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This short note presents a gentle introduction on the basic concept of kriging, a popular method in spatial
statistics.

1 Setup

Kriging considers the problem where we have a random field Y (s) that s ∈ S ⊂ R2. In reality, we do not
observe the entire random field but only a few sampling locations (known as sites) s1, · · · ,sn ∈ S . Namely,
our data is

Yn = (Y (s1), · · · ,Y (sn))
T ∈ Rn.

We often assume that the random field is centered, i.e., E(Ys) = 0 for all s. However, for any pairs of points
s1,s2, their covariance is often non-zero, i.e. Cov(Y (s1),Y (s2)) =C(s1,s2) 6= 0. Note that 2C(s1,s2) is also
called the variogram is spatial statistics. Note also that a random field is called stationary if C(s1,s2) =
C(s1− s2).

For an unobserved location s, we are interested in the realization of the random field Y (s). Namely, we want
to predict Y (s) using our data Yn (and the site information s1, · · · ,sn). Our predictor Ŷ (s) can be written as

Ŷ (s) = gs(Yn,s1, · · · ,sn).

The key question is: how do we construct a good predictor?

To answer this question, we need a measure of success/loss. A common way to measure the prediction
accuracy is the mean squared error (MSE). In this case, we measure the error of predictor gs via

R(gs) = E
(
(gs(Yn,s1, · · · ,sn)−Y (s))2) . (1)

We want to find a good predictor that minimizes the above MSE.

Note. One may notice the similarity of kriging problem to the usual regression problem (with a fixed design).
The key difference is the heterogenous error versus homogeneous error; see the discussion in Section 4.

2 Linear interpolation

A very popular approach in kriging is the linear interpolation method. Namely, instead of searching for all
possible predictor gs, we consider the predictor

Ŷ (s) = gs(Yn,s1, · · · ,sn) = λ(s)TYn, (2)
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where λ(s) ∈ Rn is the vector of parameters (weights) of predicting Y (s) using Yn.

Under the linear interpolation method, one can easily show that the MSE

R(gs) = R(λ(s))

= E
(
(λ(s)TYn−Y (s))2)

= λ(s)TE(YnY T
n )λ(s)−2λ(s)TE(YnY (s))+E(Y (s)2).

Thus, the minimizer will be

λ
∗(s) = E(YnY T

n )−1E(YnY (s)) = Σ
−1
n Cn(s), (3)

where Σn =E(YnY T
n ) =Cov(Yn,Yn)∈Rn×n and Cn(s) =E(YnY (s))∈Rn has the j-th element being Cn, j(s) =

Cov(Y (s j),Y (s)) =C(s j,s).

Therefore, if we can estimate both the covariance matrix Σn and the vector Cn(s), we can apply the linear
interpolation method.

However, a challenge is that both Σn and Cn(s) has too many free parameters that scales with respect to the
sample size n, so we cannot obtain a reliable estimate without making additional assumptions.

To resolve this problem, a common approach is to assume isotropic random field:

Cov(s1,s2) =C(s1,s2) = ω(‖s1− s2‖) (4)

for some smooth function ω. Note that very often we will assume that ω(t) = 0 for all t ≥ t̄, i.e., no long
distance correlation.

With the isotropic assumption, we just need to estimate ω and then plug-in it into estimating Σn and Cn(s).

2.1 Uniform sites/design

We first consider a simple scenario where the sampling sites s1, · · · ,sn forms a uniform grid over the region
S .

In this case, the pairwise distance di j = ‖si− s j‖ ∈ {t1, t2, · · · , tM} only takes value among a finite set of
possible values. This makes the estimation of Σn a lot easier. For instance, the (i, j) element of Σn can be
estimated by

Σ̂n,i, j =
1

2n(di j)
∑
`,m

(Y (s`)−Y (sm))
2I(d`m = di j), n(di j) = ∑

`,m
I(d`m = di j).

For the quantity Cn(s), while we may not have pairs of observations with the exact distance to ‖s− si‖, we
may apply an interpolation method to estimate it. Using the idea of estimating Σ̂n, we can estimate ω via
estimating

ω̂(t`) =
1

2n(t`)
∑
`,m

(Y (s`)−Y (sm))
2I(d`m = t`)
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for each `= 1, · · · ,M.

Then we apply a linear interpolation to form an estimator ω̂(t) for all t. Specifically, suppose t ∈ [ta, ta+1],
we use

ω̂(t) =
t− ta

ta+1− ta
ω̂(ta)+

ta+1− t
ta+1− ta

ω̂(ta+1).

2.2 Irregular sites/design

When the sampling sites do not form a uniform grid, the pair di j may take a total of
(n

2

)
possible values.

This makes the above procedure infeasible. However, we can still estimate ω by a nonparametric approach
such as kernel smoothing.

Let K(·) be a smoothing kernel such as a Gaussian and h > 0 be a smoothing bandwidth. We estimate ω(t)
via

ω̂h(t) =
∑i, j(Y (si)−Y (s j))

2K
(
‖si−s j‖−t

h

)
∑`,m K

(
‖s`−sm‖−t

h

) .

With this estimator, we further estimate

Σ̂n,i, j = ω̂h(‖si− s j‖)
Ĉn, j(s) = ω̂h(‖s j− s‖).

and construct our final estimator.

Remark. One can derive the convergence rate of ω̂h(t) using techniques from U-Statistics with concentra-
tion inequalities of kernel smoothing.

3 Optimal predictor

In the above analysis, we have been focusing on the linear interpolation method. If we want to directly
search for the minimizer of equation (1), what will we obtain?

Fact: the minimizer of equation (1) is

g∗s (Yn) = E(Y (s)|Yn) = µs(Yn). (5)
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To see why equation (5) is the optimal predictor, we expand the MSE as follows:

R(gs) = E
(
(gs(Yn,s1, · · · ,sn)−Y (s))2)

= E
(
(gs(Yn,s1, · · · ,sn)−µs(Yn)+µs(Yn)−Y (s))2)

= E

E
(
(gs(Yn,s1, · · · ,sn)−µs(Yn)+µs(Yn)−Y (s))2|Yn

)︸ ︷︷ ︸
=(A)


(A) = (gs(Yn,s1, · · · ,sn)−µs(Yn))

2 +2(gs(Yn,s1, · · · ,sn)−µs(Yn))E(µs(Yn)−Y (s)|Yn)︸ ︷︷ ︸
=0

+E(Y (s)2|Yn).

Thus, the quantity
(A) = (gs(Yn,s1, · · · ,sn)−µs(Yn))

2 +E(Y (s)2|Yn).

The second term is independent of gs and the first term is non-negative. So the only way to minimize (A) is
choosing gs(Yn,s1, · · · ,sn) = µs(Yn), which is the choice g∗s .

Therefore, the optimal predictor of Y (s) is g∗s (Yn) = E(Y (s)|Yn), the conditional mean of Y (s) given the
data Yn. However, similar to the linear interpolation problem, estimating this conditional mean is infeasible
since when the sample size n increases, we are having more random variables being conditioned on. So the
function’s argument is also expanding.

Gaussian random field. Note that in all of the above analysis, we did not assume the random field be-
longs to any particular family. In the case that the random filed is Gaussian random field, the response
(Y (s1), · · · ,Y (sn),Y (s)) follows a multivariate Gaussian distribution. It is well-known that in this case, the
condition mean E(Y (s)|Yn) will be a linear function of Yn. Thus, using the derivation in Section 2, we
conclude that the optimal predictor under Gaussian random field is

g∗s (Yn) = E(Y (s)|Yn) = E(YnY T
n )−1E(YnY (s)) = Σ

−1
n Cn(s), ,

the same as equation (3).

4 Relation to regression and time series

The setup of the kriging looks very similar to the fixed design regression problem where sites are the covari-
ates. The optimal predictor g∗s in equation (5) also shows similarity to the regression function.

In fact, you can view the kriging problem as fixed design regression problem with correlated error. The key
is correlated error.

Suppose there is no correlated error, Y (s1) and Y (s2) are independent. Then you can easily see that the
optimal predictor g∗s (Yn) = E(Y (s)|Yn) = E(Y (s)) is just the usual regression function and there is no need
to interpolate information from other observations into predicting Y (s). When the random field is centered,
i.e., E(Y (s)) = 0, the optimal predictor is trivially 0.

Because of correlated error, the observation Y (s j) will provide information on the actual value of Y (s). And
this is why even when we assume the random field is centered, our predictor will not be the trivial predictor
(always predicting 0).
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Kriging is related to the time series problem in the sense that kriging considers 2D correlated errors while
time series consider 1D correlated errors. However, a key difference between the two problems is that time
series models often have a generative form, i.e., we often start with a model on how the current (and past)
value of response variable affects the value of the next response variable. This types of model often has a
nice economics interpretation. Such model is often unavailable in the spatial statistics and kriging problems.
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