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This short note is a gentle introduction to the paper [ZDC2022], which the authors derive an elegant form
of Bayes classifier under the demographic parity.

1 Setup

Let (X ,A) be the feature/covariates and A is the protected variable. We consider a binary classification
problem where the class label Y ∈ {0,1}. For simplicity, we assume that A ∈ {0,1} and the other covariate
X is a continuous random vector. In a typical classification problem, we have a new observation (X ′,A′) and
we will make a prediction based on the classifier c(X ′,A′)∈ {0,1}. In this case, we may write Ŷc = c(X ′,A′).

The demographic parity (DP) considers the discrepancy between predicting Ŷc = 1 under A = 0 and A = 1.
Specifically, a classifier reached DP if

P(Ŷc|A = 1) = P(Ŷc|A = 0).

In reality, it is pretty restrictive to have the equality constraint. The performance of classification could be
very bad. So instead, we consider the difference in demographic parity (DDP)

DDP(c) = P(Ŷ |A = 1)−P(Ŷ |A = 0).

As long as DDP is less than some user-specified threshold δ, the classifier is considered as a fair classifier.

When there is no constraint, it is well-known that the Bayes classifier is of the form

c∗(x,a) = I
(

ma(x)≥
1
2

)
, ma(x) = P(Y = 1|X = x,A = a).

Note that ma(x) is also the regression function, i.e., E(Y |X = x,A = a) = ma(x).

When the Bayes classifier satisfies |DDP(c∗)| ≤ δ, there is nothing we need to do to modify it. However,
when |DDP(c∗)| > δ, we have to make some modifications so that the modified classifier is fair. For sim-
plicity, we denote D∗ = DDP(c∗).

Suppose mA(X) is a continuous random variable, [ZDC2022] showed that a Bayes classifier with DDP being
controlled at δ is like

c∗
δ
(x,a) = I

(
ma(x)≥

1
2
+(2a−1) · D∗

|D∗|
· t∗

δ

)
, (1)
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where t∗
δ

is from the following equation:

S1

(
1
2
+ t∗

δ

)
= S0

(
1
2
− t∗

δ

)
+

D∗

|D∗|
δ, Sa(τ) = P(ma(X)> τ). (2)

In what follows, we will derive how this classifier is constructed. Note that this expression is not identical
to [ZDC2022], we will explain the difference later.

2 Constructing a classifier with demographic parity

For simplicity, we first consider the case D∗ > 0 and |D∗|> δ.

2.1 Changing the threshold

The fact that D∗ > 0 implies that

D∗ = P(Ŷc∗ = 1|A = 1)−P(Ŷc∗ = 1|A = 0)> 0⇒ P(Ŷc∗ = 1|A = 1)> P(Ŷc∗ = 1|A = 0).

Thus, one way to decrease the DDP is the change the threshold in our classifier. Originally, we compare the
regression function ma(x) versus the threshold 1

2 . The DDP D∗ > 0 implies that this threshold will favor the
case of A = 1 over A = 0. To decrease DDP, we consider

I
(

m1(x)≥
1
2
+ t
)
, I

(
m0(x)≥

1
2
− t
)
. (3)

Namely, the new classifier will make it easier to predict Ŷ = 1 for the case of A = 0. When t = 0, we recover
the original Bayes classifier. On the extreme case t → ∞, P(Ŷ = 1|A = 0)→ 1 while P(Ŷ = 1|A = 1)→ 0,
so we can increase t to decrease the DDP.

Note that the classifier of the form of equation (3) is from a symmetric deviation approach: we decrease the
threshold of A = 1 and increase the threshold of A = 0 by the same amount.

We denote c∗t (x,a) to be the classifier

c∗t (x,a) = I
(

m1(x)≥
1
2
+(2a−1)t

)
. (4)

Equation (4) is equivalent to (3). We further denote D(t) = DDP(c∗t ) to be the DDP of the classifier c∗t .

With the above analysis, one can easily see that D(t) is a non-increasing function with respect to t and
D(0) = D∗ is the DDP under the Bayes classifier.

2.2 Feasible range of t

Given that D(t) is a decreasing function with respect to t and we have D(0) = D∗ > δ and D(∞) =−1. The
feasible region

Tδ = {t > 0 : D(t) ∈ [0,δ]}= [a∗
δ
,b∗], (5)
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where b∗ is from solving (case of DDP=0)

S1

(
1
2
+b∗

)
= S0

(
1
2
−b∗

)
and a∗ is from solving (case of DDP=δ)

S1

(
1
2
+a∗

δ

)
= S0

(
1
2
−a∗

δ

)
+δ, (6)

where Sa(τ) = P(ma(X)> τ). You may already notice the similarity between equations (6) and (2).

2.3 Risk minimization

To construct the Bayes classifier, we need to consider risk minimization. For the classifier c∗t , clearly the
risk we are taking compared to the original Bayes classifier will be increasing when t increases. So we want
to choose t as small as possible. Therefore, we will choose the minimal value of t ∈ Tδ. Thus, the optimal
choice will be t∗

δ
= a∗

δ
from solving the equation (6).

2.4 The symmetric argument

Finally, note that all the above analysis assumes that D∗ > 0. When D∗ < 0, we will swap case A = 0 and
A = 1 and consider the classifier

c∗t (x,a) = I
(

m1(x)≥
1
2
− (2a−1)t

)
so that t ≥ 0 is a feasible choice.

Thus, a simple way to obtain a unified form of the classifier regardless of the sign of D∗ is to make good use
of D∗
|D∗| , in which it will be +1 or −1 depending on the situation we are considering. As a result, we modify

equation (6) to

S1

(
1
2
+ t∗

δ

)
= S0

(
1
2
− t∗

δ

)
+

D∗

|D∗|
δ

and choose t∗
δ

by the above equation. The final classifier will then be

c∗
δ
(x,a) = I

(
m1(x)≥

1
2
+(2a−1) · D∗

|D∗|
· t∗

δ

)
,

which is equation (2).

3 The optimal classifier of [ZDC2022]

In [ZDC2022], their optimal classifier is slightly different from equation (1). Instead of using equation (3),
they consider the classifiers of the form

I
(

m1(x)≥
1
2
+

t
p1

)
, I

(
m0(x)≥

1
2
− t

p0

)
, (7)

3



where p1 = P(A = 1) and p0 = P(A = 0).

For classifiers of the above form, the optimal t will be chosen from

S1

(
1
2
+

t†
δ

p1

)
= S0

(
1
2
−

t†
δ

p0

)
+δ

and the optimal classifier is

c∗
δ
(x,a) = I

(
ma(x)≥

1
2
+(2a−1) · D∗

|D∗|
·

t†
δ

pa

)
(8)

by the same argument as the previous secion.

4 The real Bayes classifier

While equations (1) and (8) provide Bayes classifiers under certain classes, they may not be the Bayes
classifier among all classes.

To derive the real Bayes classifier, we should consider all classifiers of the form (in contrast to equations (3)
and (7))

I
(

m1(x)≥
1
2
+ t1

)
, I

(
m0(x)≥

1
2
− t0

)
, (9)

where both t0, t1 can change independently from each other. We may express the classifier ct0,t1(x,a) as

ct0,t1(x,a) = aI
(

m1(x)≥
1
2
+ t1

)
+(1−a)I

(
m0(x)≥

1
2
− t0

)
.

In the continuous case (of η1(X) and η0(X)), controlling DDP to be δ will introduce the constraint

S1

(
1
2
+ t1

)
= S0

(
1
2
− t0

)
+δ.

Thus, the feasible set {
(t0, t1) : S1

(
1
2
+ t1

)
= S0

(
1
2
− t0

)
+δ

}
forms a one-dimensional manifold and can be indexed by either t0 or t1. WLOG, we index the feasible
choice by t1 and set

t∗0(t1) = S−1
0

(
S1

(
1
2
+ t1

)
−δ

)
+

1
2
. (10)

The challenge is that when t1 increases, t∗0(t1) decreases, so it was not immediately clear how to optimally
balance between the two.
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To define the fair Bayes classifier, we analyze the excess risk relative to the original Bayes classifier. For
any classifier c, the excess risk is

R(c)−R(c∗) = R(c)−min
c′

R(c′),

where c∗ is the original Bayes classifier. Because the Bayes classifier can be written as

c∗(x,a) = I
(

ma(x)≥
1
2

)
,

the excess risk of the classifier ct0,t1 will be

R(ct0,t1)−R(c∗) = p1 ·
∫

2
(

m1(x)−
1
2

)
I
(

m1(x) ∈
[

1
2
,
1
2
+ t1

])
p(x|A = 1)dx

+ p0 ·
∫

2
(

1
2
−m0(x)

)
I
(

m0(x) ∈
[

1
2
− t0,

1
2

])
p(x|A = 0)dx

= 2p1

∫ t1

w1=0
w1 ·F1

(
1
2
+dw1

)
+2p0

∫ t0

w0=0
w0 ·F0

(
1
2
−dw0

)
= 2p1E(W1I(0≤W1 ≤ t1))+2p0E(W0I(0≤W0 ≤ t0)),

where F1 and F0 are the CDF of m1(X)|A = 1 and m0(X)|A = 0 and W1 is the random variable with the same
distribution of m1(X)− 1

2 |A= 1 and W0 is the random variable with the same distribution of 1
2−m0(X)|A= 0.

Under the optimal choice with fairness constraint in equation (10), we replace t0 by t∗0(t1), which leads to
the following expression of the excess risk

E(t1) = R(ct∗0 (t1),t1)−R(c∗)

= 2p1E(W1I(0≤W1 ≤ t1))+2p0E(W0I(0≤W0 ≤ t∗0(t1))).
(11)

The optimal t∗1 should be chosen as

t∗1 = argmint1>02p1E(W1I(0≤W1 ≤ t1))+2p0E(W0I(0≤W0 ≤ t∗0(t1))) (12)

and the fair Bayes classifier will be
c∗t∗0 (t∗1 ),t∗1 (x,a).

Note that this is for the case of D∗ > 0, by the symmetric argument we can construct a unified fair Bayes
classifier for any D∗. In fact, equations (11) and (12) remain the same and the only difference is the random
variables W0 and W1:

W1
d
=

D∗

|D∗|

(
m1(X)− 1

2

)∣∣∣∣A = 1 d
=

{
m1(X)− 1

2 |A = 1, if D∗ > 0
1
2 −m1(X)|A = 1, if D∗ < 0

W0
d
=
−D∗

|D∗|

(
m0(X)− 1

2

)∣∣∣∣A = 0 d
=

{
1
2 −m1(X)|A = 0, if D∗ > 0
m0(X)− 1

2 |A = 0, if D∗ < 0

. (13)

The technical challenge of obtaining a closed-form of t∗1 is that its closed-form depends on the distribution of
both m1(X)|A = 1 and m0(X)|A = 0, it is unclear if we can derive a simple form of the fair Bayes classifier.
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