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Some people may have heard of a strange phenomenon in causal inference or missing data problem that
an estimator based on estimated nuisance could have a smaller variance than an estimator based on oracle
nuisance (knowing the true nuisance parameter such as the propensity score).

In this note, I will try to explain how this phenomenon occurs in the setting of estimating equations.

The main reference is

Lok, Judith J. “How estimating nuisance parameters can reduce the variance (with consistent
variance estimation).” arXiv preprint arXiv:2109.02690 (2021).

1 Setup: estimating equations

We consider a general setup for the estimating equations with nuisance parameter.

Suppose our data consists of IID triplets

(X1,Y1,Z1), · · · ,(Xn,Yn,Zn)∼ P.

Let θ ∈ Rd be the parameter of interest in our model. Let η ∈ Rq be the nuisance parameter that only
involves X ,Z.

Let Pn be the empirical measure from the data and P be the probability measure.

We consider the following two functions for identifying θ,η:

S1(x,y,z;θ,η) = S1(θ,η) ∈ Rd

S2(x,z;η) = S2(η) ∈ Rq.

The estimators of θ and η are parameters that solves the estimating equations:

0 =
1
n

n

∑
i=1

S1(Xi,Yi,Zi; θ̂, η̂) = PnS1(θ̂, η̂) = Sn,1(θ̂, η̂)

0 =
1
n

n

∑
i=1

S2(Xi,Zi; η̂) = PnS2(η̂) = Sn,2(η̂).

(1)

For abbreviation, we sometimes write

S1(·;θ,η) = S1(X ,Y,Z;θ,η), S2(·;η) = S2(X ,Z;η).
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The population version of these quantities are

0 = E[S1(Xi,Yi,Zi;θ0,η0)] = PS1(θ0,η0)

0 = E[S2(Xi,Zi;η0)] = PS2(η0).
(2)

Key assumption on the estimating equations: nuisance generative model. We consider the following
additional requirement on the second estimating equation:

S2(x,z;η) = ∇η log p(z|x;η), (3)

where p(z|x;η) is the conditional PDF/PMF of Z given X . Namely, the nuisance parameter is identified
from the log-likelihood model.

Equation (3) together with equation (2) implies that the joint distribution p(x,y,z) that generates our data
can be factored as

p(x,y,z) = p(y|x,z;θ0,γ0)p(z|x;η0)p(x),

where γ0 is another set of nuisance parameters such that (θ0,γ0) together determines the conditional distri-
bution p(y|x,z;θ0,γ0). This is because the parameter of interest θ may not uniquely determine a generative
model. Thus, we allow another set of parameters γ in the conditional distribution. Note that p(x) itself is
another nuisance function that is not specified in the estimating equations.

Example: Inverse probability weighting in binary treatment problem. Consider a binary treatment
effect problem where our Y is outcome of interest, X is confounders, Z ∈ {0,1} is the treatment indicator.
A common estimator of the average treatment effect (ATE) θ is

θ = E
(

Y Z
π(X ;η)

− Y (1−Z)
1−π(X ;η)

)
,

where π(x;η) = P(Z = 1|X = x;η). A common model of η is the logistic regression, i.e.,

π(x;η) =
eηT x

1+ eηT x
.

A common estimator of θ is

θ̂ =
1
n

n

∑
i=1

YiZi

π(Xi; η̂)
− Yi(1−Zi)

1−π(Xi; η̂)
,

which can be written as θ̂ from solving

0 =
1
n

n

∑
i=1

(
θ̂− YiZi

π(Xi; η̂)
− Yi(1−Zi)

1−π(Xi; η̂)

)
,

so this implies

S1(X ,Y,Z;θ,η) = θ− YiZi

π(Xi;η)
− Yi(1−Zi)

1−π(Xi;η)
= θ−YiZi(1+ e−ηT Xi)−Yi(1−Zi)(1+ eηT Xi).

The estimator η̂ is often from the MLE, which in the case of logistic regression, is from the following score
equation:

0 =
1
n

n

∑
i=1

ZiXi−
Xieη̂T Xi

1+ eη̂T Xi
.
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Thus,

S2(X ,Z;η) = ZX− XeηT X

1+ eηT X
.

2 Asymptotic variance

To investigate the asymptotic variance of θ̂, η̂, we use a standard procedure. First, let

Sn(θ,η) =

(
PnS1(θ,η)
PnS2(η)

)
∈ Rd+q, S̄(θ,η) =

(
PS1(θ,η)
PS2(η)

)
∈ Rd+q.

Equations (1) and (2) imply that
0 = Sn(θ̂, η̂) = S̄(θ0,η0).

Thus, Taylor expansion shows that

Sn(θ0,η0)− S̄(θ0,η0) = Sn(θ0,η0)−Sn(θ̂, η̂)

≈−∇Sn(θ0,η0)

(
θ̂−θ0
η̂−θ0

)
,

which further implies that (
θ̂−θ0
η̂−θ0

)
≈−[H̄(θ0,η0)]

−1(Sn(θ0,η0)− S̄(θ0,η0)), (4)

where
H̄(θ,η) = ∇S̄(θ,η)

is the asymptotic limit of ∇Sn(θ0,η0).

The Hessian matrix H̄(θ,η) has a block diagonal feature that

H̄(θ0,η0) =

(
E[∇θS1(X ,Y,Z;θ0,η0)] E[∇ηS1(X ,Y,Z;θ0,η0)]

E[∇θS2(X ,Z;η0)] E[∇ηS2(X ,Z;η0)]

)
=

(
E[∇θS1(X ,Y,Z;θ0,η0)] E[∇ηS1(X ,Y,Z;θ0,η0)]

0 E[∇ηS2(X ,Z;η0)]

)
.

This implies that the inverse matrix will have a similar block-diagonal structure:

H̄(θ0,η0)
−1 =

(
Ω̄11(θ0,η0) Ω̄12(θ0,η0)

0 Ω̄22(η0)

)
.

Using the matrix algebra, one can show that the off-diagonal block is

Ω̄12(θ0,η0) =−E[∇θS1(·;θ0,η0)]
−1E[∇ηS1(·;θ0,η0)]E[∇ηS2(·;η0)]

−1

=−H−1
11 (θ0,η0)E[∇ηS1(·;θ0,η0)]H−1

22 (η0).
(5)
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An interesting note is that

H−1
11 (θ0,η0) = Ω11(θ0,η0), H−1

22 (η0) = Ω22(η0).

The quantity Ω̄12(θ0,η0) will play a key role in the asymptotic variance of θ̂. To see this, putting equation
(5) into equation (4) leads to

θ̂−θ0 =−Ω̄11(θ0,η0)(Sn,1(θ0,η0)− S̄1(θ0,η0)︸ ︷︷ ︸
=0

)− Ω̄12(θ0,η0)(Sn,2(η0)− S̄2(η0)︸ ︷︷ ︸
=0

)

=−Ω̄11(θ0,η0)[Sn,1(θ0,η0)−E[∇ηS1(·;θ0,η0)]Ω22(η0)Sn,2(η0)︸ ︷︷ ︸
=(A)

].
(6)

The quantity (A) is how estimating the nuisance (from Sn,2) influences the variance of the estimator θ̂.

As a reference, if we are using the oracle estimator, i.e., knowing η0, the asymptotic expansion will be

θ̃−θ0 ≈−Ω̄11(θ0,η0)Sn,1(θ0,η0). (7)

3 Invariance under linear transformation

To investigate how the asymptotic variance from equation (6) can be smaller than the oracle in equation (7),
we use the following insight:

the estimating equations remain unchanged under some linear transformation.

Let A ∈ Rd×p be a none-random matrix. The estimators from equation (1) will be the same if we replace
S1(X ,Y,Z;θ,η) by

S1,A(X ,Y,Z;θ,η) = S1(X ,Y,Z;θ,η)+AS2(X ,Z;η).

After this change, we can redo all the derivation, which leads to another asymptotic linear representation of
θ̂:

θ̂−θ0 ≈−Ω̄11,A(θ0,η0)[Sn,1,A(θ0,η0)−E[∇ηS1,A(·;θ0,η0)]Ω22,A(η0)Sn,2(η0)],

where Ω̄11,A and Ω̄22,A are the corresponding quantities of Ω̄11 and Ω̄11 under the linear transformation. An
important note is that Ω̄11,A = Ω̄11 and Ω̄22,A = Ω̄22!

Thus, we conclude that

θ̂−θ0 ≈−Ω̄11(θ0,η0)[Sn,1,A(θ0,η0)︸ ︷︷ ︸
=(B)

−E[∇ηS1,A(·;θ0,η0)]Ω22(η0)Sn,2(η0)︸ ︷︷ ︸
=(C)

], (8)

where

Sn,1,A(θ0,η0) = Pn[S1(θ0,η0)+A ·S2(η0)]

S1,A(·;θ0,η0) = S1(·;θ0,η0)+A ·S2(·;η0).
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This holds for any non-random A. So the question is: how can we choose A to minimize this variance.

We will consider the following choice:

A∗ = E[S1(X ,Y,Z;θ0,η0)S2(X ,Z;η0)
T ]E[S2(X ,Z;η0)S2(X ,Z;η0)

T ]−1

Note that equation (3) implies the following two powerful results:

E(∇ηS2(X ,Z;η)) = E(S2(X ,Z;η)S2(X ,Z;η)T ),

E(∇ηS1(X ,Y,Z;θ0,η0)) =−E[S1(X ,Y,Z;θ0,η0)S2(X ,Z;η0)
T ].

(9)

This will imply a powerful fact about E[∇ηS1,A(·;θ0,η0)] that is a key quantity in term (C). A simple deriva-
tion shows that

E[∇ηS1,A∗(·;θ0,η0)] = E[∇ηS1(·;θ0,η0)+A∗ ·∇ηS2(·;η0)]

= E[∇ηS1(·;θ0,η0)]+E[S1(·;θ0,η0)S2(·;η0)
T ]E[S2(·;η0)S2(·;η0)

T ]−1E[∇ηS2(·;η0)]︸ ︷︷ ︸
=Id

= E[∇ηS1(·;θ0,η0)]+E[S1(·;θ0,η0)S2(·;η0)
T ]

= 0.

Therefore, under A = A∗, (C) = 0.

Therefore, the only quantity left is term (B). So we can rewrite equation (8) as

θ̂−θ0 ≈−Ω̄11(θ0,η0)Sn,1,A∗(θ0,η0),

where

Sn,1,A∗(θ0,η0) = PnS1,A∗(θ0,η0)

S1,A∗(·;θ0,η0) = S1(·;θ0,η0)−E(S1(·;θ0,η0)S2(·;η0)
T )E(S2(·;η0)S2(·;η0)

T )−1S2(·;η0).

The quantity S1,A∗(θ0,η0) is the orthogonal component of S1(θ0,θ0) of S2(η0). Thus, the covariance matrix
of S1,A∗(θ0,η0) will be smaller than the covariance matrix of S1(θ0,η0)! Namely, one can show that

E[S1,A∗(·;θ0,η0)S1,A∗(·;θ0,η0)
T ]−E[S1(·;θ0,η0)S1(·;θ0,η0)

T ]

is negative definite. This implies that the estimator θ̂ has a smaller asymptotic variance than the oracle
estimator θ̃!

4 Derivation of equation (9)

This derivation is similar to the derivation in the maximum likelihood estimator theory. For the complete-
ness, we provide a derivation on the second equation. The first equation can be obtained in a similar manner.
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Equation (3) requires
S2(x,z;η) = ∇η log p(z|x;η).

Using the population estimating equations,

0 = E(S1(X ,Y,Z;θ0,η0)) =
∫

S1(x,y,z;θ0,η0)p(y|x,z;θ0,γ0)p(z|x;η0)p(x)dydzdx

assuming that the data is from p(x,y,z;θ0,γ0,η0), where γ0 is another set of nuisance parameter such that
(θ0,γ0) together determines the distribution p(y|x,z;θ0,γ0). See the discussion after Equation (3).

The above result implies that if the data is from p(x,y,z;θ,γ,η), we have the integral relation

0 =
∫

S1(x,y,z;θ,η)p(y|x,z;θ,γ)p(z|x;η)p(x)dydzdx.

for any η,θ. Taking derivative with respect to η leads to

0 = ∇η0

= ∇η

∫
S1(x,y,z;θ,η)p(y|x,z;θ,γ)p(z|x;η)p(x)dydzdx

=
∫
[∇ηS1(x,y,z;θ,η)]p(y|x,z;θ,γ)p(z|x;η)p(x)dydzdx

+
∫

S1(x,y,z;θ,η)p(y|x,z;θ,γ)[∇η log p(z|x;η)] log p(z|x;η)p(x)dydzdx

= E[∇η(S1(X ,Y,Z;θ,η))]+E[S1(X ,Y,Z;θ,η)S2(X ,Z;η)T ],

which is the desired result.
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