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This section is a simplification of the following paper:

Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. (2022). Surprises in high-dimensional
ridgeless least squares interpolation. Annals of statistics, 50(2), 949.

In recent years, researchers have discovered an interesting phenomenon called benign overfitting: when the
dimension increases (and sample size is fixed), the mean square error of a linear model may be decreasing!
In this section, we will briefly explain how this could happen.

We will consider a special linear model called ridgeless regression, a combination of the usual least squared
model and ridge regression. Let

ERL:argmin{HbH : b minimizes || Y — Xb||}, (1)
where Y = (¥;,---,Y,)T € R" is the response vector and X € R"*? is the feature/covariate matrix. The

estimator in equation (1) is the ridgeless regression.

Here is an interesting property about Bgz:

-~ BOLS ifn> p,
Br =< 5 .
Brr if p > n,

where Bors is the ordinary least square and [3;; is the least norm interpolator.
The least norm interpolator is defined as a limiting case of the ridge regression:
LI = lim
B e B?\.a
~ _ 5
Ba = argmin, || — Xb|| +A[|]]3.

Here is an interesting fact: Bg;, will demonstrate the benign overfitting! See Figure 1.

1 Setup

To investigate this phenomenon, we will consider the following IID setup:
Y=Xp*+e,  e~N(0,0°L),

where I, € R"" is the identity matrix. Moreover, we assume that entries {X;;} are IID from N(0,1).
Namely, each row vectors X, -, X, are IID from N(0,1,,)
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Figure 1: The MSE of the ridgeless estimator ERL as a function of y= 2 under 6> = 1 and ||B*|| = 1.

To investigate the mean square error, we will separately analyze the bias and variance. In particular, we will
consider the conditional bias and variance:

Bias(Br.[X) € R,  Var(Brc|X) = Tr[Cov(Br.|X)],
where Cov (ERL|X) is the covariance matrix.

The conditional MSE is N R N
MSE (Bre|X) = ||Bias(Bre|X) > + Var(Bre|X).

2 Analysison p <n

When p < n, it is clear that the bias is 0 because BRL = B Thus,

Bias(ERL\X) =0.

For the variance, the story is more interesting. First, let

T
55X g
n

be the (sample) covariance matrix. For the ordinary least square, we know that

Var(Bre|X) = Tr[Cov(Bre|X)]
= Tr[(X"X)"'6?]
— 6—2 Tr(EY).

n



Using the property of trace,
A~ p A~
(™) =Y u; (%),
j=1
where u;(A) is the j-th eigenvalue of A.

To investigate the property of eigenvalues of a Gaussian covariance matrix, we will use the Marchenko-
Pastar theorem (MP theorem).

Theorem 1 (Marchenko-Pastar theorem) Let {Z;;} be IID random variables with E(Z;;) = 0,Var(Z;;) =
1. Eet Z € R"™*? be the matrix of {Z;j}. Define Q = Z;—Z € RP*P and Sg be the distribution of eigenvalues
of Q, ie.,

1 & ~
Sa(t) = — Y 1(u;(Q) <1).
P
When n,p — oo, 2 — v < 1, we have the following results:

1. Sﬁ converges in distribution to Sy, where Sy has a PDF

¢ w1V (=1t —a), t € [a,b]
¥() = .
0, Otherwise.
and a = (1~ b = (1+ 7P
2. The Stieltjes transform of Sy(t) is

oy(—z) = / 45,(0)

t—2z
—(I=v=9)+V{+y-22 -4
2Yz '

3. Using L’Hospital rule, we further have

) 1
ay(0) = }g})w\((z) Sy

The above theorem is from Chapter 3 of

Bai, Z., & Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices
(Vol. 20). New York: Springer.

The power of Theorem 1 is that the trace of inverse covariance matrix
TrZ ) = Zluj (%),
J:

3



can can be written as

when y = % < 1, which is our current setting.

To sum up,
~ 2 - 1
Var(Bre[X) = ZTrE ) mo?l —— =01,
n
SO N v
MSE(BRL|X) ~ 02177

when y= £ < 1. Thus, when Y increases, the mean square error increases as long as y < 1.

3 Analysison p >n

When p > n, BRL = limy_, E;w so we will first investigate the bias and variance of the ridge regression.
A feature of the ridge regression is its closed form:
By = (XTX +nAL,) ' XTY
= X" (XX 4nAL,) Y,
where the last equality can be verified by multiplying (X” X+ nAlI,) in both sides.
Analysis of variance. We first analyze the variance.
Var(Bre|X) = Tr[Cov(Br|X)]
= lim Tr[Cov (B X)),
A—0
Cov(BalX) = X7 (X"X +nI,) 2X - 62,
Tr[Cov(By|X)] = Tr[XT (XTX +nAl,) 2X] - 62
= TrXX" (X"X +nM,) 2] - 6° (trace property)

1_ [ xxT /xTx -2
( +nkln> ] .02
p

=—Tr
p p p

62 o~
= ?Tr[Q(Q%—TMn)_Z],



where

T
0= £ e R™", T= 1
p A

Ash— 0,

Var(Bre|X) = Tr[Cov(Bee|X))
_ ‘jm@(@ +TAL,) 2

2
(e} ~
~—Tr(Q!
p Q)
1 " 71 .
=T - Z H; (0).
ni=
Now we apply Theorem 1 again with swapping 7, p in the setting and conclude that

2
= T c

V X)~ot—m = —.

ar(BreX) ~ 0 -t y—1

Analysis of bias. To analyze the bias, we will use another property about BRL that it can be expressed by the
pseudo-inverse when p > n:

Brr = (XTX)'XTy,

where for a matrix A € RP*? its pseudo-inverse AT satisfies AATA = A,ATAA" = AT. Note that if A has rank
r < p, then Tr[ATA] = r.

Let Q = XTX. A direct computation shows that
E(Bre|X) = QT Op*
Bias(Br.|X) = (I, — Q'Q)p"
|Bias(Bre )| = B*7 (I, — Q' Q)B".

Here is an interesting property about the Gaussian vectors X; ~ N(0,1,,). For any rotation matrix U € RP*?,

Ux; L

Xi,
1.e., UX; has identical distribution as X;.
Thus, we can rewrite the bias as
|Bias(Bre X)|> = B*7 (I, — Q' Q)p*
= (UB")" (I, - Q'Q)(UB").

Now we pick Uy, -+ ,U, such that

UB* = [IB" -ei,



where ¢; is the unit i-th coordinate vector.

Thus,
IBias(Bre |X) |12 = (UB")T (I, — QT Q) (UB*) = |IB*[*(1 — [ Q)

fori=1,---,p.

With this result, we ‘average’ them, which leads to

|Bias(Bre )12 = ZHB (=@ = [P 1 T@a) | = 7121 -).

=n
Putting variance and bias together, we conclude that when p > n,

R 2 _Ip* (12 _l
|Bias(Bre )12 = 1B (1 Y)

~ o2
V X))~ ——
ar(Bre|X) v—1

MSE(Beu ) ~ 1B (1 - 1) L5
RL 'Y 'Y— 1

When Y= £ — co and ||B*|| remains fixed, we see that bias is converging to a fixed quantity but the variance
keeps decreasing. Thus, the total mean squared error is decreasing as 'y — oo.

4 Summary

Now we consider both regimes and conclude that

2 Y

—~ G 1—v
MSE(Bre|X) ~{ 7
(BRL‘ ) HB*HZ (1_%)4_%21 whenp>n.

¥
As y = 2 increases from 0, the MSE first increases until Y = 1, and then the MSE decreases, leading to
the famous phenomenon of the benign overfitting. Figure | shows the asymptotic MSE under 6% = 1 and

B> =1

Note that a crucial feature of the MSE decreasing is based on the assumption that ||*
p — oo. Since the total signal is fixed, the average signal on each coordinate is shrinking.

when p < n

|| remains fixed as
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