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Traditional research on routing in queueing systems usually ignores service quality related factors. In this paper, we
analyze the routing problem in a system where customers call back when their problems are not completely resolved by
the customer service representatives (CSRs). We introduce the concept of call resolution probability, and we argue that it
constitutes a good proxy for call quality. For each call, both the call resolution probability �p� and the average service
time �1/�� are CSR dependent. We use a Markov decision process formulation to obtain analytical results and insights
about the optimal routing policy that minimizes the average total time of call resolution, including callbacks. In particular,
we provide sufficient conditions under which it is optimal to route to the CSR with the highest call resolution rate �p��
among those available. We also develop efficient heuristics that can be easily implemented in practice.
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1. Introduction
Customer service oriented call centers are traditionally
operated as cost centers. Service accessibility and customer
waiting time are the dominant performance measures. As
a result, capacity planning and call-routing software sys-
tems strive to minimize costs while achieving self-imposed
service-level constraints, such as “average wait in queue
less than 15 seconds.” These traditional approaches do not
consider, however, the quality of answers provided by the
customer service representatives (CSRs). Low quality of
service has a significant impact on the call center opera-
tions besides customer defection: As dissatisfied customers
call back for more help for the same problem, the load on
the system increases.
This operational impact of service failure is often ignored

by call center capacity planning and call-routing manage-
ment systems. Our paper is motivated by the problems at
a major European telecommunication service provider that
found that, on average, a customer needed to talk to more
than three different CSRs to get his/her problem resolved.
This company also observed noticeable differences among
CSRs in their ability to resolve the customers’ problems.
In our paper, we integrate this service quality related infor-
mation into call-routing decisions. The goal is to minimize
the average total time of call resolution, defined as the total
time spent by a customer in the system to resolve one issue,
including all the callbacks.

A key feature of our approach is the way we model the
quality of a CSR’s answer. For customer service call cen-
ters, a high-quality answer provided by the CSR should
resolve the customer’s issue during that call. We opera-
tionalize this concept by defining call quality as the call
resolution probability, the probability that the customer is
satisfied and does not call back for the same problem. The
call resolution probability is directly related to a customer’s
perception of call quality, which depends on the CSR’s
understanding of the customer’s needs, courtesy, and com-
petency (Zeithaml et al. 1993). Furthermore, it can be quan-
tified and measured by most of the call center information
systems in use today.
Our experience suggests that a CSR’s call resolution

probability is often highly correlated with his/her call speed
(defined as the service rate). On the one hand, the corre-
lation could be negative. Due to very high turnover rates
and long training lead time in this industry (see Gans and
Zhou 2002 for example), some call centers are pressed to
make the most use of their CSRs. It is common for the call
center to compensate CSRs on the number of calls served
over a period of time, or their call handle time, thereby
encouraging them to handle calls as fast as possible. As a
result, CSRs sometimes rush to end a call without making
sure that the root problem is fixed and will not reoccur later
(Read 2002). On the other hand, the correlation could be
positive. Many times, better trained and more experienced
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CSRs are able to handle the calls faster and provide higher
service quality at the same time. In this paper, we model the
service time and the call resolution probability as exoge-
nous variables, and we do not explicitly model the correla-
tion between them.
Intuitively, call centers that deal with complex issues,

such as technical support for corporate computer users or
medical help over the phone, may have low call resolution
probabilities. Nevertheless, we know from our experience
that even when customer problems are simple (as for the
European call center on which this study is based), the call
resolution probabilities can be significantly low. We believe
that this comes from the CSR compensation system men-
tioned previously and the high turnover rate that results in
undertrained employees. In this paper, we describe rout-
ing rules that account for these call resolution probabil-
ities. Although we do not directly identify compensation
schemes that can improve the call resolution probabilities
while addressing the high turnover rate, our results provide
interesting insights into this issue.
We analyze a call-routing problem where there exist

several classes of CSRs, each with its own average call
speed � and call resolution probability p. The goal is to
minimize the average total time of call resolution. Poten-
tially, there is a trade-off between call speed and call reso-
lution in routing calls: If call resolution is the only concern,
then it would be optimal to route calls only to the CSR
class with the highest p. The customers’ wait, however,
may become excessively long. If call speed is the only
concern, then the objective would be to minimize the aver-
age waiting time of each call instance independently, with-
out paying attention to the number of customer attempts.
Hence, we feel the average total time of call resolution is
the best single measure that encompasses both call speed
and call resolution, and it can be construed as the average
number of customer tries times the average waiting time of
each try. Other objective functions, such as linear combi-
nations of call resolution and call speed, are possible, but
the weights are hard to determine and they generally lead
to intractable models.
We formulate the routing problem as a Markov decision

process (MDP), where the call center is represented by a
heterogeneous, multiserver queueing system. In this frame-
work, we provide several partial characterizations of the
optimal routing policy. Our main result states that, when-
ever possible, a call should be routed to the CSR class
with the highest call resolution rate, p�. If the highest-p�
CSRs are all busy, then the call may be routed to another
available CSR or kept in the queue. Furthermore, we derive
sufficient conditions under which it is optimal to route a
call to the CSR with the highest resolution rate among the
available CSRs. We call this the p� rule. In particular, we
show that when the CSRs differ only in their call speed
or call resolution probability, the p� rule is optimal. We
also fully characterize the optimal routing policy for a sys-
tem with two heterogeneous CSRs. In this case, we show

that the optimal policy is of a threshold type: A call will
always be routed to the CSR with the higher resolution
rate whenever possible; the other CSR will be routed a call
only when the number of calls waiting in queue exceeds a
certain threshold.
Based on these findings, we propose simple and intuitive

routing policies. Our numerical studies show that the p�
rule performs very well in most cases, even when it is not
optimal. Moreover, the p�-t policy, defined as the p� rule
plus a threshold, is almost optimal in all of our test cases.
We also numerically demonstrate that call centers can sig-
nificantly improve their performance by incorporating call
resolution probability p into routing decisions.
The p� index introduced in this paper is a simple and

effective routing index that accounts for both the call speed
and the call quality. It also suggests that CSRs should be
evaluated and compensated on their call resolution rate,
rather than their service rate alone, as is often the case.
To ascertain the robustness of our findings, we analyze

the problem under more general modeling assumptions. We
show that our results remain valid when callbacks are put in
a separate queue and given priority. We also show numeri-
cally that the p�-based policies perform well even if there
is an exponentially distributed delay before a customer
calls back. When the service time depends on whether,
and how many times, the customer has talked to the same
CSR before, we introduce and evaluate a dedicated routing
policy, which routes new calls using the p�-t policy, but
always routes callbacks to the same CSR. A requirement
for the implementation of this policy is the call center’s
ability to identify the history of a call before serving it
(e.g., a case number is required for callbacks at the phone
prompt), which is not the case for the call center we study.
In §5.4, we will study the dedicated policy as an extension
to the basic model.
The rest of this paper is organized as follows: In §2, we

review the literature, and in §3, we formulate and discuss
the model. Results for the optimal routing policy are pre-
sented in §4. In §5, we use extensive numerical tests to
show the importance of accounting for call resolution prob-
ability in making the routing decisions. Several heuristics
are proposed and compared. We also analyze the problem
when some modeling assumptions are relaxed. We con-
clude the paper and comment on further research in §6.

2. Literature Review
The probability of health deterioration after treatment in
the health care system (e.g., Berk and Moinzadeh 1998,
De Angelis 1998), which is a strong indicator of the treat-
ment efficiency, is similar to the probability of callback,
1−p, in our model. To our knowledge, however, our paper
is the first to apply such a measure of quality to the research
of call centers or other service delivery systems.
If calls bring direct revenue to the company (e.g., catalog

merchant), customer loyalty, measured by the probability of
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defection, better reflects the service quality provided by the
call center. Hall and Porteus (2000) and Gans (2002) are
two examples of this approach. In this paper, we focus on
the customer service call centers, so we assume that dissat-
isfied customers will call back, instead of simply defecting.
Furthermore, to address customer allocation and capacity-
planning problems, we use a more detailed model of the
service system than those in Hall and Porteus (2000) and
Gans (2002).
There is a large body of literature on the retrial queues.

See Falin and Templeton (1997) and the references therein.
More recently, Mandelbaum et al. (e.g., 1999a, b; 2000)
study the effect of customer retrial behavior patterns specif-
ically in the context of call centers. The customer retrials
they study differ from the customer callbacks in this paper
in that a retrial occurs before the customer receives her ser-
vice (when a customer calls and receives a busy signal, she
“retries” by calling back sometime later), while a callback
occurs after the customer has already received her service.
When the CSRs in a call center have different skills

and speeds, skills-based routing has been shown to outper-
form the first-come-first-served (FCFS) and first-available-
CSR call-routing rules in many situations. As a result,
much study has been done on the skills-based call-routing
schemes, both in the industry and in academia (e.g., Bell
and Williams 2001, Harrison and Lopéz 1999, Gans and
Zhou 2003, Atar et al. 2004, and some other references
contained in Gans et al. 2003).
Research on routing in general often suggests priority-

based policies: Some call-CSR combinations are given pri-
ority so they will be used whenever possible; the other
combinations will be used only if the system is in cer-
tain states. A good example is the traditional c� rule (see
Van Mieghem 1995 for a generalized c� rule and Mandel-
baum and Stolyar 2002 for its application in the call center
setting). The main issue in these models is how to min-
imize total cost based on the different processing speeds
associated with each call-CSR combination and the differ-
ent call-type specific holding costs.
The stream of research most relevant to ours is the

so-called slow-server problem. In the two-server slow-
server problem, there is one Poisson arrival stream and
two heterogeneous exponential servers. The objective is to
find a routing policy to minimize the average wait. Larsen
(1981) first formulates the problem and conjectures that a
threshold policy should be optimal. Later, Lin and Kumar
(1984), Walrand (1984), and Koole (1995) prove this con-
jecture using MDP policy iteration, coupling argument, and
MDP value iteration, respectively. Larsen and Agrawala
(1983) develop a good and computationally simple approx-
imation to the threshold.
The general slow-server problem allows for more than

two heterogeneous servers. Due to the increase in state-
space dimensionality, the problem becomes very complex
(e.g., see Rykov 2001, Luh and Viniotis 2002). So far, the
optimal routing policy has not been fully characterized for

the general case (see de Véricourt and Zhou 2005). Our
model can be viewed as the general slow-server model
with multiple classes of servers and the additional call-
back loops—in particular, when the call resolution proba-
bilities are all equal to 1, our model reduces to the general
slow-server problem. The optimality of the p� rule in our
model implies that allocating a call to the fastest server (the
� rule) is optimal for the general slow-server problem. This
extends the existing literature on the general slow-server
problem.
Most analysis of the slow-server problem is exact. Teh

and Ward (2002), on the other hand, study the problem
in the heavy-traffic regime. They show that, as the heavy-
traffic limit is approached, the system is stable and the
threshold policy is optimal if and only if the threshold
grows at a logarithmic rate. In other words, in the heavy-
traffic regime, the threshold does not disappear.

3. Formulation of the Problem

3.1. Model and Assumptions

Consider a call center with C classes of CSRs. A class
is a group of CSRs with the same service time distribu-
tion and call resolution probability. We assume that there
are Si CSRs in class i, i ∈ �1� 
 
 
 �C�. For a Class-i CSR,
i ∈ �1� 
 
 
 �C�, the service time is exponentially distributed
with rate �i, and the call resolution probability is pi. When
a Class-i CSR completes a call, there are two possible
outcomes: (1) With probability pi, the issue is completely
resolved and the customer will simply leave the system,
and (2) with probability 1−pi, the issue is not completely
resolved, and the customer calls back right away.
Our model does not differentiate new calls from call-

backs, and all customers are served on an FCFS. In prac-
tice, however, callbacks are sometimes given higher prior-
ity if they can be identified. This means that callbacks are
put in a separate queue and given priority over new calls.
A simple coupling argument shows, nonetheless, that such
a priority scheme does not alter the average total waiting
time of the system, and our findings remain valid.
The arrival of customers with new requests follows a

Poisson process with rate �, and they wait in a queue if they
are not served upon arrival. There is no limit on the waiting
space. To ensure stability, we assume that �<

∑C
i=1 Sipi�i.

See Figure 1 for details.
Due to the memoryless property of Poisson arrival and

exponential service times, the state of the system at time t
can be described by a �C + 1�-dimensional vector n�t�=
�n0�t�� n1�t�� 
 
 
 � nC�t��, where n0�t� � 0 is the number
of calls waiting in the queue and ni�t� ∈ �0� 
 
 
 � Si�, i ∈
�1� 
 
 
 �C� is the number of busy Class-i CSRs.
At any time, the system controller must decide

(1) whether to keep a call in the queue or to route it to an
available CSR, and (2) if a call is to be routed, to which
CSR class it should be routed. The goal of our model is to
minimize the average total time of call resolution.
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Figure 1. Model overview.
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In this model, we assume that both the call resolution
probabilities and the service rates are independent of the
number of previous calls made by the customer for the
same problem. Such an assumption may not be realistic in
certain situations, for instance, when there is a setup time
each time a customer meets a new CSR, or more gener-
ally when the service time decreases with the number of
attempts. We discuss this situation in §5.3.
We also assume that customers immediately return to

the system when they are dissatisfied. This assumption is
reasonable when a customer can quickly check the accu-
racy of the CSR’s answer. Examples include technical sup-
port call centers that deal with computer hardware/software
applications, where the delay in callback is usually small
compared to the service time. In other practical situations,
however, dissatisfied customers call back after a longer
delay. In §5.4, we present a model where an exponen-
tial amount of time elapses before dissatisfied customers
call back. Numerical studies show that the routing policies
developed for the immediate callback model also perform
well in this case.

3.2. The Markov Decision Problem

The routing policies we study are nonanticipating and non-
preemptive. Furthermore, due to the Markovian assump-
tions, the policies are also not history dependent. As is well
known in the literature, it is optimal to take actions only at
arrival and service departure epochs. Any possible action
is represented by a C-dimensional vector �a1� 
 
 
 � aC�,
where ai, ∀ i ∈ �1� 
 
 
 �C�, is the number of calls routed to
Class-i CSRs. In particular, the zero vector represents the
(non-)action of not routing any call. A routing policy � is
thus a rule that determines, for every decision epoch, what
action to take.
The objective is to determine the routing policy that min-

imizes the average total time of call resolution. By Little’s
Law, this is equivalent to minimizing the average number
of customers in the system. As a result, we look for the

Markov routing policies that minimize the average number
of customers in the system:

g∗ =min
�
lim sup
T→	

1
T
E�
n0

[∫ T

0

C∑
i=0
ni�t� dt

]
� (1)

where E�
n0
denotes the conditional expectation given pol-

icy � and the initial state at time 0.
The main approach we use in this paper is the standard

MDP value iteration (e.g., see Ha 1997 or Veatch and Wein
1996). Let v�n� be the standard MDP “cost-to-go” func-
tion in state n, then v is a mapping from NC+1 to �+,
where N and �+ are the sets of integers and nonnega-
tive real numbers, respectively. In the next section, we will
define the desirable properties for the optimal MDP value
function v�·� and show that these properties are preserved
by the value iteration operators. We define below the two
value iteration operators T and � .
Because the interarrival and service time are exponen-

tially distributed, we can study an equivalent Markov
process with independent, identically distributed (i.i.d.)
interevent time by adding fictitious transitions. This proce-
dure is known as uniformization. (See §11.5 in Puterman
1994 for details.) The uniformized Markov process will
have a fixed total transition rate of �+∑C

i=1 Si�i in every
state. Without loss of generality, we can scale the time
and assume that �+∑C

i=1 Si�i = 1. Let ei, i ∈ �0� 
 
 
 �C�,
denote a �C+1�-dimension vector whose �i+1�th compo-
nent is 1 and all other components 0, �= �f � f � NC+1 →
�+�, and T � �→�.
We denote by K�n� the set of classes with available

CSRs in state n:

K�n�= �i ∈ �1� 
 
 
 �C� � ni < Si�
 (2)

Then, for any v ∈�,

Tv�n�=



v�n� if n0 = 0 or K�n�=��

min�Tv�n+ ej − e0�� v�n� � j ∈K�n��
if n0 > 0 and K�n� �= �


(3)

Note that more than one call can be routed at once. Instead
of listing all these possible routings in the minimization
operator, we choose to use an equivalent recursive def-
inition in (3). The recursion is well defined because n0
decreases by one each time a call is routed. For exam-
ple, take n0 = 2, and apply the previous recursive definition
twice. We have

Tv�n�=min{v�n+ ej + ek − 2e0�� v�n+ ej − e0��
v�n� � j ∈K�n�� k ∈K�n+ ej − e0�

}



When Tv�n�= v�n+ ej + ek − 2e0� for some j� k, the cor-
responding policy routes two calls at the same time.
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The MDP optimality equation then becomes

�v∗�n�= v∗�n�+ g∗� (4)

where g∗ is the optimal average number of customers
defined in (1), which is independent of the initial state (see,
for instance, Rykov 2001 and the references therein), v∗�n�
is the optimal relative value function, and �� �→� is the
dynamic operator that satisfies

�v�n�=
C∑
i=0

ni +�Tv�n+ e0�

+
C∑
i=1

ni�1−pi��iTv�n− ei + e0�

+
C∑
i=1

nipi�iTv�n−ei�+
C∑
i=1

�Si−ni��iTv�n�
 (5)

Note that the last term corresponds to a fictitious transition
due to the uniformization procedure. We allow an action at
these transitions, as in Koole (1995).

4. Analysis of the Optimal Routing Policy
In this section, we present partial characterizations of the
optimal routing policy. We first show that, whenever pos-
sible, it is optimal to route a call to the CSR class with
the highest call resolution rate p�. We then derive condi-
tions under which a generalization of this property, the p�
rule, is optimal. More precisely, we assume without loss
of generality that the different classes of CSRs are indexed
such that p1�1 � · · · � pC�C . Then, the p� rule stipu-
lates that, if the state is n when a call is routed, then the
call should be routed to CSR class m�n�, where m�n� =
min�k � k ∈K�n��.
We end this section with a full characterization of the

optimal routing policy for the two-CSR case.

4.1. Partial Characterization of the Optimal Policy

For any v ∈�, define

"iv�n�= v�n+ ei�− v�n� ∀ i ∈ �0� 
 
 
 �C��

"ijv�n�= v�n+ ei�− v�n+ ej � ∀ i� j ∈ �0� 
 
 
 �C�


Moreover, define V to be the set of all v ∈� that satisfy
the following properties:

Property 1. "iv�n�� 0 ∀ i ∈K�n�.

Property 2. "0v�n�� 0.

Property 3. "1iv�n�� 0 if 1 ∈K�n� and i ∈K�n�.

Property 4. "10v�n�� 0 if 1 ∈K�n�.

Properties 1 and 2 are fairly intuitive. They state that
fewer calls in the system, either with Class-i CSRs or in
queue, always result in smaller average total time in the
system. Properties 3 and 4 together imply that, whenever
possible, the policy corresponding to v ∈ V always routes
a call to a Class-1 CSR first.
The following lemma is used repeatedly in our analysis

later. Its proof is straightforward, and thus omitted.

Lemma 1. Let �x1� 
 
 
 � xp� and �y1� 
 
 
 � yq� be two sets
of real numbers. If for any i ∈ �1� 
 
 
 � p� there exists a
j�i� ∈ �1� 
 
 
 � q� such that xi � yj�i�, then mini∈�1�


�p��xi��
minj∈�1�


�q��yj�.

The following lemma states that operator T preserves V .

Lemma 2. If v ∈ V , then Tv ∈ V .

Proof. In this proof, the terms “positive” and “negative”
mean “nonnegative” and “nonpositive,” respectively. Let
v ∈ V . We first show that Tv satisfies Properties 1–3 by
induction on n0, the number of calls waiting in queue. We
then deduce Property 4.
Step 1. Consider states n where n0 = 0. A direct com-

putation leads to "iTv�n�="iv�n��"0Tv�n�=min�"iv�n��
"0v�n� � i ∈ K�n��, and "1iTv�n� = "1iv�n�. It follows
from v ∈ V that Tv satisfies Properties 1–3 for n such that
n0 = 0.
Step 2. Consider states n where n0 > 0. Assume that Tv

satisfies Properties 1–3 for all states where the number of
calls waiting in queue is strictly less than n0.
Property 1. By definition, Tv�n+ei�=min�Tv�n+ei+

ej − e0�� v�n + ei� � j ∈ K�n + ei��. Note that if j ∈
K�n+ ei�, then j ∈K�n�. Moreover, Tv�n+ ei+ ej − e0��
Tv�n + ej − e0�, because Tv is assumed to satisfy Prop-
erty 1 for states with n0 − 1 waiting calls. Furthermore,
v�n + ei� � v�n� because v ∈ V . Hence, Tv�n� satisfies
Property 1 by Lemma 1.
Property 2. Similarly, because K�n+e0�=K�n�� v satis-

fies Property 2, and Tv satisfies Property 2 for n0−1, we can
use Lemma 1 to show that Tv�n+ e0� = min�Tv�n+ ej ��
v�n+ e0� � j ∈K�n+ e0���min�Tv�n+ ej − e0�� v�n� � j ∈
K�n��= Tv�n�.
Property 3. For j ∈ K�n+ ei�, j �= 1, we also have j ∈

K�n+ e1�. Therefore, Tv�n+ ej − e0 + ei� � Tv�n+ ej −
e0 + e1� because Tv is assumed to satisfy Property 3 for
n0−1. For j = 1 ∈K�n+ei�, we can choose i ∈K�n+e1�,
and we have Tv�n+ e1 − e0 + ei� = Tv�n+ ei − e0 + e1�.
Moreover, v�n+ ei�� v�n+ e1�, because v satisfies Prop-
erty 3. Therefore, by Lemma 1, Tv�n� satisfies Property 3.
It follows that Tv satisfies Properties 1–3 for all n0.
Property 4. Finally, note that

Tv�n+e0�=min�Tv�n+ej ��v�n+e0� � j ∈K�n+e0��
=min�Tv�n+e1��v�n+e0��=Tv�n+e1�
 (6)

Therefore, "10Tv�n�= 0. The second equality in (6) holds
because Tv satisfies Property 3. The last one follows from
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the fact that Tv�n+ e1� is less than or equal to v�n+ e1�
from the definition of T , which is in turn less than or equal
to v�n+ e0� from Property 4. �

If v ∈ V , then according to Lemma 2, Tv satisfies Prop-
erties 3 and 4, and (3) becomes: For any n where 1 ∈K�n�,

Tv�n�=
{
v�n� if n0 = 0�
Tv�n+ e1− e0� if n0 > 0


(7)

In (6), we have actually shown that Tv satisfies a prop-
erty stronger than Property 4.

Corollary 1. If v ∈ V , then "10Tv�n� = 0 ∀n s.t.
1 ∈K�n�.

The following theorem establishes Properties 1–4 for the
optimal value function.

Theorem 1. If p1�1 � pi�i ∀ i ∈ �2� 
 
 
 �C� and v ∈ V ,
then �v ∈ V .

Proof. Consider v ∈ V . We first study the sign of "i� for
i� 1. From (5),

"i�v�n�= 1+
[
�Si − ni − 1��1+

∑
j �=i

�Sj − ni��j

]
"iTv�n�

+�"iTv�n+ e0�+�i�1−pi�"0Tv�n�

+
C∑
j=1

njpj�j"iTv�n− ej �

+
C∑
j=1

nj�1−pj��j"iTv�n− ej + e0�� (8)

which is positive from Properties 1 and 2 and Lemma 2.
Similarly, based on Property 3 and Lemma 2, we

conclude

"0�v�n�= 1+
C∑
j=1

�Sj − nj��j"0Tv�n�+�"0Tv�n+ e0�

+
C∑
j=1

njpj�j"0Tv�n− ej �

+
C∑
j=1

nj�1−pj��j"0Tv�n− ej + e0�� 0
 (9)

We now turn our attention to "1i� :

"1i�v�n�=
[
�Si − ni − 1��i +

∑
j �=i

�Sj − nj��j

]
"1iTv�n�

+ ��1−�i�'Tv�n+ e0�− Tv�n+ e1�(
− �p1�1−pi�i�"0Tv�n�+�"1iTv�n+ e0�

+
C∑
j=1

njpj�j"1iTv�n− ej �

+
C∑
j=1

nj�1−pi��j"1iTv�n− ej + e0�
 (10)

We know that Tv�n+ e0�= Tv�n+ e1� from Corollary 1.
Moreover, because p1�1 � pi�i, −�p1�1−pi�i�"0Tv�n��
0 from Property 2. Consequently, by Property 3 and
Lemma 2, "1i�v�n�� 0. Finally, we compute "10�v:

"10�v�n�=
[
�S1−n1−1��1+

∑
j>1

�Sj−nj��j

]
�j"10Tv�n�

+�"10Tv�n+ e0�−p1�1"0Tv�n�

+
C∑
j=1

njpj�j"10Tv�n− ej �

+
C∑
j=1

nj�1−pj��j"10Tv�n− ej + e0�� (11)

which is negative from Properties 2 and 4 and
Lemma 2. �

Theorem 1 allows us to partially characterize the optimal
policy:

Corollary 2. Assume that p1�1 � pi�i ∀ i ∈ �2� 
 
 
 �C�.
It is optimal to route a call to a Class-1 CSR whenever
possible.

Proof. From Theorem 1 and the application of MDP value
iteration, the optimal value function can be shown to belong
to V . Then, from Properties 3 and 4, we conclude that at
any time, routing a call to a Class-1 CSR is better than
either routing it to another available CSR or keeping it in
the queue. �

It is worth noting that as long as p1�1 � pi�i ∀ i, calls
will be routed to a Class-1 CSR whenever possible, even
when �1 is smaller than some �i. Hence, p� is a more
useful index than � in routing decisions. We believe that
managers should focus on improving the CSRs’ call reso-
lution rates p�, instead of just their service rates �. More-
over, CSRs should be given incentives that correspond to
their call resolution rate. For instance, CSRs’ compensation
could be evaluated based on “calls resolved” rather than
“calls handled.” Shumsky and Pinker (2003) have addi-
tional discussions on this topic.

4.2. The p� Rule

Corollary 2 states that priority should be given to Class-1
CSRs, but it does not specify what to do when all
Class-1 CSRs are busy and some other CSRs are available.
A straightforward extension would be to give priority to the
class with the highest p� index among all those available.
Recall that we name this the p� rule.
In the case of two classes, the p� rule is optimal, and

can be viewed as an analog of the well-known c� result.
However, for more than two classes of CSRs, the p� rule
may not be optimal. Consider the case where Class-2 CSRs
have a higher call resolution rate, but they are much slower
(i.e., p2�2 >p3�3 and �2 
�3). In this case, a call routed
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to a Class-2 CSR may still be in service when a better CSR
(from Class 1) becomes available. However, if it had been
routed to a Class-3 CSR instead, it might have either left
the system earlier or have returned and been rerouted to
a Class-1 CSR earlier. Therefore, the optimal policy may
prefer Class 3 to Class 2 in some states. Specifically, for
C = 3, S1 = 5, S2 = S3 = 2, �= 7, �1 = 4, p1 = 0
6, �2 = 3,
p2 = 0
4, �3 = 9, and p3 = 0
1, the optimal action in state
�1�5�0�1� is 3. That is, when one call is in the queue, all
Class-1 CSRs are busy, and all Class-2 CSRs and 1 Class-3
CSR are available, it is optimal to route the call to a Class-3
CSR instead of a Class-2 CSR.
These are very rare and extreme cases, however. As

our numerical tests will show, the p� rule is optimal
in most practical situations. Nevertheless, we need addi-
tional assumptions to analytically show the optimality of
the p� rule. Let the classes again be indexed such that
p1�1 � · · · � pC�C . We show below that the p� rule is
optimal when �2 � · · · � �C . These conditions cover the
cases in which the CSRs differ only in p (e.g., they fol-
low the same scripts, but have different problem-solving
skills/training) or only in � (e.g., the slow-server problem).
They also cover the cases in which p and � are positively
correlated (e.g., more experienced CSRs handle calls faster
and give better answers).
Let W be the set of all real-valued functions defined

on NC+1 that satisfy Properties 1, 2, 4, and the following
property:

Property 3′. "kiw�n�� 0 if i ∈K�n� and k=m�n�.

Property 3 is a special case of Property 3′ for m�n�= 1,
so W is a subset of V . In particular, under Property 3′ (7)
remains true, and the policy corresponding to a value func-
tion belonging to W routes a call to a Class-1 CSR when-
ever possible.
The following lemma is analogous to Lemma 2.

Lemma 3. If �2 � · · ·��C and w ∈W , then Tw ∈W .

Proof. Because W ⊂ V , Tw satisfies Properties 1, 2, and 4
from Lemma 2. Now we use induction on n0 to show
that Tw satisfies Property 3′.
Step 1. When n0 = 0, "kiTw�n�="kiw�n� by definition

and Tw satisfies Property 3′.
Step 2. When n0 > 0, we assume that Tw satisfies Prop-

erty 3′ with n0− 1 calls waiting in the queue. This implies
that Tw�n + ej − e0 + ei� � Tw�n + ej − e0 + ek� for all
j ∈K�n+ ei�, j �= k. For j = k ∈K�n+ ei�, we can choose
i ∈K�n+ ek�, and we have Tw�n+ ek− e0+ ei�= Tw�n+
ei − e0 + ek�. Furthermore, w�n+ ei�� w�n+ ek� because
w ∈ V , and the result follows from Lemma 1. �

We are now ready to provide sufficient conditions under
which the p� rule is optimal.

Theorem 2. If p1�1 � · · · � pC�C , �2 � · · · � �C and
w ∈W , then �w ∈W .

Proof. Because w satisfies Property 3′, it also satisfies
Property 3. Following the same approach as in Theorem 1,
we can show that �w satisfies Properties 1, 2, and 4.
For Property 3′, a direct computation leads to, for k� i,

"ki�w�n�=
[
�Si − ni − 1��i +

∑
j �=i

�Sj − nj��j

]
"kiTw�n�

+ ��k −�i�'Tw�n+ e0�− Tw�n+ ek�(
− �pk�k −pi�i�"0Tw�n�+�"kiTw�n+ e0�

+
C∑
j=1

njpj�j"kiTw�n− ej �

+
C∑
j=1

nj�1−pj��j"kiTw�n− ej + e0�
 (12)

By the definition of T , Tw�n+e0�� Tw�n+ek�. Moreover,
because �k is assumed to be larger than �i, ��k − �i� ·
'Tw�n+ e0�−w�n+ ek�(� 0. The other terms of "ki� are
also negative from Properties 2 and 3′. �

The following straightforward corollary presents this
result for the optimal control policy.

Corollary 3. If p1�1 � · · · � pC�C and �2 � · · · � �C ,
then
• The optimal policy routes a call to a Class-1 CSR

whenever possible.
• If it is optimal to route a call in state n, then this call

is always routed to a Class-m�n� CSR. That is, the p� rule
is optimal.

By including callback loops, Corollary 3 provides non-
trivial generalizations of the slow-server problem. Specif-
ically, if we let pi = 1, i ∈ �1� 
 
 
 �C�, then Corollary 3
extends the optimality of the � rule in Lin and Kumar
(1984), Walrand (1984), and Koole (1995) to more than
two classes.

4.3. Threshold Policies

Results in §4.1 and §4.2 partially characterize the optimal
policy. In particular, Corollaries 2 and 3 specify where to
route a call when it is optimal to do so. They do not spec-
ify when to route a call. In most cases, a threshold policy
seems to provide an efficient and simple way to make this
type of decision. Optimality of the threshold policy has
been proved for the two-server slow-server problem (C = 2,
S1 = S2 = 1, and p1 = p2 = 1) (see Lin and Kumar 1984,
Walrand 1984, Koole 1995). The theorem below extends
their result to include the callback loops (p1 and p2 less
than 1). Its proof can be found in the online appendix.

Theorem 3. Suppose that C = 2, S1 = S2 = 1, and p1�1 �
p2�2. The optimal routing policy is characterized by a
threshold t∗ such that:
• If the Class-1 CSR is available, the policy routes a

waiting call to the Class-1 CSR;
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• If the Class-1 CSR is busy, the policy routes a waiting
call to the available Class-2 CSR if and only if the queue
length is larger than t∗.

Theorem 3 is the first optimality result for threshold pol-
icy in a queueing system with callback loops. It suggests
that threshold-based policies are indeed suitable heuristics
for systems with the callback loops.
When there are more than one CSR per class, and/or

more than two classes, the situation is much more com-
plex. Our extensive numerical tests (heavy, medium, and
light traffic and different combinations of arrival and ser-
vice rates, and call-resolution probabilities) suggest that the
optimal policy is always a state-dependent threshold policy:
In each state, it is optimal to route a call to a certain idle
CSR (not necessarily following the p� rule) if and only if
queue length exceeds a threshold. These thresholds depend
on the number of busy CSRs in each class, so potentially
there could be as many as '

∏C
i=2�1+ Si�(− 1 thresholds.

5. Numerical Analysis and Extensions
Because optimal state-dependent threshold policies are hard
to compute and incorporate, in §5.1 we propose heuristics
that perform well and are simple to apply in practice. More
fundamentally, we evaluate the importance of incorporat-
ing p into the routing decisions in §5.2. We also investigate
various extensions of our modeling assumptions: In §5.3,
we explore situations where the service rate depends on the
number of times a CSR has talked to the same customer
before. In §5.4, we consider cases in which customers
call back, not immediately, but after an exponentially dis-
tributed time. To conclude our numerical analysis, we pro-
pose a lower bound system in §5.5.

5.1. p�-Based Policies

Lemmas 2 and 3 show that p� is a very important rout-
ing index. In this section, we study two policies based on
the p� rule:
• Theorem 3 shows the optimality of threshold policies

in simple settings that include callbacks. This inspires us
to use a threshold-based policy for more complex settings.
Consider the p� policy with a fixed threshold t, or simply,
the p�-t policy. With two CSR classes, this policy uses
the p� rule and routes a call to a Class-2 CSR if the queue
length exceeds t, regardless of how many (as long as not
all) Class-2 CSRs are busy. The threshold t will be opti-
mally selected among all possible fixed thresholds. This
policy simplifies the state-dependent threshold policy by
using a single fixed (i.e., state-independent) threshold, and
is optimal for the case of two heterogeneous CSRs (C = 2
and S1 = S2 = 1).
• A p� policy further simplifies the p�-t policy by rout-

ing a call to an available Class-2 CSR as soon as possible.
That is, it sets t = 0.

For comparison purposes, we also study the following
policy, which does not use p� as a factor in the routing
decisions:
• A random assignment policy routes a call randomly

to any available CSR. This is the policy often used by call
centers that do not incorporate any p� information into
routing decisions.
Our numerical analysis includes 54 cases, which cover

light (Cases 1–18), medium (Cases 19–36), and heavy
(Cases 37–54) traffic situations. Of the 18 cases for each
situation, we analyze when p1�1 and p2�2 are close (the
first nine cases) and far apart (the next nine cases). Then,
for each fixed pi�i, i = 1�2, we let pi and �i take on
three sets of values so that there are nine combinations.
The purpose is to test “normal” cases as well as “extreme”
cases, which will give us a sense of the “bound” on the
differences. Detailed parameter values are given in Table 1.
For each case, we compare the random assignment policy,
the p� policy, and the p�-t policy with the optimal state-
dependent threshold policy determined numerically by a
value iteration algorithm.
Results in Table 1 show that the benefit of allowing the

threshold to vary state by state (i.e., optimal versus p�-t)
is minimal. This is intuitive: Although the thresholds used
by the (optimal) state-dependent threshold policy vary sig-
nificantly between n2 = 0 and n2 = S2 − 1, only a few of
these thresholds really matter, because most of the �S1� n2�
states are visited very infrequently (if at all) in the steady
state. Therefore, the p�-t policy, which uses the best t for
all states, performs well. This also simplifies the search for
optimal control parameters.
Furthermore, we observe that the benefit of withhold-

ing some calls (i.e., p�-t versus p�), similar to the benefit
gained in the slow-server problem, is far less than the ben-
efit of recognizing and utilizing the p� rule in call routing
(i.e., p� versus random). Because the p� policy does not
require any computation except for the ranking of the p�
index, this means that in most cases the p� policy is a bet-
ter policy for implementation. Actually, the performance of
the p� policy is dramatically worse than that of the p�-t
policy only for Cases 28, 31, and 34. These cases corre-
spond to (1) medium-traffic situations (the utilization rate
is 50%), (2) a wide difference between p1�1 and p2�2,
and (3) p2 = 1. To understand (1), we note that when traf-
fic is high, Class-2 CSRs are heavily used and the optimal
threshold is low. When traffic is low, Class-2 CSRs are
hardly necessary. Both of these situations lead to a small
difference between p� and p�-t policies. For (2), when the
CSR heterogeneity is higher, the optimal threshold should
be higher, leading to a greater difference between p� and
p�-t policies. To see (3), we note that when p2 < 1, an
unresolved call by a Class-2 CSR can be rerouted to a
Class-1 CSR. When p2 = 1, however, once a call is routed
to a Class-2 CSR, it remains there. Therefore, the use of a
threshold to withhold calls becomes more important when
p2 = 1, leading to a greater difference between p� and
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Table 1. Comparison of policies when �= 2 and S1 = S2 = 8.
Cost increase over optimal policy

Random p�-t Preemptive Dedicated
Case p1 �1 p2 �2 + assignment (%) p� (%) (%) (%) (%)

1 0
65 1 1 0
6 0
2 4
74 0 0 −0
06 0
07
2 0
65 1 0
6 1 0
2 3
95 0 0 −0
04 0
09
3 0
65 1 0
06 10 0
2 1
02 0 0 0 0
12

4 1 0
65 1 0
6 0
2 4
05 0 0 −0
06 0
07
5 1 0
65 0
6 1 0
2 3
26 0 0 −0
04 0
09
6 1 0
65 0
06 10 0
2 0
73 0 0 0 0
12

7 0
1 6
5 1 0
6 0
2 7
09 0 0 −0
06 0
07
8 0
1 6
5 0
6 1 0
2 6
63 0 0 −0
04 0
09
9 0
1 6
5 0
06 10 0
2 3
29 0 0 0 0
12

10 0
95 1 1 0
3 0
2 94
07 0
23 0 −0
01 0
11 0
95 1 0
3 1 0
2 52
45 0
06 0 −0
01 0
12 0
95 1 0
03 10 0
2 8
95 0 0 −0
01 0

13 0
5 1
9 1 0
3 0
2 116
68 0
23 0 −0
01 0
14 0
5 1
9 0
3 1 0
2 73
8 0
06 0 −0
01 0
15 0
5 1
9 0
03 10 0
2 15
59 0 0 −0
01 0

16 0
1 9
5 1 0
3 0
2 161
45 0
23 0 −0
01 0
17 0
1 9
5 0
3 1 0
2 130
51 0
06 0 −0
01 0
18 0
1 9
5 0
03 10 0
2 50
45 0 0 −0
01 0

19 0
54 0
5 1 0
23 0
5 5
76 0 0 −1
62 1
31
20 0
54 0
5 0
46 0
5 0
5 5
07 0 0 −0
97 1
97
21 0
54 0
5 0
1 2
3 0
5 3
02 0 0 −0
3 2
67

22 1 0
27 1 0
23 0
5 4
68 0 0 −1
62 1
31
23 1 0
27 0
46 0
5 0
5 3
96 0 0 −0
97 1
97
24 1 0
27 0
1 2
3 0
5 2
18 0 0 −0
3 2
67

25 0
1 2
7 1 0
23 0
5 8
31 0 0 −1
62 1
31
26 0
1 2
7 0
46 0
5 0
5 8
05 0 0 −0
97 1
97
27 0
1 2
7 0
1 2
3 0
5 6
09 0 0 −0
3 2
67

28 0
8 0
5 1 0
1 0
5 82
41 14
49 0 −2
36 0
01
29 0
8 0
5 0
2 0
5 0
5 54
42 2
96 0
02 −1
7 0
68
30 0
8 0
5 0
02 5 0
5 15
09 0
01 0
01 −0
61 1
8

31 0
4 1 1 0
1 0
5 90
77 14
49 0 −2
36 0
01
32 0
4 1 0
2 0
5 0
5 68
11 2
96 0
02 −1
7 0
68
33 0
4 1 0
02 5 0
5 23
93 0
01 0
01 −0
61 1
8

34 0
1 4 1 0
1 0
5 101
29 14
49 0 −2
36 0
01
35 0
1 4 0
2 0
5 0
5 90
48 2
96 0
02 −1
7 0
68
36 0
1 4 0
02 5 0
5 49
92 0
01 0
01 −0
61 1
8

37 0
5 0
3 1 0
135 0
88 0
73 0 0 −0
5 2
23
38 0
5 0
3 0
45 0
3 0
88 0
7 0 0 −0
32 2
41
39 0
5 0
3 0
1 1
35 0
88 0
45 0 0 −0
11 2
64

40 1 0
15 1 0
135 0
88 0
55 0 0 −0
5 2
23
41 1 0
15 0
45 0
3 0
88 0
51 0 0 −0
32 2
41
42 1 0
15 0
1 1
35 0
88 0
3 0 0 −0
11 2
64

43 0
1 1
5 1 0
135 0
88 1
13 0 0 −0
5 2
23
44 0
1 1
5 0
45 0
3 0
88 1
17 0 0 −0
32 2
41
45 0
1 1
5 0
1 1
35 0
88 0
95 0 0 −0
11 2
64

46 0
7 0
3 1 0
075 0
88 7
65 1
58 0
01 −8
68 0
05
47 0
7 0
3 0
25 0
3 0
88 8
63 0
48 0
01 −5
22 3
84
48 0
7 0
3 0
03 2
5 0
88 5
32 0 0 −1
24 8
21

49 0
3 0
7 1 0
075 0
88 8
85 1
58 0
01 −8
68 0
05
50 0
3 0
7 0
25 0
3 0
88 10
74 0
48 0
01 −5
22 3
84
51 0
3 0
7 0
03 2
5 0
88 7
98 0 0 −1
24 8
21

52 0
1 2
1 1 0
075 0
88 9
91 1
58 0
01 −8
68 0
05
53 0
1 2
1 0
25 0
3 0
88 12
88 0
48 0
01 −5
22 3
84
54 0
1 2
1 0
03 2
5 0
88 12 0 0 −1
24 8
21
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Table 2. Impact of the size of the call center.

Cost increase over
optimal policy

Optimal
Scale threshold for p�-t policy p� policy
factor � p�-t policy (%) (%)

1 16 2 0.00 0.62
2 32 2 0.00 0.89
4 64 3 0.01 0.88
6 96 3 0.04 0.83
8 128 4 0.02 0.76
10 160 4 0.02 0.71
12 192 5 0.30 0.93
14 224 5 0.00 0.01
16 256 6 0.04 0.33
18 288 6 0.02 0.60
20 320 6 0.03 0.58

p�-t policies. In practical situations, the traffic is usually
high, and p2 < 1. Therefore, the difference between the p�
and p�-t policies diminishes.
We conclude this section by analyzing the performances

of the p�-t and p� policies as the size of the call center
increases. Tested cases and results are presented in Table 2.
For all cases, we let �1 = �2 = 2, p1 = 1, p2 = 0
5, and
increase � and S1 = S2 by a scale factor varying from 1
to 20 such that += 2/3.
As shown by Table 2, the p�-t policy always performs

very well with an error less than or equal to 0.3%. Maybe
more interesting is the efficiency of the p� policy, which
has an error less than 1%. These results suggest that our
findings for small systems remain true for larger ones. We
also observe that as the system size grows (with traffic
intensity at a fixed value), the threshold also increases, but
at a lower rate, and remains small relative to the total num-
ber of CSRs.
We note that there could be another way of testing the

size effect. Instead of fixing the system utilization as we
increase the size of the call center, we could also fix a cer-
tain service level (e.g., 5% delay probability). As the arrival
rate increases, the size of the call center would increase in
a way that follows the square-root staffing rule (e.g., see
Borst et al. 2004). One difficulty is that these rules are
not derived for the heterogeneous servers, callback loops,
and priority rules that are essential in our model. It would
be an interesting area for future research to see how the
square-root staffing rule can be adapted to our model.

5.2. Importance of Call Resolution Probability p

We want to stress in this paper the importance of incor-
porating the call resolution probability p into the call-
routing priority index. In this section, we set �1 = �2
and fix p1. Then, we systematically decreased p2, starting
from p2 = p1. If the manager of a call center only mea-
sures the speed of its CSRs, then it will assume that all

Figure 2. Comparing the p� and random assignment
policies: �1 =�2.

0%
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20%
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0% 20% 40% 60% 80% 100%
p2/p1

Increase of average total time under random assignment
policy over pµ policy 

CSRs are the same. Therefore, a random assignment policy
will be used. On the other hand, if the call center mea-
sures the call resolution probability p of each CSR, then it
should route calls according to p (i.e., use the p� and p�-t
policies).
The parameters used in the tests are as follows: �= 1,

S1 = S2 = 8, �1 = �2 = 0
18, and p1 = 0
7; p2 varies.
Results are summarized in Figure 2.
We observe that the random policy performs very poorly

against the p� policy in most cases. In general, the smaller
the ratio p2/p1, the bigger the difference. This is intu-
itive because the benefit of recognizing the difference
between p1 and p2 and utilizing it in routing is greater when
the difference is bigger. However, in the extreme, as p2
approaches 0, the system traffic intensity approaches 0.99.
This is very heavy traffic, and all the policies tend to use
the Class-2 CSRs whenever possible. That explains why
the difference narrows as p2 → 0.
Note that when �1 = �2, the p� policy simply gives

calls to the CSR class with the higher p. When the ranking
of the CSRs according to their call resolution probabilities
is common knowledge (or can be measured), such a pol-
icy is very easy to implement, and also gives significant
benefits.
So far we have focused on C = 2. When C � 3, the

optimal policy is complex because the p� rule may not
be optimal, and the thresholds may be state dependent.
Even the p�-t policy may be too complex to implement
because we need to find C − 1 fixed thresholds—one for
each Class-i, 2 � i � C. A detailed discussion of this is
beyond the scope of this paper (see de Véricourt and Zhou
2004 for more details).

5.3. Dedicated Policy

So far, we have assumed that the service rates do not
depend on the number of previous attempts to solve the
customer’s problem. In practical situations, the service time
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may decrease if the customer talks to the same CSR (e.g.,
call centers dealing with complex issues such as medical
and legal help). In such cases, it may indeed be better to
route a callback to the CSR who answered this call the first
time (the original CSR).
In this section, we numerically evaluate the performance

of a dedicated policy. This policy allocates new calls
according to the p�-t routing policy, but always routes
callbacks immediately to the original CSR. The dedicated
policy applies to situations where it is the CSR who reaches
the conclusion that the problem has not been properly
addressed. Instead of handing the call off to another CSR,
which would result in another setup time, the CSR may
want to keep the call and give it another try. The dedicated
policy also applies to call centers requiring callbacks to
enter a case number at the phone prompt that corresponds
to the particular customer issue. For call centers that can-
not identify the reason of a call as it enters the system, the
implementation of the dedicated policy is difficult.
Let us assume that each time a callback is routed to

the original CSR, the average service rate increases by a
given percentage ,. In other words, the average service rate
for the kth attempt is equal to �1+ ,�k−1�i for a Class-i
CSR. Therefore, the total average service time (taking the
callbacks into account), �̃i, is equal to �i�pi + ,�/�1+ ,�.
To simplify the analysis, we assume that the total service
time is exponentially distributed, and the system becomes
a slow-server problem with rates �̃i.
We compare the dedicated policy with the p�-t policy.

We assume that the p�-t policy does not utilize customer
callback information, so that it is unlikely for a callback to
be reassigned to the original CSR. Therefore, we assume
that under the p�-t policy the service rates do not depend
on the number of previous attempts. At the end of this
section, we discuss how to use callback information in the
p�-t policy.
When , = 0, the total service time by a Class-i CSR

is a geometric sum of exponential random times with the
same rate �i, and the system is equivalent to a slow-server
system with service rates of �pi�i�, and no callbacks. As ,
increases (i.e., the time saving becomes larger), the gap
between the dedicated policy and the p�-t should narrow.
Eventually, there should exist a ,∗ such that the dedicated
policy outperforms the p�-t policy if ,� ,∗.
We let S1 = S2 = 8, p2�2 = 1, and let p1�1 = �2 vary

from 1.1 to 2. Figure 3 depicts ,∗ as "p� �= �p1�1 −
p2�2�/p2�2 increases. Although ,∗ is increasing in "p�,
for ,∗ to be significant "p� needs to be large. For instance,
when p1�1 is 50% larger than p2�2, the dedicated routing
policy should be used as soon as the CSRs can improve the
service rates at each attempt by 4%.
This suggests that the dedicated routing policy should

work well when "p� is not particularly large. It also
suggests that when the original CSR of a callback can be
identified, the call-routing policy should use this informa-
tion. Here we propose a modified p�-t policy that takes

Figure 3. ,∗ as a function of "p�.
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advantage of the benefits of the dedicated policy: The p�-t
policy still determines when (i.e., when the queue length
exceeds the threshold) and where (i.e., p� rule) to route
a call as before. In addition, if the call is a callback, the
original CSR is idle and is in the class identified by the p�
rule, then the modified p�-t policy should route the call to
the original CSR. Note that if the queue discipline is FCFS,
the original CSR may not always be available. Even when
callbacks are given priority in routing, they may still wait
in the queue if, upon their return, all Class-1 CSRs are busy
and the queue length is below threshold. By the time the
callbacks are routed, their original CSRs may not be avail-
able either. In summary, the modified policy is based on
the p�-t policy, but it routes the callbacks to their original
CSR whenever possible. Other modifications of the p�-t
are also possible. We believe that when , is significant,
these modified p�-t policies constitute good alternatives to
the dedicated routing policy.

5.4. Delay in Callback

So far, we have assumed that when a call is not resolved
successfully, the call returns immediately to the system. In
many instances, however, the resolution of a call may not
be immediate. Therefore, the customer leaves the system
after being served, and calls back (if needed) only after
a certain amount of time. From a modeling perspective,
this system can be viewed as having a callback “orbit.”
Unresolved calls stay in the orbit for an exponentially dis-
tributed time with rate - before coming back to the system.
Because the number of calls in the orbit is usually unknown
to the call center, this model is a partially observed MDP,
for which general results and algorithms are limited (e.g.,
see Puterman 1994).
Let us call the immediate-callback model in §3 the IC

model, and the delayed-callback model the DC model. Note
that the IC model corresponds to the DC model in which
- =	. In this section, we test how well the p� heuristics
(developed for the IC model) perform in the DC model.
More precisely, we identify the best threshold of the p�-t
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Table 3. Effect of - for different �2 with �= 4, p1 = 1,
�1 = 1, p2 = 0
6, and S1 = S2 = 4.

Cost increase over
lower bound

p�-t policy p� policy
Case �2 - (%) (%)

1 1 	 0.0 0.0
2 1 1 0.0 0.0
3 1 1/2 0.0 0.0
4 1 1/4 0.0 0.0
5 1 1/8 0.0 0.0
6 1 1/16 0.0 0.0
7 1 1/32 0.0 0.0
8 1 1/64 0.0 0.0

9 0
8 	 0.1 0.1
10 0
8 1 0.2 0.3
11 0
8 1/2 0.1 0.4
12 0
8 1/4 0.1 0.4
13 0
8 1/8 0.0 0.5
14 0
8 1/16 0.0 0.5
15 0
8 1/32 0.0 0.5
16 0
8 1/64 0.0 0.5

17 1
2 	 0.0 0.0
18 1
2 1 0.0 0.0
19 1
2 1/2 0.0 0.0
20 1
2 1/4 0.0 0.0
21 1
2 1/8 0.0 0.0
22 1
2 1/16 0.0 0.0
23 1
2 1/32 0.0 0.0
24 1
2 1/64 0.0 0.0

policy for the IC model and apply the same policy to
the corresponding DC model. We also test the p� policy.
Because the DC model cannot be evaluated, we actually

look at another system in which the orbit size is limited and
the full state information, including the size of the callback
orbit, is known to the decision maker. Both assumptions
reduce the system cost, resulting in a lower bound of the
system. It is against this lower bound that we numerically
test the performance of the p�-t and p� policies (see the
online appendix for more details).
Tests for 24 cases are summarized in Table 3. In

Cases 1–8, 9–16, and 17–24, we have �1 = �2, �1 > �2,
and �1 <�2, respectively. We also start with the IC model
�- = 	�. Then, we gradually decrease - to 1/64. If an
average call lasts five minutes, then - = 1/64 corresponds
to an average delay of more than five hours before call-
back. Values for the other parameter values and the results
are given in Table 3.
Results in Table 3 suggest that further decreasing - will

not have a significant impact. Moreover,
• Both the IC p�-t and p� policies, when applied to

the DC model, have costs that are extremely close to the
DC lower bound (all errors are less than 1%). This suggests
that in practice, the information about the orbit size (i.e.,

the number of unresolved calls that will eventually come
back) is not necessary.
• As the average delay of callback varies from “imme-

diate” to “more than five hours,” no significant changes are
noted, providing another justification for the immediate-
callback assumption: The p�-t and p� policies generated
by the IC model work very well in the DC model, where
there is a significant delay in the callback.
An explanation for the insensitivity of the results to the

delay is that in the MDP formulation, we study the steady-
state behavior of a stationary queueing system. With or
without delay, unresolved calls will eventually come back.
Therefore, the delay orbit changes the timing of the call-
backs, but very little of the rate of the callbacks. Conse-
quently, the total rate of callbacks to the system is simi-
lar for both the IC and the DC models. In the IC model,
there is a strong correlation between service completion and
callback arrivals. In the DC model, due to the (especially
exponential) delay between the two events, the correlation
becomes weaker. Numerical results in Table 3 suggests that
the similarity of overall callback rate between the IC and
DC models has a much stronger effect than the difference
between the two models caused by the completion-callback
correlation.

5.5. Lower-Bound Policy

The p�, p�-t, and dedicated policies (see Table 1, Col-
umn 11 for the performance of the dedicated policy when
, = 0) perform well in general, but they all provide an
upper bound on the performance of the optimal policy stud-
ied in §3. To complete the analysis, we provide in this
section the closed-form solution to a policy that gives a
lower bound on the optimal system performance.
The lower-bound policy we study is the preemptive pol-

icy: At any time, even if a call is already being served by
a CSR, we allow it to be handed over to another CSR dur-
ing the service. Because the service times are exponentially
distributed, we can assume that the call starts over after
the hand-off. The preemptive assumption is very restrictive,
making the policy applicable only to call centers where
customers tolerate such hand-offs. Nevertheless, it provides
a good lower bound that is also easy to evaluate.
Because preemption is allowed at any time, it makes

sense to not hold calls in the queue when there are idle
CSRs (one can always reroute the calls later). Moreover, a
call should always be routed or rerouted to the highest-p�
available CSR. These intuitions are formalized by the fol-
lowing theorem.

Theorem 4. The optimal preemptive policy always routes
�or reroutes, if the call is already in service� a call to the
available CSR with the highest p� index.

Proof. The proof uses a coupling argument, and can be
found in the online appendix.

As a result of Theorem 4, when a service is completed
and the customer is dissatisfied, the call would be routed
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to the same CSR (otherwise, this call would have been
rerouted earlier). Therefore, without loss of generality, we
can set p1 = p2 = · · · = pC = 1, and �i to be the original
pi�i in the following analysis.
Due to preemption, calls in the system will always be

handled by the fastest CSRs. For example, if there are i
calls in the system, where S1 < i� S1+ S2, then S1 of the
calls will be handled by Class-1 CSRs and i− S1 of them
will be handled by Class-2 CSRs. As a result, the only
variable we need to keep track of is the total number of
calls in the system, i. Therefore, if �i denotes the total rate
of service completion in state i, then

�i =




i�1 for 0� i� S1�

S1�1+ �i− S1��2 for S1 < i� S1+ S2�


 
 


C−1∑
k=1

Sk�k +
(
i−

C−1∑
k=1

Sk

)
�C

for
C−1∑
k=1

Sk < i�
C∑

k=1
Sk�

C∑
k=1

Sk�k for
C∑

k=1
Sk < i


(13)

If we let qi denote the steady-state probability of the
system being in state i, then the state-transition balance
equations are �qi =�i+1qi+1 ∀ i.
Therefore, if we let S = ∑C

k=1 Sk and �S =
∑C

k=1 Sk�k,
we must have

qi =



qS ·

S∏
j=i+1

(
�j

�

)
∀0� i� S− 1�

qS ·
(

�

�S

)i−S

∀ i� S


(14)

Solving the probability uniformization equation∑	
i=0 pi = 1, we obtain

qS =
1∑S−1

i=0
[∏S

j=i+1��j/��
]+ 1/�1− ��/�S��


 (15)

This, along with (14), uniquely determine all of the
steady-state probabilities. We can use these steady-state
probabilities to calculate the average number in the system,
which will give us a lower bound on the performance of
our system:

Ls = qS

[S−1∑
i=1

(
i

S∏
j=i+1

�j

�

)
+ ��S

��S −��2
+ S�S

�S −�

]

 (16)

Using the closed-form expressions given in (14)–(16),
we can quickly compute the performance of this preemptive
system. To see how tight the lower bound is, we test it using
the 54 cases in §5.1. Results are included in Table 1. For
most cases, the lower bound is within 2.5% of the optimal
policy. The cases with bad performance (46, 47, 49, 50,
52, and 53) are extreme cases in which �1 ��2. They are
very unlikely to occur in practice.

6. Conclusion
Traditional research on routing decisions focuses on speed
and waiting cost. Service quality related metrics are rarely
taken into account for such operational decisions, although
they play a crucial role in the short-term traffic reduc-
tion and long-term customer loyalty of a firm. We see our
research as a promising step in showing that service qual-
ity can be—and should be—incorporated into operational
decisions.
In this paper, we consider both service speed and quality

in routing decisions for a telephone call center. We argue
that call resolution probability p is a good measure of call
quality. An MDP model is used to characterize the opti-
mal routing policy. Our main contribution is to identify the
call resolution rate p� as a simple priority index in rout-
ing calls: First, we show that the use of the p� rule is
optimal in a broad set of cases. Then, we show that the
p�-threshold policies are optimal in certain cases. Finally,
we show numerically that simple p�-based policies work
well as heuristics. These numerical tests highlight the bene-
fits that can be achieved by considering p, in addition to the
traditional measure of �, when making routing decisions.
Even though results in this paper focus primarily on

the short-term benefit of traffic reduction, incorporating
quality-related metrics into routing decisions could also
provide significant long-term benefits. For instance, to
achieve the same service level on customer waiting time,
fewer low-p� CSRs are needed under a p�-based policy
than under a �-based policy. The freed-up low-p� CSRs
can then be scheduled to receive training. Over the long
run, the call center could improve its CSRs’ service speed
and/or quality, all without adding extra personnel or sacri-
ficing service level. For companies in the process of migrat-
ing from the traditional cost-based metrics (e.g., average
wait time) to the profit-based metrics (e.g., call resolution
probability), our procedure helps them to maintain the ser-
vice measured by current metrics in the short run, while
increasing their service as measured by new metrics in the
long run.
In de Véricourt and Zhou (2004), we use a numerical

example to illustrate this. We scale down a real call center’s
call arrival data for every 30 minutes for a full day, and
run a workforce-scheduling linear program to figure out the
minimum staffing level to satisfy a given service level for
each 30-minute interval. We show that the random assign-
ment policy will schedule ten Class-1 and nine Class-2
CSRs. By using a p�-based policy, we can achieve the
same (or better) service level for every 30-minute interval,
with only ten Class-1 and six Class-2 CSRs. This means
full-day training of three Class-2 CSRs can be achieved,
which is clearly a significant improvement.
In our future research, we will examine other long-term

benefits such as customer loyalty. For example, when a cus-
tomer is dissatisfied with a service, he or she may simply
defect and never call back. Therefore, if call quality is not
carefully considered in routing decisions, a company could
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lose many customers in the long run due to poor service
quality. For call centers that outsource, this also has an
impact on how both speed and resolution probability should
be specified in contracts.

Appendix
Please see the online companion to this paper at http://or.
pubs.informs.org/Pages/collect.html.
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