure 3: 95% CIs for Abandonment Rates, by Number of Scenarios

Figure 3’s results are analogous to those shown in Figure 2. The left panel shows that, for quadrature, the

entire CI for a single scenario falls above the 3% target, while those for 4 or more scenarios are quite stable

and centered on 3%. The right panel shows that, with sampling, it takes 25 or more scenarios for the CIs to

fall squarely over the 3% target. Again, the quadrature scheme appears to provide stable performance in the

intended range using very few scenarios.

3 Stochastic Programs with Recourse

In the previous section, we demonstrated the effectiveness of using Gaussian AR(1) forecasts and quadrature

to generate scenarios for simple, one-stage stochastic programs. In this section, we build on the machinery

developed in §2 to develop schemes that, part-way through the planning horizon for agent schedules, use ob-

served arrival-count data to revise the arrival-rate forecast and adjust schedules accordingly. These types of

forecast updates and recourse procedures are commonly used to adjust staffing levels part-way through each

day (Mehrotra et al. 2010).

For example, if a forecast update suggests higher-than-anticipated arrival rates, then additional agent capac-
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ity may be requested for the second part of the horizon. Often this additional capacity comes in the form of

extended hours for existing agents, the addition of short-term call-in agents, or the use of outsourcing capacity.

Conversely, if a forecast revision suggests lower-then-anticipated arrival rates, then capacity may be reduced

during the second part of the horizon, typically by encouraging agents to take unpaid time off. The use of

forecast updates, combined with these so-called “recourse” actions, adds complexity to both the forecasting

and scheduling approaches described in §2.

We consider two forms of updates. In §3.1, we describe a less sophisticated scheme that determines initial

staffing levels using the one-stage approach of §2. Part-way through the horizon, this method then utilizes

realized arrival counts to derive an ex post update of the arrival-rate forecast and solves a related one-stage

stochastic program to determine recourse actions that adjust staffing levels for the remaining time intervals. In

§3.2 we detail a more complex scheduling method. This second scheme follows the same overall approach

as the simpler one, but it uses a more sophisticated, two-stage recourse program in the initial planning phase.

In setting initial staffing levels, the two-stage program uses an a priori forecast of potential ex post forecast

updates to explicitly account for the later use of recourse actions.

3.1 Simple Forecast Updates and Recourse Actions

The simple update scheme begins by forecasting and scheduling using the approach developed in §2, without

considering the fact that recourse actions subsequently can be taken part-way through the planning horizon. On

day D, it generates an arrival-rate forecast for day D+h, discretizes the forecast distribution, and solves (7) to

determine an initial set of agent schedules, x.

Then after some update interval i∗ ∈ {1, . . . , I−1} of dayD+h, the scheme uses arrival-count data obtained

from the start of day D+1 through i∗ of day D+h to develop a revised arrival-rate forecast for the remaining

intervals, {i∗ + 1, . . . , I}, of day D+h. To account for the partial day, we denote the early stage intervals of

day D+h as Ie ≡ {1, . . . , i∗} and the late-stage intervals as Il ≡ {i∗ + 1, . . . , I}.

With the revised forecast for i ∈ Il in hand, the scheme runs a new, one-stage stochastic program whose

decision variables represent recourse actions that add or remove agent capacity from the initial schedule, x.

Additional constraints limit recourse actions according to work rules and the numbers of available agents. The

solution of the second mathematical program determines how employee schedules will change in response to

the updated arrival-rate forecast.

Note that this simpler scheme is a generalization of that proposed by Mehrotra et al. (2010), in which the

initial mathematical program and the one-stage recourse program are simple IPs that use only one scenario.

The formulation below generalizes that scheme to use multiple scenarios.
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3.1.1 Forecast Update

Our forecast update uses available count data to generate a normally distributed revision of the original, h-day-

ahead forecast, ωD,D+h ∼ N(ζD,D+h, ψ
2
D,D+h), that is generated according to Proposition 2. For days D + 1

throughD+h−1, we have full days of (square-root scaled) count data available, {yD+1, . . . ,yD+h−1}, where

yd denotes the vector of count data for day d. For day D + h, however, we only have count data over intervals

i ∈ Ie, and, in a slight abuse of notation, we let D + he denote the “index” of early-stage data on day D + h

and let yD+he denote the associated vector of count data.

To use the count data {yD+1, . . . ,yD+h−1,yD+he} to update the arrival-rate forecast for the late intervals

of day D + h, we perform a sequence of h one-day forecast updates. We begin with an initial one-day-ahead

forecast from day D to D + 1, ωD,D+1, that we derive using Proposition 2 with forecast horizon h = 1.

We then use day D + 1’s count data, yD+1, to derive a posterior distribution of ω for day D + 1, which we

denote ωD+1,D+1. The following proposition provides a general statement of the posterior derived from such a

one-day-ahead update. Its proof can be found in Online Supplement E.

Proposition 3 Suppose the prior distribution for day d is ωd−1,d ∼ N(ζd−1,d, ψ
2
d−1,d), and we observe counts

{ydi | i = 1, . . . , ı̂} on day d. Letting

ad,̂ı ≡
ı̂∑
i=1

ϑld,i yd,i and νd,̂ı ≡
ı̂∑
i=1

ϑ2
ld,i
, (8)

the posterior distribution ωdı̂,d is normal with mean ζdı̂,d and variance ψ2
dı̂,d

:

ζdı̂,d =
ψ2
d−1,dad,̂ı + σ2ζd−1,d

ψ2
d−1,dνd,̂ı + σ2

, (9)

ψ2
dı̂,d

=
σ2ψ2

d−1,d

ψ2
d−1,dνd,̂ı + σ2

. (10)

When we calculate the posterior for the entire day d, we let ı̂ = I , and we call the posterior ωd,d ∼ N(ζd,d, ψ
2
d,d).

When the calculation is based on data from the early stage of day d’s planning horizon, we let ı̂ = i∗ and call

the posterior ωde,d ∼ N(ζde,d, ψ
2
de,d

).

The proposition is consistent with the well known behavior of Bayesian updates that use normally distributed

conjugate pairs (DeGroot 1970). That is, given a normally distributed prior and normally distributed data, the

Bayesian posterior is also normally distributed, with a mean that is a weighted average of the prior mean and

the observed data and a variance that is independent of the values of the observed data but grows systematically

smaller with the quantity of data observed.

Once we have the posterior ωD+1,D+1 we can use our Gaussian AR(1) forecasting model (1) with h = 1 to

provide the next one-day-ahead forecast, ωD+1,D+2. The proposition below provides a general statement of a
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one-day-ahead update for a generic day, d.

Proposition 4 Given a posterior for day d, ωd,d ∼ N(ζd,d, ψ
2
d,d), the prior for day d+ 1, ωd,d+1, is

ζd,d+1 = αld+1
+ β(ζd,d − αld), (11)

ψ2
d,d+1 = β2 ψ2

d,d + φ2. (12)

The proposition’s expressions for ζd,d+1 and ψ2
d,d+1 follow immediately from (1).

Thus, starting with ωD,D+1 we can apply Propositions 3 and 4 sequentially (h-1) times, with ı̂ = I ,

to generate ωD+h−1,D+h. At this point, we apply Proposition 3 one final time, with ı̂ = i∗ to calculate

ωD+he,D+h ∼ N(ζD+he,D+h, ψ
2
D+he,D+h). The associated arrival rates, {ΛD+he,D+h,i | i ∈ Il}, naturally

follow in light of (4).

3.1.2 Scenario Generation for Simple Forecast Updates

As in §2.2, we drop the day subscripts in the updated arrival-rate forecasts, {ΛD+he,D+h,i | i ∈ Il} and call the

updated arrival-rate forecast {Λ′i | i ∈ Il}, and we use Gaussian quadrature to generate a new set of scenarios.

The number of updated scenarios may (in theory) differ from that previously used, and we differentiate updated

scenarios by labeling them k ∈ K′ = {1, . . . ,K ′}, with probabilities {p′k | k ∈ K′} and scenario-dependent

rates {λ′ik | i ∈ Il, k ∈ K′}.

3.1.3 Recourse Program for Simple Updates

With the initial set of schedules and scenarios for the revised forecasts in hand, we solve a schedule-update

problem. Its solution determines a set of recourse actions to be used to adjust staffing levels over late-stage

intervals of the scheduling horizon.

For each schedule assignment, j ∈ J , we define a set of feasible recourse actions, Gj = {1, . . . , Gj}. If

aij = 0 for some i ∈ Il then we may be able to extend schedule j to have an agent assigned to that schedule to

work during interval i. Similarly, if aij = 1 for some i ∈ Il then we may be able to reduce schedule j to have

an agent assigned to that schedule idle during interval i. We therefore let

rijg =


+1, if recourse action g extends schedule j by having an agent work during interval i;

-1, if recourse action g reduces schedule j by having an agent idle during interval i;

0, otherwise,

for i ∈ Il, j ∈ J and g ∈ Gj . If we define a dummy schedule J to have aiJ = 0 for all i and cJ = 0, then

we can represent the ability to use call-in agents or outsourcing capacity in a similar fashion. As with the aijs,

feasible columns – (ri∗+1,j,g, . . . , rT,j,g)
T – are determined by company policy and employee work rules.
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Each of the decision variables {zjg | j ∈ J , g ∈ Gj} denotes the number of agents who were initially on

schedule j and are assigned recourse action g after the schedule update. For each zjg, a coefficient djg defines

the unit cost of taking the recourse action. Positive costs are associated with the addition of work hours, either

through schedule extensions or the use of call-in capacity. Negative costs (savings) may results from the ability

to reduce agents’ working hours.

The mathematical program, below, is an analogue of that for the first-stage problem, (7), with piecewise-

linear constraints providing lower bounds to expected abandonment rates across the K ′ scenarios. As in (7),

each N ′i is the set of linear constraints used to bound the expected number of abandoning customers in interval

i ∈ Il, with {(min, bin) | n ∈ N ′i} defining the slopes and intercepts. Here the xj’s are numbers that were

previously determined via (7).

Given a fixed initial schedule, x, the following mathematical program then finds a set of recourse actions, z,

that minimize recourse costs, subjected to a revised QoS constraint.

min
∑

j∈J
∑

g∈Gj djgzjg

s.t. (
∑

j∈J aijxj +
∑

j∈J
∑

g∈Gj rijgzjg)min + bin ≤ αi i ∈ Il; n ∈ N ′i∑
i∈Il αi ≤ α′λ̄′∑
g∈Gj zjg ≤ xj j ∈ J

zjg ∈ Z+ j ∈ J , g ∈ Gj .

(13)

Here, the first two constraints of (13) define the piecewise-linear lower bounds on expected abandonment

rates and enforce a revised QoS limit, α′λ̄′, only over Il. Specifically, we let λ̄′ =
∑

i∈Il
∑

k∈K′ p
′
kλ
′
ik

be the revised expected arrival rate over the second part of the planning horizon of day D+h and let α′ =[∑
k∈K p

′
k

∑
i∈Il λ

′
ikf(λ′ik, µ, θ,

∑
j∈J aijxj)

]
/λ̄′ denote the expectation of the late-stage abandonment rate

that would have occurred had the original staffing plan, x, been maintained.

Our definition of α′ ensures that, on a sample-path basis, the bound on the expected number of abandonments

over the late part of the planning horizon remains the same with and without recourse actions. In turn, over

the entire planning horizon, our simple recourse scheme will achieve the same expected QoS as the one-stage

stochastic schedule, developed in §2, at a (weakly) lower cost. Thus, the recourse scheme offers a Pareto

improvement of scheduling without recourse. Remark 6 in Online Supplement A discusses other possible

definitions of α′.

To summarize, we operationalize the simple scheme in two stages. Before the start of the planning horizon,

we forecast arrival rates as in §2 and solve (7) to determine an initial set of schedules, {xj | j ∈ J }, and the

numbers of agents on hand in intervals i ∈ Ie of day (D + h). At the end of interval i∗ on day (D + h)

we then use the available arrival-count over days {D + 1, . . . , D + he} to update the arrival-rate forecast for
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intervals i ∈ Il in the later part of target day D+h. We feed the initial schedule, {xj | j ∈ J }, along with

the updated forecast, into the recourse program (13), whose solution determines optimal schedule adjustments,

{zjg | j ∈ J , g ∈ Gj}, and in turn the numbers of agents on hand in intervals i ∈ Il.

3.2 Forecasting and Scheduling Using Two-Stage Recourse Programs

A more complex approach to forecast and schedule updating explicitly takes the ability to use recourse actions

into account when determining the initial staffing plan. For example, if adding agent capacity after the update is

more expensive than initially overstaffing and then sending agents home, then we may wish to set initial staffing

levels to be higher than would have the simpler early-stage program, which does not account for the relative

costs of later capacity increases and decreases. To support this approach, both the initial forecast (3) and the

scheduling program (7) become more elaborate.

3.2.1 A Priori Distribution of Potential Forecasts Updates

The update procedure described in §3.1.1 makes an iterative set of one-day forecast updates – for day D+1,

then day D+2, up through day D+he – ultimately generating a forecast update for the late-stage intervals of

day D+h, ωD+he,D+h. In this section, we extend that approach so that our original, day-D forecast includes

an entire distribution of potential posterior distributions for intervals i ∈ Il on day D+h. We can think of each

sample path of counts {yD+1, . . . ,yD+h−1,yD+he} as being one sample point of a distribution of potential

sample paths that we forecast as of day D, {YD,D+1, . . . ,YD,D+he}. This distribution of potential sample

paths generates an associated distribution of posteriors, and we can use an analogous day-by-day updating

scheme to iteratively derive the entire a priori distribution of potential posterior forecast distributions.

Two forms of insensitivity highlighted in Proposition 3 make a distributional generalization of our forecast-

update procedure relatively straightforward to derive and implement. First, given a normally distributed prior

distribution, ω, and normally distributed sample data, any given sample, y, will generate a normally distributed

posterior. Second, all posterior forecast distributions have the same variance, defined according to the repeated

application of (12) and (10), and differ only in their means. Thus, the a priori distribution of posterior forecast

distributions is one-dimensional and can be characterized as the distribution of the mean of the posterior.

In a distributional analogue to (8), we let YD,D+d,i denote the day D forecast for the arrival count that is to

occur on interval i of day D+d. Let ı̂ denote the interval for a potential update on day D+d. For the focal day,

day D+h, it is the interval i∗; for the days before D+h, it is the end of day. Thus,

AD+d,̂ı =
ı̂∑
i=1

ϑlD+d,i YD,D+d,i, (14)
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where ı̂ = I for d ∈ {1 . . . , h − 1} and ı̂ = i∗ for d = h. After the dth day’s potential update, we denote the

posterior mean as ζ ′D,D+d. As a parallel to (9), we then have

ζ ′D,D+d =
ψ2
D+d−1,D+dAD+d,̂ı + σ2ζD+d−1,D+d

ψ2
D+d−1,D+dνD+d,̂ı + σ2

, (15)

where νD+d,̂ı can be obtained from (8) and ψ2
D+d−1,D+d from (10).

The following proposition uses the above expressions to characterize the a priori distribution of the posterior

mean. Its proof can be found in Online Supplement E.

Proposition 5 The a priori distribution of the posterior mean, ζ ′D,D+d, is normally distributed with mean

ΘD,D+d and variance Ψ2
D,D+d,

ΘD,D+d = ζD,D+d and Ψ2
D,D+d =

ψ4
D+d−1,D+d(ν

2
D+d,̂ıψ

2
D,D+d + σ2νD+d,̂ı)

(ψ2
D+d−1,D+dνD+d,̂ı + σ2)2

, (16)

where ζD,D+d and ψ2
D,D+d are defined as in (3), and ψ2

D+d−1,D+d is calculated via the d-fold application of

(12) and (10).

Three facts about the proposition are worth noting. First, the mean of ζ ′D,D+d, ΘD,D+d, always equals the

simple d-day-ahead forecast as of day D, ζD,D+d. Given an unbiased day-D forecast, this equivalence is to

be expected. Second, as is noted in Online Supplement E, the expression for Ψ2
D,D+d can be interpreted as a

scaled version of the variance of AD+d,̂ı, where the scale corresponds to AD+d,̂ı’s weight in the calculation of

the posterior mean (15). Third and most important is the fact that the use of d days of AR(1) data does not

require the use of an d-stage recourse tree to generate the a priori variance of the posterior mean on day D+ d.

Thus, the arrival rates’ Gaussian structure allows us to generate a 1-dimensional posterior by using (3) at day

D to derive ψ2
D,D+1, repeatedly applying (10) and (12) to calculate ψ2

D,D+he
, and then applying Proposition 5 to

find the mean and variance of the posterior mean. It significantly simplifies our construction of an h-day-ahead

a priori forecast of the posterior mean, even for very large h.

3.2.2 Scenario Generation for Two-Stage Forecasts

As before, we divide the planning horizon on day D+h into two stages, an early stage, Ie, and a late stage, Il.

The early-stage intervals occur before the forecast update, and their staffing levels cannot be adjusted by using

late-stage recourse actions. In contrast, staffing levels in intervals i ∈ Il can be adjusted using recourse.

Because recourse actions are not available in early-stage intervals, the forecasting and scheduling problem

for i ∈ Ie is the same as that in §2.2. We use the original forecast distribution for ωD,D+h ∼ N(ζD,D+h, ψ
2
D,D+h),

and we use quadrature to generate a set of E early-stage rate scenarios e ∈ E = {1, ..., E} with arrival rates

λie ≡ ω2
eϑ

2
i , i = 1, . . . , i∗ and associated probabilities {pe ≥ 0 |

∑
e∈E pe = 1}.
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After interval i∗ we can use recourse actions to modify staffing levels, and we construct a set of K scenarios

k ∈ K, each associated with a distinct set of recourse actions to be considered. These recourse scenarios

discretize the a priori distribution of the posterior. Recall that the distribution of the posterior mean is normal

with mean ΘD,D+he = ζD,D+h and variance Ψ2
D,D+he

, as calculated according to Proposition 5. We denote the

K discretized values of the mean as {ζ ′k | k ∈ K}, and they occur with probabilities {pk ≥ 0 |
∑

k∈K pk = 1}.

Thus, quadrature yields K posterior distributions, each normally distributed with a different mean, ζ ′k, but all

with identical variance, ψ2
D+he,D+h, derived according to the h-fold application of Propositions 3 and 4.

Finally, for each recourse scenario k ∈ K, we then associate a distinct set of late-stage rate scenarios,

Lk = {1, . . . , Lk}. More specifically, given scenario k’s ζ ′k, the associated posterior distribution is ωk ∼

N(ζ ′k, ψ
2
D+he,D+h). We again use quadrature to discretize this posterior distribution intoLk scenarios, {ωkl | l ∈

Lk}, with probabilities {pkl ≥ 0 |
∑

l∈Lk pkl = 1}. For each k, we transform the resulting ωkls according

to (4) to yield the late-stage arrival rates, {λikl = (ωklϑi)
2 | i ∈ Il, k ∈ K, l ∈ Lk}.

3.2.3 Two-Stage Recourse Program

As in the simpler scheme, the two-stage recourse program includes decision variables, {xj | j ∈ J }, that

represent initial scheduling decisions, implemented before the start of the planning horizon. It also determines

possible late-horizon recourse decisions, which can vary by recourse scenario. Decision variables {zjgk | j ∈

J , g ∈ Gj , k ∈ K} represent the full set of these recourse decisions. If recourse scenario k is realized, then

recourse decisions {zjgk | j ∈ J , g ∈ Gj} are taken.

We now formulate the piecewise-linear version of the two-stage recourse program. As before, each Ni

is a set of linear constraints that bounds the expected number of abandoning customers in intervals i ∈ Ie,

with {(min, bin) | n ∈ Ni} defining slopes and intercepts. We similarly let Nik = {0, . . . , Nik} define the

analogous sets of constraints for each interval i ∈ Il in the later part of the planning horizon and under each

recourse scenario, k ∈ K, with slopes and intercepts {(mikn, bikn) | n ∈ Nik}. In both cases, we eliminate the

explicit representation of rate scenarios – those indexed e in early intervals i ∈ Ie and those indexed l in late

intervals i ∈ Il – by exploiting the fact that, for a fixed arrival rate, the expected number of abandonments in

a given interval, i, is decreasing and convex in the number of agents. For the two-stage recourse formulation

we do not eliminate the recourse scenarios k ∈ K, however, precisely because we wish to track how each k’s

recourse actions affect the conditional expectation of the number of abandonments in each interval i ∈ Il.

We let {αi | i ∈ Ie} be the expected number of abandoning calls in each interval of the early part of the

planning horizon. For each recourse scenario, k ∈ K, we let {αik | i ∈ Il} be the analogous quantities in the

second part of the planning horizon, conditioned on falling into recourse scenario k. We then let α∗ be an upper
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bound on the expected abandonment rate over the entire horizon and across all recourse scenarios.

The solution to the stochastic integer program, below, minimizes the expected cost of initial scheduling

and recourse decisions, subject to an upper bound on the expected number of abandonments over the planning

horizon, α∗λ̄, where

λ̄ ≡
∑
e∈E

∑
i∈Ie

peλie +
∑
k∈K

∑
l∈Lk

∑
i∈Il

pkpklλikl

is the expected number of arrivals over the planning horizon. The first set of constraints, below, provides a lower

bound on the expected numbers of abandonments during each interval i ∈ Ie, and the second set provides a

similar set of bounds for each recourse scenario k ∈ K during i ∈ Il. The third constraint enforces an upper

bound on the expected number of abandonments over the planning horizon, and the fourth set of constraints

ensures that at most one recourse action may be taken for each employee.

min
∑

j∈J cjxj +
∑

k∈K pk
∑

j∈J
∑

g∈Gj djgzjgk

s.t. (
∑

j∈J aijxj)min + bin ≤ αi i ∈ Ie, n ∈ Ni

(
∑

j∈J aijxj +
∑

j∈J
∑

g∈Gj rijgzjgk)mikn + bikn ≤ αik i ∈ Il; k ∈ K; n ∈ Nik∑
i∈Ie αi +

∑
k∈K pk

∑
i∈Il αik ≤ α∗λ̄∑

g∈Gj zjgk ≤ xj , j ∈ J , k ∈ K

xj ∈ Z+ j ∈ J

zjgk ∈ Z+ j ∈ J , g ∈ Gj , k ∈ K

(17)

Remark 7 in Online Supplement A discusses several extensions to this scheme.

3.2.4 Determination of Initial Schedules and Recourse Actions

We operationalize the two-stage scheme as follows. On day D we use the procedure defined in §3.2.1–§3.2.3

to find an optimal set of initial schedules and recourse actions, and for i ∈ Ie of day D+h, we use the optimal

x to determine agent schedules in the early part of the planning horizon. Then after interval i∗ of day D+h, we

use the observed count data, {yD+1, . . . ,yD+he}, together with the ex post update procedure defined in §3.1.1,

to generate ζD+he,D+h, the mean of the realized posterior distribution of ω for day D+h. If ζD+he,D+h equals

the mean of the posterior distribution for recourse scenario, k ∈ K, then we update agents’ schedules according

to scenario k’s zjgks. If ζD+he,D+h does not match one of the scenario’s means exactly, then we implement the

recourse actions associated with a scenario whose mean is either just above or just below ζD+he,D+h.

As the number of recourse scenarios increases without bound, K → ∞, the actual posterior mean always

matches that of one of the recourse scenarios. For finite K, however, it will not match, and we must decide

whether to choose the recourse scenario whose mean is closest to the posterior mean or to round the actual

posterior up or down. We have found through experimentation that rounding up consistently provides expected
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abandonment-rate performance, and in §4 we therefore round up to the next scenario. In the case that the

realized posterior mean is above that of the highest scenario, we round down.

Remark 8 in Online Supplement A describes a more common alternative that solves (13) – using the ex post

forecast update together with the optimal x and abandonment rates from (17) – to directly (re)identify a set of

optimal recourse actions .

4 Numerical Tests of Nine Scheduling Schemes

We now have the machinery necessary to precisely define each of nine scheduling schemes we will evaluate.

Schemes labeled SPm (m = 1, 4, 100) solve the stochastic program (7) withm scenarios to find an initial set of

schedules x and perform no updating. Schemes denoted UPm (m = 1, 4, 100) solve (7) withm scenarios at the

start of the planning horizon, update the initial arrival-rate forecast after interval i∗ for the focal day, and then

solve (13) with m scenarios to determine a set of recourse actions z to take in Il. At the start of the planning

horizon, schemes labeled RPm (m = 1, 4, 100) solve (17) with E = m early-interval rate scenarios, K =
√
m

recourse scenarios and, for each of the recourse scenarios, k ∈ K, Lk =
√
m late-interval posterior arrival-rate

scenarios. Its solution generates an initial set of schedules, x, as well as K potential sets of recourse actions,

{zk | k ∈ K}. After interval i∗ of the focal day, the RPm schemes calculate the realized posterior mean for the

arrival rate and then round to the nearest recourse scenario, k (as described in §3.2.4), to find the set of recourse

actions, zk, to implement in i ∈ Il. Thus, the RPm schemes use E = m scenarios for intervals i ∈ Ie, as well

as K × L = m total scenarios for intervals i ∈ Il, numbers that are comparable to those in SPm and UPm.

We note that four of these schemes correspond to approaches found elsewhere: SP1 is a traditional IP, driven

by a point forecast; SP4 and SP100 are quadrature-based versions of the approach used in Robbins and Harrison

(2010) evaluated in §2; and UP1 is the simple forecast-update approach evaluated in Mehrotra et al. (2010).

To be consistent with practice, which generates initial agent schedules for days or weeks at a time, we

construct forecasts and agent schedules one week at a time. For example, our first set of forecasts use data from

days 1 to 100 to generate a set of 1-day-ahead forecasts for day 101, a set of 2-day-ahead forecasts for day 102,

and so on through day 105. We use these forecasts in the mathematical programs (7) and (17) to determine

five sets of initial agent schedules, one set for each day of the week. Then for each day d ∈ {101, . . . , 105}

we use count data obtained from the start of day 101 through interval i∗ of day d to derive d’s posterior rate

distribution. We run (13) to determine the recourse actions to be used in the UPm schemes, and we use the

arrival rate’s posterior mean to select the recourse scenario k that will be used for each of the RPm schemes.

Similarly we use data from days 6 through 105 to derive initial schedules for days 106 through 110 and then use

count data from days 106 though 110 to determine the appropriate recourse actions for each day of that week.
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As in §2, for each day and each scheme we use optimal initial schedules and recourse actions to determine

the scheme’s staffing counts for each half-hour of the day. Then we generate a single, common sample path of

arrival times, virtual service times, and virtual times to abandonment that we use in discrete event simulations

to generate the numbers of realized abandonments for the schemes. From each day’s optimal schedules, costs,

arrival counts, and abandonment counts we calculate realized abandonment rates and costs per handled call.

In the following sections we test these schemes on two sets of data. The first set of tests uses the European

retail bank data described in §2.4. A second set of tests uses arrival-count data from a network of call centers

operated by a North American (NA) retail bank.

4.1 Empirical Results for the European Retail Bank

In addition to the data described in §2.4, our empirical tests for the European bank use the definition of recourse

actions and costs that are used in (13) and (17). However, because the European bank’s labor practices are

highly restricted (compared with those in the US), it does not currently use recourse actions. Therefore, we use

recourse actions and costs that are analogous to those used by Mehrotra et al. (2010) .

Specifically, we consider three sets of recourse actions. For any worker assigned to an initial schedule,

j ∈ J , we consider two generic actions: 1) the ability to extend the worker’s shift beyond the time it would

normally end; and 2) the ability to send the worker home early, before his or her schedule would normally end.

We require schedule adjustments to be made over contiguous sets of intervals. For example, an agent who is

originally scheduled to work until 5:00 p.m. and is asked to work from 6:30 p.m. to 7:00 p.m. must work from

5:00 p.m. to 6:30 p.m. as well. For shift extensions we assume a traditional overtime cost of 1.5 per agent

per half hour, a 50% premium over the base rate of 1 per interval, and when sending someone home we define

the cost to be -0.75. A third set of recourse actions is the ability to (outsource or) call in workers who are not

scheduled to work on a given day. We assume that the cost of this action is 2 per agent per half hour; these

agents receive double-time pay.

We choose a fixed forecast update interval after i∗ = 6 at 11 a.m., just after what is typically the first peak in

the day’s arrival rate, and we use the observed arrival counts to revise the initial forecast and determine recourse

actions. Given an i∗ of 6 and other problem parameters – 26 half-hour intervals per day and 262 feasible initial

schedules – the number of feasible recourse actions totals 4,973.

As in §2.5 we use 176 days of weekday arrival data from the European bank. For each of the last 76 days,

we use the week-by-week forecasting, scheduling, and simulation procedures described above to generate daily

abandonment rates and average costs per handled call. Online Supplement G.2 reports and discusses average

computation times.
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Figure 4 summarizes the results of all 76 days. The left panel plots 95% CIs for the 76 realized abandonment

rates, and the right panel analogous intervals for the average of the 76 average costs per handled call. The

intervals’ point estimates are calculated as weighted averages of the 76 days’ results, with the number of calls

handled on a given day acting as weights. Similarly, the 1/2-widths of the CIs are calculated using standard

deviations whose points are weighted by numbers of calls.
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Figure 4: 95% CIs for European Bank Abandonment Rates (left) and Average Costs per Handled Call (right)

The left panel of Figure 4 shows that the six schemes that use multiple scenarios have average abandon-

ment rates that are close to 3%, while one-scenario schemes that use point forecasts have significantly higher

average abandonment rates. Conversely, the six schemes that use multiple scenarios have average costs that are

significantly higher than those that use point forecasts. These results echo those shown in Figures 1 and 2.

The figure’s right panel shows that there is a small but perceptible decline in average cost per handled call

as one moves from SPm to UPm to RPm scheme for a given m. For example, the average cost for UP4 and

RP4 are, respectively, 2.0% and 3.5% lower than that for SP4. Similarly, average costs for UP100 and RP100

are, respectively, 2.1% and 4.1% lower than that for SP100.

While the CIs’ broad overlaps suggest that differences in average costs are not significant, we can take

advantage of the fact that each day’s forecasts, schedules, and simulation results generate 9 matched data points

to compare results day by day across schemes. Specifically, we perform more sensitive (one-tailed) Wilcoxon

Signed-Rank tests, non-parametric analogues of paired t-tests, to compare the nine schemes’ performance. The

results, detailed in Online Supplement F, show that in fact there are systematic differences. Average costs for

UP4 are significantly lower than those for SP4, and average costs for RP4 are significantly lower than those for

both SP4 and UP4. The same relationship holds for SP100, UP100, and RP100.

Conversely, Wilcoxon tests indicate that abandonment rates for UP4 and RP4 are not significantly higher

than those for SP4, an indication that the cost improvements enabled by the schemes’ recourse actions are not

associated with declines in service quality. While the same holds true for UP100 versus SP100, the Wilcoxon
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tests indicate that abandonments rates for RP100 are significantly greater those for SP100 and UP100, a fact

that can also be seen in the left panel of Figure 4. As we will see in §4.2, the decline in RP100’s QoS does not

occur in our second set of tests.

If we compare each 4-scenario scheme’s average costs and abandonment rates with those of its 100-scenario

counterpart, we also find that the performance does not improve as we move from 4 to 100 scenarios. More

specifically, the Wilcoxon tests show that abandonment rates and average costs are not significantly higher for

SP4 than for SP100 nor for UP4 when compared to UP100. Abandonment rates are significantly higher for

RP100 than for RP4, a reflection of the fact, seen in the right panel of Figure 4, that RP100 appears to be

slightly understaffing.

The results have at least three important implications for the European bank’s call center. First, schemes

that are based on point estimates of arrival rates do not appear to provide adequate staffing to meet long-run

QoS targets, while those that are based on distributional forecasts appear to meet QoS goals. Second, the

cost advantage of using recourse actions plays out largely as predicted: the UPm schemes’ ex post updates

lower average costs a bit, while the RPm schemes’ two-stage, a priori approach lowers costs a bit more. In

general, the significance and magnitude of cost improvements will vary with details of a call center’s cost and

scheduling data, however. Third, the computationally less demanding 4-scenario schemes performed as well as

the 100-scenario schemes – in the case of the RPm schemes one might say even better.

4.2 Empirical Results for a North American Retail Bank

As a check on the robustness of Section 4.1’s results, we construct a second set of tests that use arrival-count

data from another organization, a network call centers operated by a North American retail bank. This North

American bank’s call centers operate at a larger scale, with call volumes that are more than six and one half

times those of the European call center studied in §4.1. Summary plots of the North American bank’s arrival

counts can be found in Online Supplement D.

We control these new tests so that their results are comparable to those from the European bank. In the

new tests we continue to use the scheduling, service rate, individual abandonment rate, and cost parameters

used in the original experiments. The only differences between the two sets of numerical tests are the historical

half-hour arrival counts and the number of days we test.

We employ the same sampling and scheduling schemes as before, using the previous 100 days’ arrival-count

data to forecast arrival-rate profiles for upcoming sets of 5 days. We have 210 days of arrival-count data for

the North American bank and therefore have 110 out-of-sample points that we test. As before, we determine

staffing numbers and costs according to the nine scheduling schemes and then use a common sample path for
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discrete event simulations that generate numbers of realized abandonments. We report computation times in

Online Supplement G.2.

Figure 5 summarizes the results of the 110 out-of-sample days. The left panel plots 95% CIs for the realized

abandonment rates, and the right panel analogous intervals for costs per handled call. As before, the intervals’

point estimates and 1/2-widths are determined using weighted calculations, with weights that are numbers of

calls handled on each day. To make the plots visually comparable to Figure 4’s, we use the same vertical scales.
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Figure 5: 95% CIs for NA Bank Abandonment Rates (left) and Average Costs per Handled Call (right)

The results are analogous to those of the European bank. As before, the schemes that use distributional

forecasts do a good job of reaching a long-run abandonment target of 3%, while those that use point forecasts

appear to have abandonment rates that are biased upward. The use of recourse actions also provides similar

magnitude of cost savings: average costs for UP4 and UP100 are, respectively, 2.9% below those of SP4 and

SP100, and RP4’s and RP100’s costs are both 3.7% below their SP4 and SP100 benchmarks.

In all cases, CIs for performance are much narrower, a reflection of systematically lower forecast variances

for the North American data. The Wilcoxon tests detailed in Online Supplement F show that the schemes’

results are quite well behaved. While UPm and RPm schemes again have significantly better cost performance

than SPm schemes, they do not have significantly higher abandonment rates. Furthermore, within each set of

schemes – SPm, UPm, and RPm – those with m = 4 perform as well as those with m = 100.

In addition to narrower CIs, we also see that the schemes’ cost per handled call is, in most cases, about

15% lower in the North American data than in the European data. An interesting question, then, is the extent

to which the reduction in forecast uncertainty and costs enjoyed by the North American bank is the result of an

increase in scale. For example, an arrival process that is an aggregate of separate, independent arrival processes

– such as that obtained by pooling across independent geographic areas – should enjoy a reduced CV of the

overall arrival rate. This phenomenon would represent an as-yet unaccounted for source of economies of scale

that warrants further investigation.
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5 Conclusion

Our analysis has provided a number of insights into the value of stochastic programming and recourse for

call-center workforce management. We used a parametric forecasting scheme to generate stochastic programs

that needed only small numbers of scenarios, and our use of a convex measure of QoS allowed us to col-

lapse scenarios in linear time to create efficient, deterministic, piecewise linear, certainty-equivalent versions of

these stochastic programs. Together, the forecasting scheme and certainty-equivalent formulation allowed us to

simply generate and solve large numbers of two-stage recourse programs.

Numerical tests of the forecasting and scheduling schemes showed how our use of multiple scenarios and of

recourse actions provided complementary benefits. Multiple scenarios were needed to achieve long-term QoS

goals, and recourse actions improved system costs. A comparison of the European bank’s and North American

banks’s results also suggested that, with respect to forecast, the same variance-reducing pooling effect that is

widely recognized in inventory systems might provide an as-yet unaccounted for source of economies of scale

in call center operations. This mechanism is different from the traditional pooling of queueing systems.

The results so far are promising, and they suggest a number of directions for follow-on work that will

strengthen both the theoretical underpinnings and the practical value of our framework. As a start, we are

currently working to show formally that the scheme used in this paper is long-run average optimal (Gans et

al. 2014). Other directions include the integration of more complex forecasting models and the use of other,

non-convex measures of QoS.

Also of interest are the computational demands associated with longer planning horizons. Specifically, in

the numerical tests in §4 we generated 5-day sets of one-day schedules. In practice agent schedules can span

many days or weeks at a time, however, and in these settings the number of feasible schedules can explode.

For example, given the flexibility to combine any of 262 feasible daily schedules across 5 days, SP would have

2625 or more than 1.2 trillion possible weekly agent schedules. While there are other practical factors that may

restrict the combinations of daily schedules, and while call centers could consider using the rostering process

to knit together multi-day schedules from consecutive one-day schedules (that are identified as we have in

§4), significant work will be required to develop computationally tractable scheduling procedures that identify

optimal multi-day or multi-week agent schedules.
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Online Supplement

A Remarks

Remark 1 The dimensionality of the vector time series is typically high, for example, I = 26 half-hour periods

in a 13-hour working day. Our multiplicative model easily captures the two-way (intraday and interday) time

dependence that is common to call centers and other large-scale service systems and reduces potentially high-

dimensional forecasts to a single dimension, the daily rate, which can be discretized using Gaussian quadrature.

Our model is a parametric analogue of the data-driven approach of Shen and Huang (2008) and is an extension of

the approach of Whitt (1999), which proposes a similar approach for un-transformed arrival rates and assumes

that all days share a common intraday arrival-rate profile.

In terms of forecast accuracy, our model’s performance is roughly comparable to that of the models proposed

in Weinberg et al. (2007), Shen and Huang (2008), and Aldor-Noiman et al. (2009). While the arrival count data

used in our numerical tests do not exhibit monthly or annual seasonal effects, these could be easily incorporated

into (1) as well. There are also more complex models of intraday performance, such as those found in Ibrahim

and L’Ecuyer (2013) and Oreshkin et al. (2014), that could further reduce within-day forecast variance, but at

the cost of higher forecast dimensionality. While the numerical results reported in §2.5 and §4 suggest that our

one-dimensional model is sufficiently accurate to provide desired levels of operational performance, future work

could consider methods of dimension reduction of these more complex within-day forecasting approaches. 2

Remark 2 Our use of the above results implicitly makes two common assumptions. The first is that, in each

of the scenarios, the arrival rate is constant over interval i. While common, this assumption is not necessarily

innocuous. Nevertheless, effective measures can be taken to account for time-inhomogeneity within intervals.

For a characterization of time-inhomogeneity, see Brown et al. (2005), and for effective responses see Feldman

et al. (2007) and Green et al. (2007), as well as the recent article by Kim and Whitt (2014). The second is that,

even if the arrival rate were constant, the use of stationary performance measures assumes that the event rate

during interval i under scenario k is large enough that transient effects, due to initial conditions at the start of the

interval, are not significant. Because our systems include abandonment, relaxation times are similar to those for

infinite-server Markovian systems and occur on the order of an expected service time or time to abandonment,

whichever is longer (Coolen-Schrijner and Van Doorn 2001). 2

Remark 3 While for a specific arrival-rate realization the QoS constraint may be violated, given a correctly

forecasted arrival-rate distribution and many i.i.d. days, the long-run average abandonment rate should be less

than or equal to α∗ (Wang and Ahmed 2008). Of course, in our AR(1) setting, arrival-rate distributions need
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not be i.i.d., and forecast distributions need not be correct. Nevertheless we conjecture that, in our case, the

long-run average abandonment rate will still fall at or below α∗ and are working to formally prove it is so (Gans

et al. 2014). 2

Remark 4 Robbins and Harrison (2010) use a variant of (7) in which the QoS constraint becomes
∑

i∈I αi ≤

α∗λ̄ + δ, and the objective function is augmented to include a penalty for abandonments above the nominal

target of α∗: min
∑

j∈J cjxj + pδ. When abandonments carry explicit, rather than implicit costs, for example

in certain contractual arrangements used for outsourcing, this alternate form is appropriate. 2

Remark 5 The Kaplan-Meier estimator for exponentially-distributed patience divides the total number of aban-

donments by the sum of the delays of all calls, including those that are served and those that abandon the queue

before being served. See Zohar et al. (2002). Our dataset includes records of average delay in queue only for

served calls, however, and we include the total delay of served calls in the denominator of our calculation. If

we were to include the waiting time of abandoning calls, it would therefore lower the estimate of θ.

Remark 6 Our definition of α′ has the virtue of being straightforward to calculate and analyze. Nevertheless,

there are other definitions of α′ that we can consider. For example, we can use the optimal solution to (7) to de-

fine the expected late-period abandonment rate given only the initial forecast (1): α′ = (
∑

i∈Il αi)/(
∑

i∈Il λi).

More generally, one may look for mappings {yD+1, . . . ,yD+he} 7→ α′ that satisfy other objectives, such as

the stabilization of late-interval abandonment. In §3.2 we present one such scheme. 2

Remark 7 There are several extensions to this scheme that we could consider. Rather than setting a fixed

update interval, i∗, Mehrotra et al. (2010) use a sequential procedure that looks for the first period, i∗, for which

they can reject the null hypothesis that the arrival-rate pattern comes from the initial forecast distribution. An

alternative that follows along the lines of (17) would be to allow for forecast updates and recourse actions

after every interval of the scheduling horizon, i ∈ {1, . . . , I − 1}. The computation time required to solve

such an a priori program would grow exponentially with the number of updates, however. A computationally

more practical approach would use (13) for repeated ex post updates, since computing time would grow only

linearly with the number of updates. Even less complex, and perhaps of greatest practical interest, would be

an empirical search across days for an optimal static update interval, i∗. Such a test would be straightforward,

though time consuming, and we do not pursue in this paper. 2

Remark 8 An alternative scheme uses the ex post forecast update after i∗, along with the optimal x from RP

(17), within UP (13) to recommend the set of recourse actions that are ultimately taken. As in §3.2.4, we

identify an appropriate scenario k by rounding up or down. Rather than directly using the associated zjgks
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from (17), however, we substitute
∑

i∈Il αik, the sum of the optimal αiks from recourse scenario k, for the

right-hand side of (13)’s QoS constraint, α′λ̄′, and solve (13) to find a low-cost set of recourse actions whose

abandonment performance nearly matches that of the original set of zjgks. 2

B Discretization of the Arrival-Rate Forecast Using Gaussian Quadrature

Let ω be a normal random variable with mean µ and variance φ, and let ω∗ be a discrete random variable such

that ω∗ = ωk with probability pk, 1 ≤ k ≤ K. In this section, we detail the Gaussian quadrature procedure that

we use to compute ωk and pk, 1 ≤ k ≤ K so that ω∗ matches ω for the first 2K − 1 moments.

Without loss of generality, we first consider a standard normal random variable Z ∼ N(0, 1). Denote its first

2K − 1 moments by µk ≡ E(Zk), k = 1, . . . , 2K − 1. Let Z∗ be a discrete random variable such that Z∗ = zk

with probability pk, 1 ≤ k ≤ K.

Following the work of Miller and Rice (1983), we proceed to compute {(zk, pk) | 1 ≤ k ≤ K}, for Z∗ so

that its first 2K − 1 moments match µk, k = 1, . . . , 2K − 1:

p1 + p2 + · · ·+ pK = 1,

p1z1 + p2z2 + · · ·+ pKzK = µ1,

p1z
2
1 + p2z

2
2 + · · ·+ pKz

2
K = µ2,

...

p1z
2K−1
1 + p2z

2K−1
2 + · · ·+ pKz

2K−1
K = µ2K−1.

(18)

The above equations can be solved using a standard method. The derivation below slightly differs from the

description of Miller and Rice (1983). A polynomial is first defined as

q(z) = (z − z1)(z − z2) . . . (z − zK) ≡
K∑
k=0

qkz
k. (19)

It then follows that qK = 1 and q(zk) = 0 for 1 ≤ k ≤ K.

Then, consider the first K + 1 equations in (18), multiply the first one by q0, the second one by q1, etc., and

sum them up to obtain:
K∑
k=0

qkµk = 0.

Similarly, take the second through (K + 2)th equations in (18), and repeat the above multiplication and sum-

mation procedure to obtain:
K∑
k=0

qkµk+1 = 0.
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The above process can be repeated K times to yield the following set of equations:

q0 + µ1q1 + µ2q2 · · ·+ µK−1qK−1 = −µK ,

µ1q0 + µ2q1 + µ3q2 · · ·+ µKqK−1 = −µK+1,

µ2q0 + µ3q1 + µ4q2 · · ·+ µK+1qK−1 = −µK+2,
...

µK−1q0 + µKq1 + µK+1q2 · · ·+ µ2K−2qK−1 = −µ2K−1.

(20)

The coefficients of polynomial (19), qk, can be obtained by solving the equations in (20), and the roots of

the polynomial determine the discrete atoms {zk | 1 ≤ k ≤ K}. The corresponding probabilities, {pk | 1 ≤

k ≤ K}, can then be found from the original equations in (18) with the zk substituted. The whole procedure is

implemented in the R function gauss.quad.prob, available within the R package statmod. The computation of

the Gaussian quadrature approximation is very fast.

Since normal distributions form a location-scale family, our variable of interest ω is related with Z through

ω = ζ + φZ. Once the zk and pk for the standard normal distribution are obtained, we can easily obtain the

discrete approximation ω∗ for ω as follows,

ω∗ = ωk with probability rk, where ωk = ζ + φzk and rk = pk, ∀1 ≤ k ≤ K. (21)

It can be easily shown that ω and ω∗ share the same first 2K − 1 moments.

As a side note, for the degenerate one-scenario case (i.e. K = 1), special care is needed to make sure that

Λi has the correct mean. In this case, we set ω1 =
√
ζ2 + φ2 instead of the default value ζ. The reason is

that Gaussian quadrature only matches the first moment of ω when K = 1, which won’t guarantee the mean

matching for Λi since Λi = (ωθi)
2.

C Abandonment Calculations for the Erlang-A Model

The primitives for the Erlang A model, also called the M/M/n+M model, are Markovian interarrival times with

mean 1/λ, Markovian service times with mean 1/µ, n servers, and Markovian patience times with mean 1/θ.

Given these data, we use the exact expressions presented in Mandelbaum and Zeltyn (2007) to calculate the

stationary probability that an arriving customer abandons queue before being served, f(λ, µ, θ, n).

Recall that the incomplete gamma function is defined as γ(x, y)
∆
=
∫ y

0 t
xe−tdt and, for x > 0, y ≥ 0 and

can be calculated recursively using standard procedures. We have used the algorithm described in Bhattacharjee

(1970) and is available in MATLAB. In turn, we use system primitives and the incomplete gamma function to

define two useful quantities,

J
∆
=

(
eλ/θ

θ

)
·
(
θ

λ

)nµ
θ

· γ
(
nµ

θ
,
λ

θ

)
and E ∆

=

∑n−1
j=0 (1/j!) · (λ/µ)j

1/(n− 1)! · (λ/µ)n−1
.
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The two quantities then allow us to calculate the desired probability, f(λ, µ, θ, n) = 1+(λ−nµ)J
E+λJ .

D Arrival Count Data Used in Numerical Tests

Figure 6 displays summary plots of the arrival data used in the European bank tests reported in Sections 2.5 and

4.1. The left plot shows daily counts for each of 176 days, and the right plot shows average within-day count

profiles by day of the week.
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Figure 6: Daily Arrival Counts (left) and Within-Day Average Count Profiles (right) for European Bank

Figure 7 displays summary plots of the arrival data used in the North American bank tests reported in Section

4.2. The left plot shows daily counts for each of 210 days, and the right plot shows average within-day count

profiles by day of the week.
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Figure 7: Daily Arrival Counts (left) and Within-Day Average Count Profiles (right) for NA Bank
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E Proofs of the Propositions

E.1 Proof of Proposition 3

For notational simplicity, we first drop the subscript d and obtain some generic results.

Suppose we observe yi, i = 1, ..., ı̂, and denote the corresponding observed vector as yı̂ = (y1, . . . , yı̂)
T.

According to the forecasting model (1), we then have

yi is a sample of Yi =
√

Λi + εi = ωϑi + εi, i = 1, ..., ı̂, (22)

where εi ∼ N(0, σ2) and ω ∼ N(ζ, ψ2).

Now consider the posterior density f(ω|yı̂) as follows

f(ω|yı̂) =
f(ω,yı̂)

f(yı̂)
=

∏ı̂
i=1 f(yi|ω) · f(ω)

f(yı̂)
= c · e−

∑ı̂
i=1

ϑ2i ω
2−2yiϑiω

2σ2
−ω

2−2ζω

2ψ2

= c · e−
∑ı̂
i=1 ϑ

2
i ω

2−2
∑ı̂
i=1 yiϑiω

2σ2
−ω

2−2ζω

2ψ2 ,

= c · e−
ψ2 ∑ı̂

i=1 ϑ
2
i+σ

2

2σ2ψ2 ω2+
ψ2 ∑ı̂

i=1 yiϑi+σ
2ζ

σ2ψ2 ω
,

where c is a leading constant. Recalling that aı̂ =
∑ı̂

i=1 ϑi yi and νı̂ =
∑ı̂

i=1 ϑ
2
i , we can see from the above

density function that the posterior of ω, given yı̂, is the normal distribution with mean and variance

ψ2aı̂ + σ2ζ

ψ2νı̂ + σ2
, and

σ2ψ2

ψ2νı̂ + σ2
.

Now suppose that the prior distribution for day d is ωd−1,d ∼ N(ζd−1,d, ψ
2
d−1,d), and we observe counts

{ydi | i = 1, . . . , ı̂} on day d. Let νd,̂ı =
∑ı̂

i=1 ϑ
2
ld,i

and ad,̂ı ≡
∑ı̂

i=1 ϑld,i yd,i. It then follows from the above

generic results that the posterior distribution ωdı̂,d is normal with mean and variance

ζdı̂,d =
ψ2
d−1,dad,̂ı + σ2ζd−1,d

ψ2
d−1,dνd,̂ı + σ2

, and ψ2
dı̂,d

=
σ2ψ2

d−1,d

ψ2
d−1,dνd,̂ı + σ2

.

E.2 Lemma 1 and Its Proof

To prove Proposition 5, we first state and prove the following Lemma 1.

Lemma 1 Suppose Yi = ωϑi + εi, i = 1, . . . , ı̂, where ω ∼ N(ζ, ψ2), εi ∼ N(0, σ2), and ω and εi are

independent. DefineA =
∑ı̂

i=1 ϑiYi. ThenA is normally distributed with mean νı̂ζ and variance ν2
ı̂ ψ

2 +νı̂σ
2,

where νı̂ =
∑ı̂

i=1 ϑ
2
i .

Proof We note that Yi|ω ∼ N(ωϑi, σ
2), and the Yi’s are independent conditional on ω. It then follows that

A|ω ∼ N(ωνı̂, σ
2νı̂).
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Given that ω ∼ N(ζ, ψ2), the density function of A at a can be written as

f(a) =

∫
f(a|ω)f(ω)dω =

∫
1√

2πσ2νı̂
e
− (a−ωνı̂)

2

2σ2νı̂ · 1√
2πψ2

e
− (ω−ζ)2

2ψ2 dω,

which can be reorganized as

f(a) =
1√

(2π)2νı̂σ2ψ2
e
− a2

2σ2νı̂
− ζ2

2ψ2

∫
e
− ν

2
ı̂ ω

2−2νı̂aω

2σ2νı̂
−ω

2−2ζω

2ψ2 dω.

Note that the exponent of the integrand can be re-expressed as

−νı̂ψ
2 + σ2

2σ2ψ2
(ω − aψ2 + ζσ2

νı̂ψ2 + σ2
)2 +

(aψ2 + ζσ2)2

2σ2ψ2(νı̂ψ2 + σ2)
.

Then, the density function f(a) equals to

f(a) =
1√

2πνı̂(νı̂ψ2 + σ2)
e
− (a−νı̂ζ)

2

2νı̂(νı̂ψ
2+σ2) ,

which implies that A ∼ N(νı̂ζ, ν
2
ı̂ ψ

2 + νı̂σ
2). 2

E.3 Proof of Proposition 5

Consider the following model:

YD+d,i = ωD+dνlD+d,i + εD+d,i, i = 1, . . . , I, (23)

where ωD+d ∼ N(ζD,D+d, ψ
2
D,D+d), εD+d,i

iid∼ N(0, σ2), and ωD+d and εD+d,i are independent.

Given (14), it follows from Lemma 1 that

AD+d,̂ı ∼ N(νD+d,̂ıζD,D+d, ν2
D+d,̂ıψ

2
D,D+d + νD+d,̂ıσ

2). (24)

The definition of ζ ′D,D+d in (15) implies that ζ ′D,D+d is a linear shifted and scaled transformation of AD+d,̂ı;

hence ζ ′D,D+d is also normally distributed, and its variance is a scaled version of the variance of AD+d,̂ı, whose

expression is given in the right equality of (16).

Below we use induction to prove that E(ζ ′D,D+d) = ζD,D+d. To begin with, consider d = 1. Note that

ζ ′D,D+1 =
ψ2
D,D+1AD+1,̂ı + σ2ζD,D+1

ψ2
D,D+1νD+1,̂ı + σ2

,

which implies that

E(ζ ′D,D+1) =
ψ2
D,D+1νD+1,̂ıζD,D+1 + σ2ζD,D+1

ψ2
D,D+1νD+1,̂ı + σ2

= ζD,D+1.

Now suppose that, for d ≥ 2, we have proven that E(ζ ′D,D+d−1) = ζD,D+d−1, for any ı̂ ∈ {1, . . . , I}. We

then have

ζD,D+d − E(ζ ′D,D+d) =
σ2

ψ2
D+d−1,D+dνD+d,̂ı + σ2

(ζD,D+d − ζD+d−1,D+d) . (25)
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Hence, it suffices to show that ζD,D+d − ζD+d−1,D+d = 0. For that, we note

ζD,D+d − ζD+d−1,D+d = ζD,D+d − E(E(ωD,D+d|YD+1, . . . ,YD+d−1))

= ζD,D+d − {αlD+d
+ β[E(E(ωD,D+d−1|YD+1, . . . ,YD+d−1))− αlD+d−1

]}

= ζD,D+d − αlD+d
− β[E(ζ ′D,D+d−1)− αlD+d−1

]

= ζD,D+d − αlD+d
− β(ζD,D+d−1 − αlD+d−1

)

= βd(ωD − αlD)− βd(ωD − αlD) = 0.

Thus, we have shown that E(ζ ′D,D+d) = ζD,D+d for d ≥ 1, which concludes the induction proof.

F Results for Wilcoxon Signed Rank Tests

The figures below show results for Wilcoxon signed rank tests that check to see if the median of the difference

between two matched sets of values is significantly different from zero. The tests were implemented using the

signrank function in MATLAB R2013a.

SP1 UP1 RP1 SP4 UP4 RP4 SP100 UP100 RP100
SP1 1.000 0.750 0.024 1.000 1.000 1.000 1.000 1.000 1.000
UP1 0.251 1.000 0.032 1.000 1.000 1.000 1.000 1.000 1.000
RP1 0.976 0.968 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SP4 0.000 0.000 0.000 1.000 0.992 0.413 0.868 0.845 0.002
UP4 0.000 0.000 0.000 0.008 1.000 0.323 0.042 0.310 0.000
RP4 0.000 0.000 0.000 0.589 0.678 1.000 0.553 0.639 0.006
SP100 0.000 0.000 0.000 0.134 0.959 0.450 1.000 0.966 0.002
UP100 0.000 0.000 0.000 0.156 0.693 0.363 0.035 1.000 0.001
RP100 0.000 0.000 0.000 0.998 1.000 0.994 0.998 0.999 1.000

Results of 1‐Sided Wilcoxon Signed Rank Tests Using European Bank Abandonment Rates
Left‐Tail Probabilities for [Colum Values ‐ Row Values]

Figure 8: Results of One-Tailed Wilcoxon Signed Rank Tests for European Bank Abandonment Data

SP1 UP1 RP1 SP4 UP4 RP4 SP100 UP100 RP100
SP1 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.999
UP1 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
RP1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SP4 0.000 0.000 0.000 1.000 0.000 0.000 0.985 0.000 0.000
UP4 0.000 0.000 0.000 1.000 1.000 0.006 1.000 0.371 0.000
RP4 0.000 0.000 0.000 1.000 0.994 1.000 1.000 0.993 0.028
SP100 0.000 0.000 0.000 0.015 0.000 0.000 1.000 0.000 0.000
UP100 0.000 0.000 0.000 1.000 0.631 0.007 1.000 1.000 0.000
RP100 0.001 0.000 0.000 1.000 1.000 0.973 1.000 1.000 1.000

Results of 1‐Sided Wilcoxon Signed Rank Tests Using European Bank Cost per Handled Call
Right‐Tail Probabilities for [Column Values ‐ Row Values]

Figure 9: Results of One-Tailed Wilcoxon Signed Rank Tests for European Bank Average Cost Data

Figure 8 reports the results of one-tailed tests that compare daily abandonment rates across the nine schemes.

The result shown in each cell of the figure’s table is based on a set of 76 values, where each value is the
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abandonment rate associated with the column label, less the abandonment rate associated with the row label,

for a single day. The one-sided, left-tailed p-value shown in the cell is the probability that the median value

is less than zero, and we interpret the p-value to be a measure of the probability that the abandonment rates

associated with the column label’s scheme are significantly less than those associated with the row label’s

scheme. Below, we denote a particular cell by its (row,column)-heading coordinates.

For example, cell (SP1,UP1) shows that the p-value associated with the probability that the median of UP1-

SP1 differences is less than zero is 0.75. In this case, we cannot reject the null hypothesis that the median

value of the differences is less than zero, and we conclude that UP1’s abandonment rates do not appear to be

significantly higher than SP1’s.

In Figure 8, clusters of adjacent (blue) cells with solid borders compare different schemes that use the same

number of scenarios. For example, from (SP1,UP1) we see that UP1’s daily abandonment rates do not appear

to be significantly higher than SP1’s. In contrast, from the p-values reported in (SP1,RP1) and (UP1,RP1) we

see that RP1’s daily abandonment rates appear to be significantly higher than those of the other two 1-scenario

schemes. In contrast, results for (SP4,UP4), (SP4,RP4), and (UP4,RP4) show that UP4’s daily abandonment

rates do not appear to be significantly higher than SP4’s, nor do RP4’s as compared to SP4’s and UP4’s. While

UP100’s rates do not appear to be significantly higher than SP100’s, RP100’s abandonment rates do appear to

be systematically higher than those of the other two schemes. This last fact is visible to the eye in the left panel

of Figure 4.

The set of three diagonal (green) cells with dashed borders in Figure 8 reports tests of differences be-

tween the results of 4 and 100-scenario versions that use the same scheduling approach. From (SP100,SP4),

(UP100,UP4), and (RP100,RP4) we see that the 4-scenario version of these schemes have abandonment-rates

that do not appear to be significantly higher than that of their 100-scenario counterparts. This is evidence that

only a small number of scenarios is needed to ensure that the schemes properly compensate for arrival-rate

variability.

Figure 9 reports analogous results for daily cost per handled call. Here, we report right-tail probabilities

and interpret small p values to suggest that average costs associated with the focal column label’s scheme are

systematically larger than those associated with the focal row label’s scheme. In this figure we see that, for any

number of scenarios, the UP scheme appears to have lower average costs than its analogous SP scheme, and the

RP scheme appears to have lower average costs than either its SP or UP counterpart. When we compare SP4 to

SP100 and UP4 to UP100, we see that the schemes with higher numbers of scenarios do not have significantly

lower costs. In contrast RP100 has average costs that appear to be significantly lower than those of RP4, but as

Figure 8 indicates, the cost savings also come with significantly higher abandonment rates.

In sum, for the European Bank call center data, the use of UP schemes provides significantly lower costs
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than SP schemes, without appearing to degrade abandonment rate performance. Furthermore, the 4-scenario

versions of the SP and UP schemes appear to perform as well as the 100-scenario versions. While the same

observations hold for RP4, they do not hold for RP100.

SP1 UP1 RP1 SP4 UP4 RP4 SP100 UP100 RP100
SP1 1.000 0.091 0.000 1.000 1.000 1.000 1.000 1.000 1.000
UP1 0.909 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
RP1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SP4 0.000 0.000 0.000 1.000 0.207 0.998 0.621 0.231 0.924
UP4 0.000 0.000 0.000 0.794 1.000 0.997 0.914 0.441 0.978
RP4 0.000 0.000 0.000 0.002 0.003 1.000 0.003 0.004 0.214
SP100 0.000 0.000 0.000 0.380 0.086 0.997 1.000 0.110 0.864
UP100 0.000 0.000 0.000 0.770 0.560 0.996 0.891 1.000 0.965
RP100 0.000 0.000 0.000 0.077 0.022 0.787 0.137 0.036 1.000

Results of 1‐Sided Wilcoxon Signed Rank Tests Using North American Bank Abandonment Rates
Left‐Tail Probabilities for [Colum Values ‐ Row Values]

Figure 10: Results of One-Tailed Wilcoxon Signed Rank Tests for NA Bank Abandonment Data

SP1 UP1 RP1 SP4 UP4 RP4 SP100 UP100 RP100
SP1 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
UP1 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000
RP1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SP4 0.000 0.000 0.000 1.000 0.000 0.000 0.766 0.000 0.000
UP4 1.000 0.000 0.000 1.000 1.000 0.000 1.000 0.440 0.000
RP4 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 0.125
SP100 0.000 0.000 0.000 0.235 0.000 0.000 1.000 0.000 0.000
UP100 1.000 0.000 0.000 1.000 0.562 0.000 1.000 1.000 0.000
RP100 1.000 1.000 0.000 1.000 1.000 0.875 1.000 1.000 1.000

Results of 1‐Sided Wilcoxon Signed Rank Tests Using North American Bank Cost per Handled Call
Right‐Tail Probabilities for [Column Values ‐ Row Values]

Figure 11: Results of One-Tailed Wilcoxon Signed Rank Tests for NA Bank Average Cost Data

Figures 10 and 11 present the results of analogous Wilcoxon tests for the 110 sets of abandonment rates and

costs per handled call generated with the North American data. From the figures’ tables we see that the RP

schemes are better behaved in these tests. As we would expect, the RP schemes appear to have systematically

lower costs per call than the SP or UP schemes, without having systematically higher abandonment rates.

Similarly the 100-scenario versions of SP, UP, and RP all have abandonment rates and costs per call that do not

appear to be significantly better than those for their 4-scenario counterparts.

G Computation Times

All the numerical tests were run using OPL-CPLEX Optimization Studio 12.6 on a dedicated PC with a 2.4

GHz Intel Core 2 Quad CPU and 8 GB of RAM.
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G.1 Computation Times for Quadrature and Sampling-Based Scenario Generation

In this part, we report computation times for the tests performed in Section 2.5.1.
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Figure 12: Day 101 Computation Times, by Number of Scenarios

Figure 12 reports so-called “wall” computation times for each method and number of scenarios. That is,

the times are the elapsed time recorded by the computer’s clock and account for the sometimes significant

preprocessing time needed to set up the optimization problems. For each number of scenarios, results for

quadrature reflect the solution of a single IP, while those for sampling are the average of solution times of the

100 IP’s in each associated set.

The panel’s plot shows that, for both methods, computation times appear to grow roughly linearly with the

number of scenarios and that the times for quadrature are about double the average computation time (across

100 samples) for larger numbers of scenarios. The longest times, at 400 scenarios, are on average 136 seconds

for sampling-based scenarios, and about 260 seconds when using quadrature. (These computation times seem

reasonable for practical implementation.) Of course, the longer computation times required by quadrature-

based scenarios are compensated by the fact that IP solutions for quadrature appear to be stable with many

fewer scenarios, as little as 4.

G.2 Computation Times for Tests of SPm, UPm, and RPm Schemes

In this part, we report computation times for the tests performed in Section 4. Figure 13 shows the nine schemes’

average wall computation times for the European retail bank call center dataset, in the left panel, and for the

North American retail bank call center dataset, in the right panel, respectively

Average computation times for the European retail bank call center dataset increase with the number of

scenarios and with the complexity of the scheme. All 1 and 4-scenario schemes took less than 20 seconds of

wall clock time to set up and solve a given day’s mathematical program, on average. RP100 was the most
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Figure 13: Nine Schemes’ Average Computation Times for European (left) and NA (right) Data

computationally intensive scheme, requiring an average of 254 seconds, about twice the 126-second average

required to set up and solve UP100.

Average computation times for the North American retail bank call center dataset were systematically longer

than those for the European bank, but with the same relative patterns. For example, UP4 took less than 15

seconds of wall clock time, on average, to set up and solve, while RP4 took a bit less than 85 seconds on

average. RP100 was again the most computationally intensive scheme, requiring an average of 1186 seconds –

almost 20 minutes – to set up and solve, more than twice the 484-second average required to set up and solve

UP100. As noted above, for practical purposes it is sufficient to solve the 4-scenario versions of the recourse

programs.
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