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Truckload brokerages, a $100 billion/year industry in the U.S., plays the critical role of matching shippers

with carriers, often to move loads several days into the future. Brokerages not only have to find companies

that will agree to move a load, the brokerage often has to find a price that both the shipper and carrier will

agree to. The price not only varies by shipper and carrier, but also by the traffic lanes and other variables

such as commodity type. Brokerages have to learn about shipper and carrier response functions by offering a

price and observing whether each accepts the quote. We propose a knowledge gradient policy with bootstrap

aggregation for high-dimensional contextual settings to guide price experimentation by maximizing the value

of information. The learning policy is tested using a carefully calibrated fleet simulator that includes a

stochastic lookahead policy that simulates fleet movements, as well as the stochastic modeling of driver

assignments and the carrier’s load commitment policies with advance booking.

Key words : reinforcement learning, contextual bandits, knowledge gradient, dynamic bidding, fleet

management system

1. Introduction

Trucking is the dominant mode of freight transportation. According to a recent report by the

American Trucking Association, in 2016, trucking collected $676.2 billion in gross freight revenues,

which is almost 80 percent of the nation’s freight bill and trucks carried 10.42 billion tons of freight,

accounting for 70.6 percent of domestic freight tonnage. However, the process of matching shippers

with carriers in the large truckload segment is surprisingly manual, often involving a human on

one or both ends of a transaction to confirm acceptance of a load.

However, the relative importance of the trucking industry is not reflected in its use of data

analytics to advance the efficiency and performance of its business operations. For example, a major

business model of many trucking companies is the use of Call Operations Centers. The process
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of matching shippers with carriers in the large truckload segment is surprisingly manual, often

involving a human on one or both ends of a transaction to confirm acceptance of a load.

1.1. Reinforcement Learning for Dynamic Bidding in Spot Markets

Spot market contracts are short term contracts that serve unfilled or urgent shipment delivery.

While the largest shippers have worked out contracts with the larger carriers, a substantial number

of truckload movements are negotiated on the spot market, where a shipper and carrier has to come

to an agreement on price for an individual load. A freight broker serves as an intermediary between

a shipper who has goods to transport and a truckload motor carrier who has capacity to move

that freight. The truckload brokerage industry processes approximately $100 billion in truckload

revenue each year, handling the process of matching tens of thousands of shippers with over 900,000

drivers spread among 200,000 trucking companies. Although brokers, shippers, and carriers are

each incentivized to achieve contract acceptance, shippers and carriers have an incentive to hide

their true willingness to accept the contracted prices (Tsai et al. 2011). Hence the brokerage has

to suggest a price in the hopes that both will agree. The goal of the brokerage is to maximize the

total revenue on all accepted loads, and while this favors higher prices, both parties have to accept

the price.

Despite that the spot market is of great economic significance, data on load accep-

tances/rejections and spot prices still remain largely private between transaction parties, leaving

the spot market pricing problem largely unexplored. In our situation, shippers broadcast a list

of loads to the broker on an ongoing basis. For each load, the broker offers a price (which can

be dynamic) to both the shipper and one chosen carrier, observing either success or failure from

both parties in each matchmaking attempt. This offers opportunities for price experimentation.

However, experimentation is surprisingly rare in practice (Harrison et al. 2012). A commonly used

approach for similar pricing applications is to first use historical data to estimate unknown model

parameters and then choose the “optimal” price given estimated parameter values (Phillips 2005,

Talluri and Van Ryzin 2006). Scott et al. (2016) uses empirical models to estimate spot prices for

truckload services and analyze the drivers of and deterrents to freight rejection using a transac-

tional data set. Yet this approach does not address the trade-off between exploiting the current

optimal solutions and exploring with uncertain outcomes to learn the model parameters. We need

to acknowledge that the “optimal” price given our current current belief may not be truly optimal.

We model dynamic bidding in truckload markets as a sequential decision-making problem with

a centralized control, which naturally falls into the category of reinforcement learning. A large

brokerage company might handle 500 loads per day, but these are spread among thousands of

traffic lanes with very uneven density. To account for the unique feature that the context of bidding
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opportunities arises over a network with strong geographic differentiation, in this paper, we propose

an optimal learning approach where we balance maximizing revenues now while also better learning

the response curves for each shipper and carrier, for each traffic lane. Implemented in a learning

and planning framework, the proposed algorithm is one of the first applications of reinforcement

learning in large-scale truckload markets.

1.2. Dynamic Fleet Management with Advance Booking

In order to evaluate the benefits of price experimentation and explain key operational and economic

factors, our second focus is to build an accurate simulator of a large-scale fleet that captures

real-world operations at a very high level of detail. Ultimately, the broker system will run several

carrier fleet management systems in parallel (one for each carrier) and each carrier will send

constant snapshots of its network to the broker system. The snapshots include updated driver/load

information - such as current driver location and destination, accumulated hours of service, and

new loads committed from sources other the broker. That is, all the information the broker needs

to run the carrier fleet management system. Given a price recommendation from our reinforcement

learning model, if the carrier system accepts the load, then the broker will actually send the load

to the carrier. Then, the carrier can in real life accept/reject the load.

Our goal is to closely calibrate real-world truckload operations, and build a simulator with load

acceptance policies and driver dispatch policies, which can be used as a planning tool for brokers to

perform analyses to answer questions ranging from price experimentation, which loads to bid on,

to identifying potential carriers who may accept the load. The idea is that if the fleet management

system accepted the load, it is a good load and that carrier should also accept the load.

Truckload motor carriers face the complex problem of managing fleets of drivers, observing hours

of service commitments, managing driver productivity while also getting drivers home in time,

while serving a highly stochastic set of loads. While the management of fleets of vehicles (and

drivers) has received considerable attention for many years, largely overlooked is the problem of

making commitments to loads offered in the future. All the prior models assume that we make

decisions to move trailers, containers or drivers at time t, and then learn information about new

demands at time t + 1. It is not unusual to find long-haul truckload carriers where 50 percent

of the loads are called in four or more days in the future, long before the carrier knows where

drivers will be at that time. To this end, our research addresses the problem of designing effective

load acceptance policies for making these advance commitments, before the loads can be actually

dispatched in the future.

We build on the fleet management model presented in Simao et al. (2009), which handles driver

characteristics at a high level of detail, but where loads evolve in strict time order (that is, we
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know about all loads moving at time t before learning about loads moving at time t+ 1). In this

paper, we develop a more detailed model of the load booking process, including the full booking

profile which captures how far each shipper books loads in the future. We design the driver dispatch

policy using approximate dynamic programming, and the load acceptance policy, which uses a

stochastic lookahead model to estimate the probability that a load will actually be accepted.

Once the acceptance probability is estimated, we propose a policy function approximation (PFA)

where loads are accepted if the acceptance probability is over some minimum. PFAs are analytical

functions that map states to actions (see Powell (2018)).

1.3. Our Contribution

This paper makes the following contributions: 1) We present what appears to be the first model

of an advance booking problem for truckload trucking where we have to make commitments to

loads 1-14 days into the future. The load acceptance policy is based on a stochastic lookahead

model, that is simulated using a stochastic base model, which is a first for this problem class. 2)

We propose, for the first time, a formal learning model for finding the price that maximizes the

broker’s revenue where we maximize the online value of information from a proposed price using the

concept of the knowledge gradient (KG) and bootstrap aggregation. 3) We demonstrate the first

asymptotic convergence theorems for the contextual knowledge gradient policies, where we address

the issue of incomplete learning. 4) Using a carefully calibrated fleet simulator, we demonstrate

the effectiveness of our KG policy over other bidding policies. We believe that our work promotes

the automation of the truckload brokerage industry beyond its current status.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section 3

establishes the contextual bandit formulation of the sequential decision making problems for freight

brokerages. In Section 4, we propose a contextual knowledge gradient policy with bootstrap aggre-

gation for convex loss functions and prove its asymptotic convergence. Section 5 introduces a fleet

simulator which includes a base model to describe the evolution of drivers and loads, and the

policies for driver dispatch and load acceptance with advance booking. In Section 6, we investigate

the performance of the knowledge gradient policy by conducting both simulated experiments and

real world online evaluations based on the fleet management simulator.

2. Literature Review

There are different lines of investigation that have various overlap with our work.

2.1. Revenue Management

In the realm of revenue management, there is sporadic literature that recognizes model uncertainty

and focuses on price experimentation. With the goal of maximizing expected revenue, early appli-

cations of dynamic pricing methods have mainly focused on industries where the short-term supply
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is difficult to change (Gallego and Van Ryzin 1994). Examples include seats on airline flights, cabins

on vacation cruises, and rooms in hotels that become worthless if not sold by a specific time. Aviv

and Pazgal (2005) and Lobo and Boyd (2003) were the first to consider optimal pricing or optimal

bidding with uncertainty in the market response where Aviv and Pazgal (2005) models uncer-

tainty in the arrival rate in terms of a Gamma distribution. Farias and Van Roy (2010) assumes

a single unknown demand parameter and use dynamic programming to perform price experimen-

tation with limited inventory and demand uncertainty. Wang et al. (2014) uses a nonparametric

solution that does not rely on the known relationship between the price and the demand rate.

A Bernoulli demand distribution is assumed by Broder and Rusmevichientong (2012) with many

other papers (Carvalho and Puterman 2005, Besbes and Zeevi 2009) falling into the category of

estimating unknown parameters by classical statistical methods. Keller and Rady (1999) consider

optimal experimentation when the demand is changing over time. While insights can be drawn

from the economics and revenue management literature, the setting of freight brokerages combines

the uncertainty of demand response to the challenges of working with sparse data over networks

(which is quite different from the network problems that arise in airline revenue management).

2.2. Bayesian Optimization and Multi-armed Bandits

Bayesian optimization is a powerful strategy for optimizing objective functions that are expensive

to evaluate (Mockus 1994, Jones et al. 1998, Jones 2001, Gutmann 2001, Qu et al. 2012). A number

of two-stage and sequential procedures exist for selecting the best alternative, which in our setting

would be the best price offered to both shipper and carrier. Branke et al. (2007) made a thorough

comparison of several fully sequential sampling procedures. Another single-step Bayesian look-

ahead policy first introduced by Gupta and Miescke (1996) and then further studied by Frazier

et al. (2008) is called the “knowledge-gradient policy” (KG). It chooses to measure the alternative

that maximizes the single-period expected value of information.

There are other policies proposed under the umbrella of multi-armed bandits (Auer et al. 2002,

Bubeck and Cesa-Bianchi 2012, Filippi et al. 2010, Srinivas et al. 2009, Chapelle and Li 2011).

With additional context information, different belief models have been studied, including linear

models (Chu et al. 2011) and Gaussian process regression (Krause and Ong 2011). The existing

literature mainly focuses on real-valued functions. Wang et al. (2016) and Tesch et al. (2013) were

the first to study expensive function optimization with binary feedbacks using parametric belief

models. Wang and Powell (2016) proposes the first contextual KG policy for personalized health

care. Nevertheless, none of the above is directly applicable to the problems of freight brokerage

with strong geographic differentiation and the involvement of two business parties.
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2.3. Truckload Brokerage Services

With the explosive development of e-commerce applications for transportation, there is literature

on the use of web-based systems for the development of brokering services (Luncean et al. 2014),

that increases the degree of automation of business activities, e.g. by providing (semi-)automated

support of allocating freight requests to transport resources. Antoniou et al. (2007) studies a multi-

agent brokerage system that focuses on the semantic representation of the offerings. Domain-specific

semantics combining semantic web technologies and service-oriented computing is presented by

Scheuermann and Hoxha (2012). Yet, the existing literature mainly focuses on facilitating the

connection of the owners of goods with the freight transportation providers, including the semantic

representation of the shipments, query management, and security. In addition, Tsai et al. (2011)

proposes the pricing formula for base truckload options. Lindsey et al. (2013) studies online pricing

and capacity sourcing for third-party logistics providers, which uses historical data to estimate

parameters by classical statistical methods and uses optimization to solve for the optimal price.

To the best of our knowledge, none of the existing work in transportation explicitly addresses the

automated support for online pricing and dynamic bidding between business partners.

Bidding for freight over networks has been studied under the heading of combinatorial auctions

since carriers place bids for combinations of lanes. Combinatorial auction has been mainly tackled

using deterministic optimization. De Vries and Vohra (2003) suggests the use of an oracle to

overcome the hurdle of expressing and communicating an exponential number of bids. Lee et al.

(2007) and Wang and Xia (2005) provide methods for identifying good bundles and efficiently

computing the bids for those bundles. Chang (2009) formulates the carrier’s bid generation over

the materials, location, and load type dimensions, as a synergetic minimum cost flow problem by

estimating the average synergy values between loads through the proposed approximation. Chen

et al. (2009) optimizes a combinatorial auction using integer programming and set partitioning

to enable the complete set of all possible bids to be considered implicitly, without the need to

enumerate an exponential number of bids. Figliozzi et al. (2007) studies carrier decisions for a type

of vehicle routing problems where contracts are put up for bid sequentially over time. Most of

the literature on combinatorial auctions approach the problem from the perspective of either the

shipper or the carrier. In our problem, we study the dynamic bidding problem from the perspective

of freight brokers which propose bids and then observe the response of both shippers and carriers.

2.4. Dynamic Fleet Management

There has been an extensive literature on dynamic fleet management in the presence of uncertain

demands. The earliest work in this setting was in the context of freight car distribution (Jordan and

Turnquist 1983). This work motivated a lengthy series of papers on the dynamic vehicle allocation
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problem (Cheung and Powell 1996, Godfrey and Powell 2002, Topaloglu and Powell 2006) which

was centered on dynamic programming formulations. This line of research focused on managing

fleets of vehicles (see Powell et al. (1995) and Yang et al. (2004) for extensive reviews). Powell

(1987) and Powell et al. (1988) were some of the earliest papers to deal with the complexities

of managing drivers. This work finally matured in Simao et al. (2009) which used approximate

dynamic programming to optimize drivers, taking into consideration all the complex attributes of

drivers (home domicile, equipment type, hours of service, single vs. team, border crossing capabil-

ities). None of these papers deal with the problem of optimizing the advance booking of loads. All

the prior models assume that we make decisions to move trailers, containers or drivers at time t,

and then learn information about new demands at time t+ 1. The models may not satisfy all the

demands, but there is no explicit decision of whether to accept to move a load, which is difficult

when the load is to be moved in the future.

Rivera and Mes (2017) studies a similar anticipatory freight selection problem by considering

release-days. Nevertheless, the model is specified in long-haul roundtrips with known probabilities

of freight arrivals. Meanwhile, it does not model drivers’ attributes and dispatch policies.

3. Model of Dynamic Bidding

The business process under consideration is the pricing of a load of freight. A shipper who needs

to move a load contacts a freight broker to find a carrier. The broker gives a bid to the shipper,

and in the meantime, proceeds to offer the load to a carrier with the same quote. A contract is

rejected if either the shipper or carrier decline the offer. The goal of the broker is to maximize

the expected total revenue, which is assumed to be proportional to the transaction value of the

contract. The challenge lies in the sequential nature of the bidding problem where loads come one

by one. This offers opportunities for price experimentation, in that each quote is made in sequence

so that the broker can learn from each individual response and use that information to pick the

next bid. However, active experimentation with prices is rare in practice. It is common for the

broker to follow familiar patterns when pricing freight, leading to the broker’s uncertainty about

the average acceptance rates achievable with alternative prices.

We use discrete choice models (such as the logit family of supply/demand functions) for both

the shipper and the carrier. Brokers can learn shipper and carrier response functions by offering

a price and observing whether they each accepts the price. We could maximize profits if we knew

the probability that shippers and carriers would accept a particular price in each lane, but this

information is simply not available. We thus adopt a Bayesian approach and use a prior distribution

over model parameters to express our uncertainty about the shipper/carrier responses. While a

common practice is to first estimate the unknown parameters from historical data and then choose
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the optimal price given those parameter values, this traditional approach fails to acknowledge the

fact that with little price variation in the past, the estimated model may not be the true model

so that the “optimal” price given the model may not be even close to optimal. In our work, we

consider a sequential decision-making formulation that explicitly addresses the balance between

the broker’s goal of maximizing revenue (exploitation) and the desire to learn the true acceptance

model of the shipper and carrier in order to gather information to make better decisions in the

future (exploration).

3.1. The Contextual Model with Discrete Priors

For an incoming load, the broker or the learner is presented with an attribute vector (context). To

be consistent with the prior literature (in particular, Simao et al. (2009)), we use b to describe the

attributes of a load which includes origin, destination and load type, and other load characteristics.

For convenience, we associate with each successive load a time which is indexed in the order of

their “called-in” times. At each time step n, the learner is presented with the load information bn

and then proposes a bid pn of a certain price for the load. We assume that we have a discretized

set P of possible bidding prices from a given interval [l, u]. For any context and bid, there is

an unknown underlying binomial probability of shipper acceptance and carrier acceptance. After

choosing a bid p, the broker will receive two binary outcomes yn+1 = (yc,n+1, ys,n+1) ∈ {−1,1}2,

with one obtained from the carrier yc and the other from the shipper ys. The “accept” or “reject”

depends stochastically on the context and the bid. We only get to see the result of the single bid.

We adopt probabilistic modeling for the unknown probability of acceptance. Specifically, the bro-

ker assumes separate discrete choice models for carriers and shippers which we designate f c(b, p;α)

and f s(b, p;β) as the probability of responding “accept.” We will omit the subscripts on b and p for

notational simplicity when the context is clear. The load attributes b are given to the broker and

the broker only has the ability to choose the bid p. In this work, we use two logistic models, one

for carrier f c(b, p;α) = σ(αTxc(b, p)), and one for shipper f s(b, p;β) = σ(βTxs(b, p)) acceptance

probability, where σ(h) = 1
1+exp(−h) , x

c(b, p) and xs(b, p) are the covariates constructed from load

attributes b and any possible bid p, with the specific form to be introduced in Section 6.1. We let

f(b, p;θ) := f c(b, p;α)f s(b, p;β), with θ= (α,β).

If the proposed bid is accepted by both the carrier and the shipper, the broker can get a revenue

proportional to the bid p. Otherwise, he gets nothing. The broker’s challenge is to offer bidding

prices to maximize his total revenue over time R(n) =
∑n−1

m=0 p
m ·Y c,m+1(bm, pm)Y s,m+1(bm, pm). It

can be generally assumed that Y c and Y s are independent, meaning that whether a carrier will

accept a load has nothing to do with the shipper’s acceptance decision at the same time. Hence,

we define the broker’s single-step utility function which calculates the expected value of a contract
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based on its price and the likelihood it will be accepted by both the shipper and the carrier:

E[p ·Y cY s] = pf c(b, p;α) · f s(b, p;β).

Following the work by Harrison et al. (2012) and Chen et al. (2015), we begin with a sampled

belief model in which. Before the first load arrives, the broker adopts K ambient demand and supply

models from the known logistic family fk(b, p) := f(b, p;θk) = f c(b, p;αk)f
s(b, p;βk), specified by

the parameters θk. The set of K candidates are fixed over the entire time horizon. We denote by

q0k the multinomial prior probability of the unknown parameter values θ, assigned by the broker,

to each candidate fk(b, p). We use

Kn = (qn1 , · · · , qnK)

to denote the “state of knowledge” which captures the uncertainty in our system at time n, with

qnk := P (θ= θk|Dn) as the posterior probability of the kth candidate given the previously observed

n data points Dn =
{(
bi, pi, (yc,i+1, ys,i+1)

)}n−1
i=0

. After we make the next decision p under current

context b and obtain the next observation yn+1, by Bayes’ rule, we have

qn+1
k = P (θ= θk|Dn+1)

∝ P (yn+1|θ= θk,Dn)P (θ= θk|Dn)

= qnkP (yc,n+1||α=αk)P (ys,n+1||β=βk)

= qnkσ(yc,n+1 ·αTkxc(b, p))σ(ys,n+1 ·βTk xs(b, p)). (1)

Because of the contextual information, we then define Sn = (Kn, bn) to be the state of the system

at time n. A history of this process can be presented using:

hn =

(
K0, b0, S0 = (K0, b0), p0, Y 1,K1, b1, S1 = (K1, b1), p1, Y 2, · · · , pn−1, Y n,Kn

)
.

A policy P π is a function mapping from any state s to a bid in [l, u]. The goal of the broker is

to find the optimal policy that maximizes the expected total revenue:

max
π

E
[N−1∑
n=0

P π(Sn) ·Y c,n+1
(
Sn, P π(Sn)

)
Y s,n+1

(
Sn, P π(Sn)

)
|S0

]
.

We use Pπk(A) to denote the probability of event A under any policy P π with the k-th model as

the true model that generates the shipper’s and carrier’s responses. Formally, given an arbitrary

sequence of contextual information bn, each Pπk , k = 1, · · · ,K is a probability measure on the

outcome space Y whose elements are sequences of y= (yc, ys) as

Pπk(y1, · · · , yN) =
N−1∏
n=0

σ
(
yc,n+1 ·αTkxc(bn, pn)

)
σ
(
ys,n+1 ·βTk xs(bn, pn)

)
,

where pn is the bid sequence under policy P π.
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Define the filtration (Fn)Nn=0 by letting Fn be the sigma-algebra generated by

b0, p0, y1, · · · , bn−1, pn−1, yn. We use Fn and Dn interchangeably. From the definition of the posterior

distribution in Eq. (1), it can be shown that the posterior probabilities {qnk} form a nonnegative

submartingale under Pπk and form a nonnegative supermartingale under Pπj , j 6= k. With the fact

that the posterior probabilities qnk are bounded in [0,1], the martingale convergence theorem can

be used to establish that the posterior belief converges almost surely.

Proposition 1 (Convergence of Beliefs). For any policy P π, the posterior beliefs {qnk} con-

verge to a limit belief {q∞k }, almost surely, under any probability measure Pπi .

4. Bidding Policy: Knowledge Gradient with Bootstrap Aggregation

The knowledge gradient (KG) policy was first proposed for offline context-free ranking and selection

problems with the goal of finding the best alternative (where we do not pay attention to losses while

we are learning). It maximizes the value of information from a decision. In ranking and section

problems, the performance of each alternative is represented by a (non-parametric) lookup table

model. KG has been extended to various belief models (e.g. hierarchical belief model in Mes et al.

(2011), linear belief model in Negoescu et al. (2011), logistic regression in Wang et al. (2016)).

Experimental studies have shown good performance of the KG policy in learning settings with

expensive experiments (Wang et al. 2015, 2016, Russo and Van Roy 2014, Ryzhov et al. 2012).

In particular, Chen et al. (2015) proposed a context-free knowledge gradient policy with sampled

belief model assuming Gaussian measurement noise. This approach handles nonlinear belief models

f(x;θ) by assuming that θ ∈ {θ1, . . . , θK}, but requires that one of the elements of this set be the

true value of θ. This can be a reasonable approximation in one or two dimensions, but tends to

become quite poor in three or more dimensions. He and Powell (2018) relaxes the restriction of

a fixed set of θ’s by adaptively resampling a large pool and choosing new values based on mean

squared error. While this logic was shown to be useful for higher dimensional problems (e.g. it was

tested for 10 and 20 dimensional settings), it could not be used in our application setting which

will require models with hundreds of parameters.

As of this writing, most of the KG variants are designed for context-free cases (e.g. effectively

assuming that all the loads, including traffic lanes and commodity types, are homogeneous). Wang

and Powell (2016) formally defined the contextual bandits by a two-step Bellman’s recursion and

derived the first knowledge gradient type policy for Bayesian contextual bandits. The context-

specific best action, which requires finding the best function, is dramatically more difficult than

finding the best single action required by the context-free case.

In what follows, in Section 4.1 we propose a contextual knowledge gradient policy with discrete

priors in our freight brokerage scenario with Bernoulli responses from both the shipper and the
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carrier, to explicitly consider the heterogeneity in needs and responses of different loads over the

entire network. In Section 4.2, we provide the first asymptotic convergence theorem for the con-

textual knowledge gradient policy. In Section 4.3, we design a resampling procedure specifically for

convex loss functions using bootstrap aggregation to find the most promising parameter values,

without the need to maintain or enumerate a large pool as used in He and Powell (2018).

4.1. Knowledge Gradient with Discrete Priors for Contextual Bandits

We have a fixed set of K shipper/carrier acceptance models fk(b, p) := f(b, p;θk) =

σ
(
αTkx

c(b, p)
)
σ
(
βTkx

s(b, p)
)

with fixed parameter values θk. We assume in this section that one

of the K models is the underlying true acceptance model, but is not known to the learner. For

each load with attributes b, after the broker places a bid p ∈ {p1, · · · , pM}, he receives two binary

outcomes y = (yc, ys), with one obtained from the carrier’s true Bernoulli distribution with the

mean σ
(
(α∗)Txc(b, p)

)
, and the other one from the shipper with the mean σ

(
(β∗)Txs(b, p)

)
.

The knowledge gradient with contextual information is the expected improvement resulting from

evaluating alternative p given a context b (Frazier et al. 2008, Wang and Powell 2016):

Definition 1. The knowledge gradient of placing a bid p while in state s with context b is:

νKG
p|b (s) :=EθEY |θ

[
V
(
(T (s, p,Y ), b)

)
−V (s)|s

]
.

In the case of discrete priors, the states s can be represented as the pair of belief state and the

context b, s =
(
(q1, · · · , qK), b

)
. The T (s, p,Y ) is the one-step transition function defined by Eq.

(1), such that Kn+1 = T (Sn, pn, Y n+1). In our dynamic bidding problem, the value at any state s

is the largest expected revenue under current state:

V (s) = max
p

E[p ·Y cY s|s, p] = max
p

K∑
k=1

E[p ·Y cY s|s, p,θ∗ = θk]qk

= max
p

K∑
k=1

p ·E[Y c|s, p,α∗ =αk]E[Y s|s, p,β∗ =βk]qk

= max
p

K∑
k=1

p · f c(b, p;αk) · f s(b, p;βk)qk = max
p
p

K∑
k=1

fk
(
b, p
)
qk.

We use σ̃k(y
c, ys, b, p) to denote the probability of generating binary responses yc and ys from the kth

candidate model under context b and price p. Namely, σ̃k(y
c, ys, b, p) := σ(yc ·αTkxc(b, p))σ(ys ·βTk xs(b, p)).

Hence at the nth time step, based on the transition function (1), we have

EθEY |θ
[
V
(
(T (Sn, p, Y ), b)

)
|Sn
]

=

K∑
l=1

{∑
yc

∑
ys

[
max
p′

p′
K∑
k=1

fk(b, p
′)qn+1

k

]
σ̃l(y

c, ys, b, p)
}
qnl
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=

K∑
l=1

{∑
yc

∑
ys

[
max
p′

p′
K∑
k=1

fk(b, p
′)

qnk σ̃k(y
c, ys, b, p)∑K

j=1 q
n
j σ̃j(y

c, ys, b, p)

]
σ̃l(y

c, ys, b, p)
}
qnl

=
∑
yc

∑
ys

K∑
l=1

[
max
p′

p′
K∑
k=1

fk(b, p
′)

qnk σ̃k(y
c, ys, b, p)∑K

j=1 q
n
j σ̃j(y

c, ys, b, p)

]
σ̃l(y

c, ys, b, p)qnl

=
∑
yc

∑
ys

K∑
l=1

qnl σ̃l(y
c, ys, b, p)∑K

j=1 q
n
j σ̃j(y

c, ys, b, p)

[
max
p′

p′
K∑
k=1

fk(b, p
′)qnkσ(yc ·αTkxc(b, p))σ(ys ·βTk xs(b, p))

]
=
∑
yc

∑
ys

max
p′

p′
K∑
k=1

qnk fk(b, p
′) ·σ(yc ·αTkxc(b, p))σ(ys ·βTk xs(b, p)).

Thus, the knowledge gradient value can be expressed explicitly as:

νKGp|b (Sn) =
∑
yc

∑
ys

max
p′

p′
K∑
k=1

qnk f(b, p′;θk) ·σ
(
yc ·αTkxc(b, p)

)
σ
(
ys ·βTk xs(b, p)

)
−max

p
p

K∑
k=1

f(b, p;θk)q
n
k . (2)

The knowledge gradient policy for cumulative reward is a policy that balances the one that appears to be

the current best and that learns the most by bidding p given context b at time n as:

PKG,nb (Sn) = arg max
p
p ·P (ys = 1, yc = 1|Sn, b, p) + τνKGp|b (Sn)

= arg max
p
p

K∑
k=1

f(b, p;θk)q
n
k + τνKGp|b (Sn), (3)

where τ reflects a planning horizon that captures the value of the information we have gained on future loads.

If the planning horizon N is known beforehand, τ can be chosen as N −n (Ryzhov et al. 2012). Otherwise,

τ can also be treated as a non-negative tunable parameter.

4.2. Theoretical Properties of the Contextual Knowledge Gradient Policy

To study the convergence of our policy, we need to consider the possibility of incomplete learning, in which

case we can never identify the true candidate model. For the context-free case, we first identify the beliefs

(that are neither zero or one) under which an uninstructive bid (providing no value of information) will be

selected due to its high function value under that belief. This will result in an unchanged posterior belief,

leading to the case of incomplete learning. We finally prove that the KG policy for contextual Bernoulli

bandits is asymptotically consistent based on an argument of the non-existence of such confounding beliefs

for contextual cases.

We begin by providing theoretical insights for a simpler context-free case with K = 2 candidate models,

f ck(p) = σ(αk,0 + αk,1p) and f sk(p) = σ(βk,0 + βk,1p), with αk,1 > 0, βk,1 < 0 for k = 1,2. We first define the

uninstructive bid p̂ such that f c1(p̂) = f c2(p̂) and f s1(p̂) = f s2(p̂). The price p̂ is called uninstructive since an

observation yc, ys of this price, either from the carrier or the shipper, provides no information on distinguish-

ing the two candidate models. This causes a failure in learning of the posterior distribution as given by Eq.

(1), resulting in qn+1
k = qnk for any k. It is obvious to show that there exists at most one uninstructive price

p̂ for any choice of the candidate models.

We next examine the cases when the KG policy (3) charges the uninstructive bid p̂, leading to a so-called

incomplete learning where the limiting belief q∞k = q̂k that is neither zero or one, almost surely, meaning that

it can never learn which candidate is the true model. We assume throughout that p̂ falls in the feasible price
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range [l, u] since if the two candidate models do not intersect within the feasible region, the arguments to

follow can be used to show that the incomplete learning is not an issue and the KG policy is asymptotically

optimal. Following the terminology by Harrison et al. (2012), such ŝ= (q̂1, q̂2) is called a confounding belief

since if the KG policy recommends p̂ at time n under qnk = q̂k and because p̂ is uninstructive, we have

qn+1
k = qnk = q̂k and the same issue repeats in all subsequent steps. The next lemma shows that the knowledge

gradient value νKG
p̂ (s) of the uninstructive bid p̂ with any belief s= (q1, q2) is zero. For clarity, the lemma is

proved for the context-free case, but it can be easily generalized to the contextual case.

Lemma 1. For the context-free case, under any belief state s= (q1, q2), there is no value of information

from evaluating the uninstructive price p̂, i.e. νKG
p̂ (s) = 0.

Proof. Recall from Definition 1 that the knowledge gradient value is defined by the expected improvement

in value by evaluating the uninstructive price p̂. No matter what the outcome yc or ys is, it is indifferent

between the two candidate models, resulting in no change to the posterior belief. Thus the value in the next

state remains unchanged. �

In the meantime, the knowledge gradient value of all other prices are always non-negative.

Proposition 2 (Benefits of Evaluation). For the context-free case, the knowledge gradient value of

evaluating any price p is nonnegative, νKGp (s)≥ 0, for any state s= (q1, · · · , qK).

It can be proved by using Jensen’s inequality with details provided in ??. This proposition also holds for the

contextual case.

Recall from Eq. (3) that the KG policy charges the price PKG(s) that maximizes

PKG(s) = arg max
p
p ·P (ys = 1, yc = 1|s, p) + τνKGp (s).

Since we learn nothing by charging the uninformative price p̂ while the value of information of other prices

are non-negative, a necessary condition for the KG policy to charge p̂ in the context-free case is that under

the confounding belief ŝ, p̂ is the price that achieves the highest revenue,

p̂= arg max
p
p

K∑
k=1

fk(p)q̂k.

For continuous price choices from [l, u], the next proposition states that under certain choices of the candidate

models, such confounding belief exists, rendering in a failure in identifying which model is true. We begin

by defining the notion of an incomplete learning set as follows.

Definition 2 (Incomplete learning set). The incomplete learning set Linc is the set of tuples

(αk,0, αk,1, βk,0, βk,1), k = 1,2, that satisfies M2 > 0,M1 < 0 and M1 + M2 ≥ −1/p̂, where Mk := αk,1(1 −

σck(p̂)) +βk,1(1−σsk(p̂)) and p̂ is the uninstructive bid, i.e.,

σ(α1,0 +α1,1p̂) = σ(α2,0 +α2,1p̂) and σ(β1,0 +β1,1p̂) = σ(β2,0 +β2,1p̂).

Proposition 3 (Existence of Confounding Belief). If the chosen candidate models satisfy the

incomplete learning conditions, i.e., (α1,0, α1,1, β1,0, β1,1, α2,0, α2,1, β2,0, β2,1)∈Linc, there exists a confound-

ing belief ŝ= (q̂1, q̂2) such that the KG policy will choose the uninformative price p̂.
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The detailed proof of Proposition 3 is provided in ??.

Now return to the contextual case. We show next that no matter what the prior distribution is, KG will

eventually find out which model is the actual model that generates the outcomes in Theorem 1. The theorem

is proved by contradiction. We calculate the posterior probability displacement after a single step Bayesian

update. As long as the limiting probability is bounded away from 0 and 1, we can show that the displacement

is larger than a positive constant, which is contradictory to the convergence assumption. This argument is

based on the proof of the non-existence of the confounding beliefs for the contextual cases, because otherwise

the posterior probability for the true model could become stuck at a value within the interval (0,1) due to

the indistinguishability between the true model and other candidates.

We now have to consider placing a bid in the context of an attribute vector b, which might include origin,

destination, and commodity type, which creates a finite but large set of attributes. Now, if an uninstructive

bid p̂ is the intersection point of fj(b, p̂) and fk(b, p̂), for a different context b′, it is highly likely that the

two functions no longer intersect at this price p̂. In other words, for any fixed set of alternatives, for any p,

it is expected that under some context, the candidate functions are distinguishable and well separated. To

this end, we assume that the context is randomly generated. According to Proposition 3, the confounding

scenario only lies in a zero measure set, hence almost surely the distinguishability will push the system out

of the “unstable attractor” resulting from local intersections between different models, and to the “stable

fixed point”: the single point distribution over the true model. The formal proof is provided in ??.

Theorem 1 (Asymptotic Convergence). Under finitely many randomly generated contextual infor-

mation, the KG policy is asymptotically consistent in that the posterior distribution under the KG policy

converges to a limit belief with q∞i = 1 and q∞j = 0 for ∀j 6= i under Pπi .

4.3. Knowledge Gradient with Bootstrap Aggregation

Many real world applications require a high dimensional logistic regression model. In our dynamic bidding

problem, as explained in Section 6.1, the discrete choice model has around 400 dimensions. Other examples

arise in many online recommendation systems where a logistic regression model is a natural choice for

modeling the click-through rate. In these cases, it seems too naive to assume that one of the candidate

values of θ in our pre-fixed set is the truth, which may be a reasonable approximation if θ is a one or two

dimensional vector. On the other hand, after several experiments, it is likely that the probability mass is

concentrated on a very small subset of the original candidates, indicating that others are less likely to be the

true model. To this end, we propose a bootstrap aggregation method to constantly resample the candidate

set so that it can adaptively find more promising parameter values.

Before we proceed, we would like to restate the dual objectives we encounter in this problem. First, we

want to maximize the expected total revenue
∑

n
pnf(bn, pn;θ∗) given any context sequence {bn}N−1

n=0 . Yet

we do not know the true parameter value θ so that we need to gather information to estimate it. That is,

based on observed data, we need to find a prediction model that has low generalization error in that with

high probability, it will correctly predict the value of an unseen data point.

In what follows, the knowledge gradient policy is used to strike a balance between recommending the best

bid and the need to gather more information in order to find a better model. In the meantime, the bootstrap
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aggregation is used to periodically refresh the candidate set based on the data produced by the knowledge

gradient policy as time goes by. Bootstrapping is a statistical practice of measuring properties of an estimator

when sampling from an approximating distribution. One standard choice for an approximating distribution

is the empirical distribution function of the observed dataset. Bagging (Bootstrap aggregating) (Breiman

1996) is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of

machine learning algorithms by combining regression models or classifications learnt from randomly generated

training sets. It reduces variance and helps to avoid overfitting.

If resampling is triggered at time n, meaning that we re-generate the candidate set of K parameter values

aiming to include more promising values, we draw on the bagging technique (Breiman 1996) which works

as follows. At time n, we already have a set of n observations Dn. We then generate K new datasets Dnk ,

k = 1, · · · ,K, each of size n, by sampling from Dn uniformly at random with replacement. Then K models

are fitted by using logistic regression and finding the maximum likelihood estimator θnk , based on the above

K bootstrapped samples. These K models are fixed as the ambient candidates until the next resampling

step. In traditional bagging, the K models are combined by averaging the output. Instead, we treat the equal

probability as the initial prior distribution of the K bootstrapped models. We then make use of previously

observed data Dn and obtain the posterior distribution by calculating the likelihood of each model,

L(θnk |Dn) =

n∏
i=0

σ
(
yc,i+1 · (αnk)Txc(bi, pi)

)
σ
(
ys,i+1 · (βnk )Txs(bi, pi)

)
.

With resampling, we modify our belief state to include both the candidate parameter values and the posterior

probabilities,
(
(θnk )Kk=1, q

n
1 , · · · , qnK

)
, with

qnk =
L(θnk |Dn)∑K

i=1L(θni |Dn)
. (4)

The resampling criteria can be set to different conditions. For example, the resampling can be triggered

if there has been Nmax iterations after the previous resampling step or if the likelihoods of more than half

of the candidates are low. As time goes by, the more data we have, the fitted model is expected to be more

accurate and there is less risk of overfitting. In our work, we decrease the resampling frequency as we progress

by resampling every C×2r iterations, where C is a pre-specified constant and r is the number of resamplings

that we have executed. The detailed algorithm for the knowledge gradient policy with bootstrap aggregation

is summarized in Algorithm 1.

5. Model of the Fleet Management System with Advance Booking

This section begins by describes the base model which simulates the fleet and which details the load booking

process, including the full booking profile which captures how far each shipper books loads in the future.

We then present both the driver dispatch policy which draws on prior work using approximate dynamic

programming, and the load acceptance policy, which uses a sophisticated stochastic lookahead model to

estimate the probability that a load will actually be accepted. Once the acceptance probability is estimated,

we use a threshold policy where loads are accepted if the acceptance probability is over some minimum.

For reasons of space, here, we just sketch the major elements of the base model which builds on Simao

et al. (2009), allowing us to focus on the load acceptance policy which is the element that is really new in

this paper.
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Algorithm 1: Knowledge Gradient with Bootstrap Aggregating
input : Initial set of parameters θ1, · · · ,θK , bids p1, · · · , pM ∈ [l, u], resampling base C.

initialize q0
k = 1/K, k= 1, · · · ,K, resampling counts r= 0, D0 = ∅.

for n= 0 to N − 1 do
if n= 2rC then

Get the bootstrapped models {θk}Kk=1 from Dn.

Set the posterior distribution qnk ←
L(θk|Dn)∑K
i=1 L(θi|Dn)

according to (4).

r← r+ 1.
end

Receive the load bn.

Recommend a quote pn to the shipper and the carrier using the KG policy in (3).

Get responses yn+1 = (yc,n+1, ys,n+1) from the shipper and carrier, respectively.

Update the posterior distribution qn+1
k according to (1):

qn+1
k ∝ qnkσ(yc,n+1 ·αTk xc,n)σ(ys,n+1 ·βTk xs,n).

Dn+1 =Dn ∪{bn, pn, yn+1}.
end

5.1. The Base Model

The base model, which is implemented as a simulator, can be written in the canonical form

max
π

E

{
T∑
t=0

C(St,X
π(St))|S0

}
, (5)

where

St = The state of the system at time t, where St consists of the state of drivers Rt, loads Lt, and
the state of knowledge Kt which captures our distribution of belief about how shippers and
carriers might respond to prices in each traffic lane,

S0 = The initial state, which contains all deterministic information along with a Bayesian prior
on the shipper and carrier response curves,

xt = (xDt , x
L),

xDt = Vector of decisions to assign drivers to loads,

xLt = Vector of decisions to accept loads offered to the carrier,

Xπ(St) = (Xπ,D(St),X
π,L(St)),

Xπ,D(St) = Decision rule, or policy, for assigning drivers to loads,

Xπ,L(St) = Policy for accepting offered loads.

In previous sections, the model updates are for every load, indexed by n, while here the base model is

modeled over time. Xπ(St) is the policy, or set of decision rules, that govern both load acceptance, the choice

of which driver should cover each load, and as a byproduct, which loads are actually moved.

The evolution of the state variable is described by the system model (also known as a transition function)

which we write as

St+1 = SM(St,X
π(St),Wt+1), (6)
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where

Wt = Vector of all exogenous information that first becomes known by time t (that is, this is
information that arrived between t− 1 and t).

The most important exogenous information in this project includes new loads being called in between t− 1

and t, L̂t, as well as decisions made by shippers and carriers to accept a load at an offered price.

Drivers and loads are modeled at a high level of detail. Drivers are represented by an attribute vector a

that captures features such as current location, home domicile, driver type, and driving history (needed to

enforce work rules). We let

a= Vector of attributes, where a ∈A, describing a driver, which includes current (or inbound)
location, home domicile, single/sleeper/owner operator, equipment type, nationality (to cap-
ture cross-border restrictions), target time to return home, driving hours, duty hours, and
8-day driving history,

Rta = Number of drivers with attribute a at time t,

Rt = (Rta)a∈A,

R̂ta = Exogenous changes (additions or subtractions) of drivers with attribute a that we learn
about at time t,

R̂t = (R̂ta)a∈A.

The random vector R̂t could be used to represent drivers entering and leaving the network (a process that we

do not model in this paper), but it can also be used to model random travel times, where new information

on the progress of a driver could be translated to subtracting a driver arriving at 10am.

Loads are described by the attribute vector b which includes origin and destination, pickup and delivery

windows, and other load characteristics. We let

Ltt′b = (LOtt′b,L
A
tt′b)

= Number of offered (LOtt′b) and accepted (LAtt′b) loads with attribute b known at time t that
is available to be moved at time t′ ≥ t,

Ltt′ = (Ltt′b)b∈B ,

L̂tt′b = New (offered) loads becoming available with attribute b between t−1 and t to be picked up
at time t′ (normally we would put t′ in the attribute vector b, but the lag between the call-in
time t and the earliest pickup time t′ plays a particularly important role in this paper),

L̂tt′ = (L̂tt′b)b∈B, a stochastic process of exogenous loads.

We have to design a load acceptance process to choose the loads from L̂tt′ which we will commit to moving,

which moves then into the vector Ltt′ = (Ltt′b)b∈B.

This notation allows us to define our state variable as

St = (Rt,Lt,Kt),

where Kt is our belief about the price curves for shippers and carriers introduced in Section 4.3. Specifically,

our belief state includes both the vector of current candidate model parameters (θt1, · · · ,θtK) and the

posterior probabilities qt, Kt = (θt,qt). It should be noted that Section 4 describes the model updates for

each load, indexed by n, while here we are modeling a simulator steps forward in time increments so that

the base model is indexed by t.



18 Wang, Nascimento and Powell: Dynamic Bidding for Advance Commitments

We are now ready to define the decision variables in more detail. Let

D= The set of decisions that can be made at time t =
(
dh,DL),

dh = Decision to hold a driver,

DL = Set of decisions to move a load, where an element d∈DL corresponds to an attribute bd ∈B,
which means that d∈DL refers to moving a load with attribute bd,

xDtad = The number of drivers with attribute a are acted on with a decision d at time t,

xDt = (xDtad)a∈A,d∈D,

xLtt′b = 1 if we accept a load offered at time t to be moved at time t′ with attribute vector b, 0 if
we decline the load.

The decisions are constrained by ∑
d∈D

xDtad = Rta, (7)∑
a∈A

xDtad ≤ Lttbd , d∈D
L, (8)

xDtad ≥ 0, (9)

xLtt′b ≤ L̂tt′b, (10)

xLtt′b ≥ 0. (11)

Constraint (7) requires that we act on all drivers with some decision (even if it is to do nothing), while

constraint (8) limits the number of assignments to loads of type bd for d ∈DL to the number of loads that

have been accepted, represented by the vector Lt. Constraint (10) limits the number of accepted loads by the

number of loads that have actually been offered. The policy Xπ(St) which determines xDt and xLt is required

to satisfy these constraints.

The attribute vector a can be quite complex (it may include up to 15 different elements). We capture the

dynamics of updating all the attributes of a driver using the attribute transition function which we write as

a′ = aM(a, d),

where a′ is the attribute of a driver with initial attribute vector a after being assigned to a load with attribute

vector b. The attribute a′ is the post-decision attribute vector, which is the attribute vector we expect from

assigning a driver with attribute a to a load with attribute b, but without any new information. We define

δa′(a, d) =

{
1, if aM(a, d) = a′,
0, otherwise.

This allows us to write the post-decision resource vector as

Rxta′ =
∑
a∈A

∑
d∈D

δa′(a, d)xtad. (12)

We can then write our next pre-decision resource vector using

Rt+1,a =Rxta + R̂t+1,a, a∈A. (13)

The transition function for loads is modeled using

Lt+1,t′b = Ltt′b +xLtt′b, t
′ > t. (14)
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Note that eventually any load represented by Ltt′b for t′ > t eventually becomes Lttb, at which point it may

be dispatched. We assume that any loads in Lttb that need to be picked up at time t, but which are not, are

lost but incur a real cost (not just a soft penalty) since the carrier must pay a broker to cover these loads.

Equations (12)-(14), along with the updates to the belief state, represent the transition function SM(·).
Our next challenge is to design our the driver dispatch policy Xπ,D(St) and the load acceptance policy

Xπ,L(St).

5.2. The Booking Process

The booking process L̂tt′b is created from a series of probability distributions estimated directly from a

historical dataset. While a detailed description is not central to this paper, it helps to understand some of

the characteristics of the booking process that were captured:

• The prebook process - In our dataset, approximately 50 percent of loads were called in to be picked up

four or more days into the future. We captured this prebook distribution up to 14 days into the future.

• Seasonality - The model captures day of week, week of year, as well as a variety of holiday effects (e.g.

the number of days before major holidays).

• Outbound distributions - We estimate the probability distribution of freight out of each region, by

shipper and total.

• Lane distributions - We finally estimate the distribution of loads in each lane, in a way that ensures

that the total freight out of a region for a shipper matches the aggregate distribution for that shipper.

Simulations of loads from these distributions have been found to closely match historical behaviors.

5.3. The Driver Dispatch Policy

The simplest policy for assigning drivers to loads is to use a simple myopic assignment problem, but this

ignores the value of drivers in the future, which can depend on the attributes of the driver. For example,

some regions may have better loads for getting a driver home, or may have longer loads that are better

suited if the truck is operated by a two-person sleeper team. To capture the impact of drivers on the future,

we use the method based on approximate dynamic programming presented in Simao et al. (2009).

We define the objective function using

ctad = The contribution generated by applying decision d to drivers with attribute vector a at
time t. This contribution captures empty movement costs, loaded revenues, and any service
penalties from picking up or delivering loads early or late.

We then define the driver dispatch decision variable by xtad which is the number of drivers with attribute

a which we act on with a decision of type d. There are two classes of decisions: hold (do nothing), or assign a

driver to a load of type b∈B. These decisions are determined by the driver dispatch policy which we denote

by Xπ,D(St) which we determine using approximate dynamic programming by solving

XADP,D(St) = arg max
xt∈Xt

∑
a∈A

∑
d∈D

ctadxtad +V t(R
x
t ), (15)

where

V t(R
x
t ) =

∑
a′∈A

v̄ta′R
x
ta′ ,

=
∑
a′∈A

v̄ta′

(∑
a∈A

∑
d∈D

δa′(a, d)xtad

)
, (16)
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and v̄ta′ is an estimate of the marginal value of a driver with attribute a′ at time t.

Equations (15) - (16) can be solved using a standard integer programming package. Dual variables from

this optimization problem are used to estimate the coefficients v̄ta′ (this is fully described in Simao et al.

(2009)). This policy was found to produce very high quality solutions that closely calibrated against the

performance of a top truckload carrier.

A key feature of our model, not represented in Simao et al. (2009), is that loads are called in at a time

t to be served at a time t′ ≥ t that might be up to 14 days in the future (approximately half the loads are

to be picked up four or more days in the future), while in the earlier work, all loads were called in to be

served right away. This means that we have to make commitments now to move a load in the future, even

though we do not know the status of drivers in the future. In this paper, we explicitly model the lags in

the arrivals, represented by the variable L̂tt′ . The variable L̂0t′ represents all loads known initially over the

horizon. There is a lot of uncertainty in truckload trucking which complicates the process of making these

advance commitments.

5.4. The Load Acceptance Policy

The more substantive difference between this paper and Simao et al. (2009) is that we introduce the dimension

of explicitly deciding whether an offered load, which typically needs to be moved at some time in the future.

The challenge here is that whether we can accept a load in the future depends in part on whether we have a

driver who might be able to handle the load. Then there is also the issue of whether we still want to handle

the load (other loads may be more profitable).

Truckload carriers typically use either simple rules (accept the load if the carrier has moved loads in that

lane in the past), or calculations based on estimates of the net flow into the origin of the load (from which

we can see if there may be drivers available) to net flow out of the destination (if we have too many loads

going into a destination we may want to decline the load). Such heuristics ignore the ability to move drivers

into and out of neighboring regions, or the need to get drivers home.

We represent the load acceptance decisions by xLtt′b which is the number of loads in the offered set L̂tt′b

which is added to the set of committed loads Ltt′b. Acceptance decisions are made by the load acceptance

policy that we designate Xπ,L(St). Our policy uses an estimate of the probability that an offered load (which

may be picked up in the future) will actually be moved.

We have chosen to use a full stochastic lookahead policy to estimate the probability that a load will

be accepted. This is done by simulating our ADP policy XADP,D(St) into the future, but this is done by

performing 20 simulations of a lookahead model, which is a sampled version of the base model in equations

(5)-(6) which assumes that all offered loads are accepted. Our lookahead model closely parallels the base

model, with the following changes:

• To capture the parallel problems while recognizing that the lookahead model is a distinct model from

the base model, all the variables in the lookahead model have tilde’s and double time indices, as in x̃tt′ for

decisions or S̃tt′ for state variables.
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• The first time index represents the time within the base model that the lookahead model is being

formulated. The second time index, t′, is the time within the lookahead model, which spans time periods

t′ = t, . . . , t+H. For doubly time-indexed variables in the base model such as xLtt′b or L̂tt′b, the corresponding

variable in the lookahead model would be x̃Ltt′t′′b or
˜̂
Ltt′t′′b.

• We let ω̃t ∈ Ω̃t represent a sample of W̃tt, . . . , W̃t,t+H , where Ω̃t is a set of 20 sample paths constructed

from the load distributions that were estimated from history. Just as there is a probability space (Ω,F ,P)

for the base model, there is a probability space (Ω̃t, F̃t, P̃t) for each lookahead model triggered at time t

with its own set of filtrations F̃tt′ ⊆ F̃t,t′+1. Also, just as every variable indexed by t is Ft-measurable, every

lookahead variable indexed by tt′, such as the state S̃tt′ , is F̃tt′ -measurable, and all of these variables are

Ft-measurable in the base model.

• The lookahead model uses loads sampled from the load distributions estimated from history. However,

the driver dispatch and load acceptance policies are simulated in the base model using actual historical data.

The driver dispatch decisions are made using

x̃Dtt′ =XADP,D(S̃tt′),

where the ADP policy XADP,D(·) is given by equations (15)-(16), using the decision variables x̃tt′ and data

of the lookahead model, but where the value function approximations V t(R
x
t ) are from the base model.

However, the load acceptance policy in the lookahead model consists of a simple rule: accept all loads. Thus,

instead of using xLtt′b in equation (14), we simply use all the offered loads and then observe which of these

loads are accepted.

We need to compute the probability that a load with attribute b is accepted in the lookahead model. Let

x̃Dt,t′ad(ω̃) be the decision made in the lookahead model (initiated at time t in the base model) using our ADP

policy while following sample path ω̃ ∈ Ω̃t. Now compute a sampled estimate of the probability that loads

with attribute bd for decisions d∈DL are covered in the lookahead model using

ρ̂t,t′bd(ω̃t) =

∑
a∈A x̃

D
t,t′ad(ω̃)

Lt,t′bd
, d∈DL.

We run the lookahead model in parallel for each ω̃t ∈ Ω̃t, where the set Ω̃t would have 20 randomly sampled

paths. We then average across all the sample paths to obtain the estimated probability that an offered load

will actually be moved using

ρ̄t,t′b =
1

|Ω̃t|

∑
ω̃t∈Ω̃t

ρ̂t,t′b(ω̃t).

We now propose a simple parametric policy for load acceptance of the form

Xπ,L(St) =

{
1, If ρ̄t,t′b ≥ θaccept
0, Otherwise,

b∈B. (17)

We note that there is a lot of knowledge in the probability ρ̄t,t′b that loads of type b to be moved at time t′

will be accepted. Since we are running a full simulation using the same dispatch policy as the base model,

we avoid all the standard approximations used by even the most sophisticated carriers. This logic captures

the availability of drivers, not just in the region near the origin of the load but across the entire network. It

also considers whether a load might help a driver get home, and also balances the profitability of the load

against all other loads.
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6. Case Study

We test our methodology on the data from a major freight brokerage with the goal of assessing how well our

bidding policy balanced “learning while earning” in an online environment.

6.1. Shipper and Carrier Acceptance Model

We use discrete choice models used to estimate the probability of acceptance as a function of price and other

load attributes, carrier attributes and shipper attributes. Given a load n, Y c,n = 1 denotes the acceptance

by a carrier of the broker’s quoted price, while Y s,n = 1 means that the shipper has accepted the price.

We begin by analyzing the data of truckload shipments managed by a U.S.-based freight brokerage com-

pany, which spans from 08-Aug-2015 to the end of 13-Sept-2015 and contains approximately 10113 loads.

Each data point contains the following information: called-in time of the load, origin and destination of the

load, load type, travel distance, and the price accepted by the shippers and the carriers. The origins and

destinations have been aggregated up to 3-digit zip-codes, resulting in a total number of 619 different origins,

720 different destinations, and 3,013 traffic lanes with positive traffic flows. Reflecting regional patterns in

production and consumption, these lanes tend to be unbalanced, producing a range of market prices across

the country. For this reason, we use lane-specific attributes as context information in the discrete choice

model to explicitly model the heterogeneity and to exploit commonalities between lanes in the trucking

network. Specifically, if an origin/destination has more than 15 observations, we build a corresponding indi-

cator variable, resulting in 199 origin indicator variables IO1 , · · · , IO199 and 228 destination indicator variables

ID1 , · · · , ID228. An explanation of this approach is that if a traffic lane involves a popular origin and a seldom

visited destination, the potentially accepted quote is roughly the average price accepted among the lanes

with the same origin, since there is not enough information about the destination.

In specifying behavioral models for the shippers and carriers, other than the above mentioned indicator

variables, we choose variables that capture load and lane attributes. These attributes together make up the

contextual information b. The model is largely defined by how these attributes affect acceptance price, which

is the only decision variable. The variables used in the discrete choice models are provided in Table 1. It

should be noted that the decision variable p is understood as a per-mile rate.

Table 1 Variable Description

Variable Description

p Price per mile.
ITi Indicator variables of the equipment type required by the load, i= 1,2, · · · ,5, cor-

responding to “Dry Van”, “Flat Bed”, “Refrigerated”, “RGN” and “Step Deck”.
Only one out of the five is one and others are 0.

Miles The total distance of the load.
MinDist An indicator variable describing the distance of the load: MinDist = 1 if Miles≤

300mi.
DailyLoad The averaged daily load of this traffic lane from historical data.
IOi Indicator variables of 199 different origins, i= 1,2, · · · ,199.
IDi Indicator variables of 228 different destinations, i= 1,2, · · · ,228.
DestDailyDemand The averaged daily demand out bounded from the destination agregated from

historical data.
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The full model calibration for shippers f s(b, p;β) = σ
(
U(xs(b, p)|β)

)
and carriers f c(b, p;α) =

σ
(
U(xc(b, p)|α)

)
is described as follows:

U(xc|α) = α0 +α1DailyLoad +α2DestDailyDemand +α3MinDist + (α4IO1 + · · ·+α202IO199)

+ (α203ID1 + · · ·+α430ID228) + (α431IT1 +α432IT2 +α433IT3 +α434IT4 +α435IT5 )

+ (α436p · IT1 +α437p · IT2 +α438p · IT3 +α439p · IT4 +α440p · IT5 )

+α441p ·Miles ·MinDist +α442p ·DailyLoad.

U(xs|β) = β0 +β1MinDist + (β2IO1 + · · ·+β200IO199) + (β201ID1 + · · ·+β428ID228)

+ (β429p · IT1 +β430p · IT2 +β431p · IT3 +β432p · IT4 +β433p · IT5 ) +β434p ·Miles ·MinDist.

The carrier’s model is richer since the cost of the load is highly uncertain due to follow-on loads associated

with deadheading (moving an empty truck to the origin of the next load), dwell time, as well as the overall

spatial and temporal variability of load demands. For example, the willingness of a carrier to haul from

region A to region B will be higher if the truck has a high chance of getting an outbound load from B.

Second, in the data we have, in order to avoid overfitting, we use l1 regularized logistic regression. When

the regularization parameter is set to one, we do not find commodity types to be statistically significant as

intercept variables in the shipper demand model, so we omit them in the final model specification.

6.2. Simulated Experiments

Evaluating an exploration/exploitation policy is difficult since we do not know the outcome of the bids that

were not chosen for a particular load in the historical data (Chapelle and Li 2011). As a common practice in

bandit literature, using real world context and freight shipment features in the truckload dataset, we instead

simulate the true outcomes for both shippers and carriers using the discrete choice models and a weight

vector θ∗. This weight vector could be chosen arbitrarily, but it was in fact a perturbed version of some

weight vector learned from real data. Figure 1 illustrates the shipper and carrier acceptance probability as a

function of the per-mile bid p, under the fitted parameter θ∗ by training the model using l1 regularized logistic

regression on the historical dataset. The figure was prepared using the corresponding acceptance models for

carriers and shippers on five randomly chosen loads moving between different region pairs. Although volumes

across traffic lanes range from very low to very high, we can use the lane information in our acceptance

models to explicitly capture the different behaviors across all the traffic lanes and exploit commonalities in

the trucking network.

6.2.1. Comparison with Different Policies We sort the loads chronologically. For each load,

we collect its attributes b, construct the explanatory variables as explained in Section 6.1, and then use

a policy to choose a bid. We then observe the responses of the shipper and the carrier. The goal is to

maximize the expected total revenue. We assume that prices fall in the range of (0,4] dollars per mile. In

the experiments, we discretized the prices into 80 alternatives with 0.05 as the increment. For each load,

if we knew the truth parameter value θ∗, we can get the best mapping from any context b to the optimal

price by maxp pf(b, p;θ∗). This optimal value that can only be obtained in hindsight is used as the optimal
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(a) Carrier acceptance model (b) Shipper acceptance model

Figure 1 Shipper and carrier acceptance model for 5 different pairs of origins and destinations.

benchmark such that we compare different policies against this maximum revenue achieved if we knew θ∗.

In other words, the comparison metrics is the expected cumulative regret achieved by different policies π as

time goes by,

Rπ(n) =

n−1∑
t=0

max
p
pf
(
bt, p;θ∗

)
−

n∑
t=0

π(bt)f
(
bt, π(bt);θ∗

)
. (18)

In the experiment, we set the number of candidate functions to be K = 5 and the resampling base as

C = 300 indicating that the first resampling happens at the 300th iteration. We compare our knowledge

gradient policy with pure exploitation (which recommends the quote that seems to be the best), and a static

policy (Mean-Price) that always chooses the bid that is the mean of the accepted prices in the history. The

pure exploitation policy uses the same sampled belief model and the same bootstrapping procedures. The

only difference with the KG policy is how it selects the bid at each time step. We also consider a baseline

policy that is termed the estimate-and-optimize policy (Est-Opt). It uses the same logistic regression model

describe in Section 6.1 as the prediction model. It starts with a specific set of parameter values which can be

possible trained over past data. At each time step, it recommends the optimal price based on the estimated

parameter values for the current load. While new information accrues at each time step, the parameter values

are not updated until the next refresh. After a certain number of iterations, we will re-train the regression

model taking into account the newly observed data points. This is the conventional approach that is used in

various industries (Phillips 2005, Talluri and Van Ryzin 2006) with constant refresh.

The experimental results are reported on 20 repetitions of each algorithm. We report the averaged cumu-

lative regret Rπ(n)/n in Figure 2 on the first 3000 iterations. We can see that the KG policy yields the best

performance. The Mean-Price policy has a constant performance since it does not learn anything on the way.

It emphasizes the need for price experimentation to gather more information on other prices. It is worth

mentioning that while other policies use the discretized prices from 0 to 4, the Mean-Price policy uses the

actual prices in historical data, which does not necessarily fall in this price interval. It includes lanes with

prices of $4.56 and $7.13, although these are exceptional. The Est-Opt policy has a reasonable performance.

This seems at first a bit odd since no learning happens between two re-fitting steps and this myopic policy

does not make any attempt to perform price experimentation to learn the response parameters. A possible

explanation is that the change in context induces some level of exploration. We also notice obvious breaking
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Figure 2 Comparison of different policies.

points at the iterations (e.g. 300 and 600) of resampling and/or refreshing in KG, Exploit and Est-Opt.

This confirms our claim that in high-dimensional settings, it is highly unlikely that one of the pre-defined

candidate functions is the true model. The bagging procedure provides the possibility to find more promising

parameters and in return benefit for immediate earnings.

The real value of the knowledge gradient is its rapid learning. We can see this by taking a close look at

the intervals between two resamplings. The reduction in the regret of the KG policy is much sharper than

other policies, indicating its ability to learn quickly. This is an important advantage when the experiments

are very expensive. The better performance of pure exploitation than Est-Opt also illustrates the benefit of a

truly sequential model or an online learning model in its rapid responses to the newly acquired information.

6.2.2. Effectiveness of Bagging. As seen in Figure 2, the breaking points of the regret curves

at the resampling steps provide evidence of the effectiveness of bagging in finding the new sets of potential

parameter values which promote locating the best acceptable bids. In Figure 3, we randomly select two loads

from the dataset with different origins and destinations and examine the fitting results on the shipper and

carrier acceptance model achieved by bootstrapping aggregation. After each bagging step, K new parameter

values are generated and the posterior distribution on the new set of candidate functions will continue to be

updated as the knowledge gradient policy acquires new observation at each time step.

We start with K = 5 randomly generated candidate functions. Before each bagging step, based on the

posterior distribution, we find the most probable model θ̂ in our current candidate set and plot the shipper

and carrier acceptance probability of the selected loads, as a function of p. Each line depicted in figure 3 is

the fitted bid response curve obtained before each bagging step r, with r indicating the number of previous

resamplings. For example, r = 0 is the most probable model under the initial randomly selected candidate

functions, right before the first resampling procedure occurs. The black dashed line is the true model under

the simulated truth θ∗ that is unknown to the learner. We can see that even though the initial estimates

can be anywhere in the parameter space which makes it hopeless to recommend a good bid, by resampling

parameters, we can continue to refine our estimation of the behavior of the shipper and the carrier. We draw
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the fitting curves for other loads as well and observe similar results. This indicates that by using a contextual

model, we can optimize over the entire truckload network at the same time.

This result together with Figure 2 provides an illustrative picture to demonstrate the behavior of the

knowledge gradient policy in achieving the dual objectives of maximizing profits while learning the bid

response curves.

Figure 3 Bid response prediction with the most probable model before each resampling step of two region

pairs. The black dashed line is the true model, and r represents the number of previous resamplings.

6.3. Experiments with Advance Booking Simulator

As recognized within the reinforcement learning community, evaluating the performance of bandit policies

is inherently challenging since we do not observe the counterfactuals. This makes it hard for researchers

to reliably compare the performance of different algorithms. An ideal way to evaluate a bandit algorithm

is to conduct field experiments, in which we actually run the bidding algorithm in reality and observe the

responses from carriers and shippers. Section 6.2 provides an evaluation method which is the common practice

in bandit community, but by assuming the belief model is true, the issue of mis-specification is neglected,

resulting in a possibly over-optimistic evaluation result.

In practice, carriers face complex factors that affect driver management, including the availability of a

backhaul moves, hours of service commitments, the highly stochastic requests of loads, the commitments to

loads offered in the future, and the service penalty if an accepted load is not moved on time. To provide a

more realistic evaluation that can better mimic field experiments, Section 5 builds on the driver management

model presented in Simao et al. (2009) to produce an accurate simulation of a large-scale fleet that captures

real-world operations at a very high level of detail. In what follows, we conduct online evaluations of our

proposed methodology using the simulator to provide carrier acceptance/reject decisions.



Wang, Nascimento and Powell: Dynamic Bidding for Advance Commitments 27

For every six hours spanning two weeks, the simulator offers a batch of loads to be moved to the broker.

As explained in Section 5, the stochastic process of loads being called in is an exogenous information process

that is fitted from historical data to ensure that the pre-book distribution matches the historical distributions

at different levels of aggregation. The broker uses the KG policy to recommend bids for each non-committed

load. The simulator calls the carrier’s load acceptance policy described in Section 5 and determines whether

the proposed bid is accepted or rejected by the carrier. In the meantime, we simulate the behavior of the

shipper using the discrete choice model in Section 6.1 with a true parameter value β∗ and generate the

shipper acceptance/reject decision to each bid. The loads are strictly time-ordered since the load acceptance

policy needs to take into consideration, for example, the number of loads accepted to be moved in the future

and the number of drivers at each time step. The broker will use the carrier’s and shipper’s feedback to

update his belief on the carrier and shipper response curve. The same procedure will be conducted for the

next batch of loads called in within the next six-hour time period.

We compare the performance of different policies in the bidding effectiveness. The baseline policy is the Est-

Opt policy. We cannot use the Mean-Price policy since there are many loads that have not been encountered

in history. Other than the Exploit policy introduced earlier, we also extend two more state-of-the-art policies

in the multi-armed bandit literature to our sampled belief model with bootstrapping aggregation, Thompson

sampling (Thompson 1933), and its enhanced version, Optimistic Thompson sampling (May et al. 2012).

Thompson sampling (TS) randomly selects an action (bid) according to the current distribution of belief

about its true value. In the case of a sampled belief model, at each time step, we can achieve this by randomly

drawing a candidate function from the posterior multinomial distribution and select the price that is the

best under the sampled function. Optimistic Thompson sampling (Opt-TS), modifies the score of each price

to the maximum of the sampled value and its mean value under the posterior distribution (May et al. 2012).

For Exploit, KG, TS and Opt-TS, the number of candidate functions is set to K = 5 and the resampling

base is set to C = 100.

Figure 4(a) reports the average revenue Gπ(n)/n in order of time, where

Gπ(n) =

n−1∑
t=0

P π(bt) ·Y c
(
bt, P π(bt)

)
·Y s

(
bt, P π(bt)

)
.

We repeat each policy on 10 different sample paths and report its average performance. The x-axis is the

sequence of 4209 upcoming loads spanning 2 weeks. The vertical dotted gray lines indicates the end of

each 6-hour batch. For example, the first 144 loads depicted in Figure 4 are the loads called in during the

first 6-hour period. We can see from the figure that KG has the highest performance in the total revenue

gained. The better performance of pure exploitation than Est-Opt confirms our finding that since pure

exploitation has the ability to react to newly acquired information, it can use the new information to make

better decisions. Not surprisingly, TS yields satisfactory performance, which has been empirically verified

in other work (Chapelle and Li 2011, Agrawal and Goyal 2013), although in different application contexts

and with different belief models. Optimistic Thompson sampling achieves a slightly better performance than

Thompson sampling, which illustrates the payoff gains using this optimistic version.
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Figure 4 Comparison of different algorithms on total revenue using advance booking simulator.

We now turn to studying the cumulative number of bids that were accepted by both shipper and carrier.

It is reasonable to make the assumption that within the 2-week time period, the stochastic process of loads

calling in does not depend on the broker’s bidding strategy or the broker’s reputation. However, the reality

is that the freight industry depends heavily on relationships and reputation. If most of the loads called in

are not fulfilled, it is hopeless to establish a long-term relationships. Thus, the broker needs to maintain a

steady rate of contract acceptance.

To better understand the bidding efficiency, in Figure 5, we report average acceptance by both, along with

acceptances by shippers and carriers separately. The acceptance rate Pπ(n)/n is reported at the end of each

batch, with

Pπ(n) =

n−1∑
t=0

Y c
(
bt, P π(bt)

)
·Y s

(
bt, P π(bt)

)
.

Other than the largest total revenue achieved as illustrated in Figure 4, the KG policy yields the highest

contract acceptance rate, with a 3% margin above the second best TS policy. We can see from Figure 5

that the shipper acceptance curve is smoother while the carrier acceptance rates exhibit choppy behaviors

among all the policies. One explanation is that shipper behavior is simulated using a logistic curve, while

carrier behavior is determined by the dispatch logic using approximate dynamic programming, which means

that the logistic curve is just an approximation of the carrier response. The carrier acceptance across all the

policies is lower in the middle of the two weeks, reflecting the need for the carrier to dispatch previously

accepted loads.

7. Conclusion

This paper presents, for the first time, a formal model of the dynamic bidding process for freight brokerages

for truckload trucking, where we handle both the problem of advance booking and pricing. We develop

a contextual knowledge gradient policy to quickly learn the bid response curves for carriers (buyers) and
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Figure 5 Acceptance rate achieved by different policies. Left: acceptance by both the carrier and the shipper;

Middle: carrier acceptance; Right: shipper acceptance.

shippers (sellers). The knowledge gradient policy requires estimating a high-dimensional, spatially distributed

belief model to capture the response to bids as a function of origin, destination and other attributes of

the loads. This required developing a novel resampling algorithm for efficiently computing the imbedded

expectation of the maximum of an expectation of a nonlinear response function. We show that the knowledge

gradient policy produces asymptotically unbiased estimates of the shipper and carrier response curves.

The learning method is tested using a carefully calibrated fleet simulator of a large truckload carrier, using

the offered loads from a major freight brokerage. We present the first model of an advance booking problem

for truckload trucking where we have to make commitments to loads 1-14 days into the future. Although

the load acceptance decision is approximated in the bidding process using a logistic curve with unknown

parameters, actual load acceptance decisions are outputs of the simulator, which uses a stochastic lookahead

policy that simulates fleet movements over a two week horizon for making advance commitments.

The adaptation of the knowledge gradient policy for the high-dimensional contextual setting is new, and

the simulations show that it outperforms a number of competitive learning policies. The use of a stochastic

lookahead model, implemented in a full fleet simulator, is also a first for truckload trucking, representing

a very rigorous test of our bidding policy. We believe that the Est-Opt, Exploit and Mean-Price policies

that we investigated represent policies that might reasonably be used in industry, and can thus be used

as benchmarks. We conclude that even though the carrier and shipper behavior is complex and highly

stochastic, by carefully exploiting the value of information, we can significantly improve the total revenue

and the number of contract acceptance.
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