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This section is a simplification of the following paper:

Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. (2022). Surprises in high-dimensional
ridgeless least squares interpolation. Annals of statistics, 50(2), 949.

In recent years, researchers have discovered an interesting phenomenon called benign overfitting: when the
dimension increases (and sample size is fixed), the mean square error of a linear model may be decreasing!
In this section, we will briefly explain how this could happen.

We will consider a special linear model called ridgeless regression, a combination of the usual least squared
model and ridge regression. Let

β̂RL = argmin{‖b‖ : b minimizes ‖Y−Xb‖} , (1)

where Y = (Y1, · · · ,Yn)
T ∈ Rn is the response vector and X ∈ Rn×p is the feature/covariate matrix. The

estimator in equation (1) is the ridgeless regression.

Here is an interesting property about β̂RL:

β̂RL =

{
β̂OLS if n > p,
β̂LI if p > n,

where β̂OLS is the ordinary least square and β̂LI is the least norm interpolator.

The least norm interpolator is defined as a limiting case of the ridge regression:

β̂LI = lim
λ→0

β̂λ,

β̂λ = argminb‖Y−Xb‖+λ‖b‖2
2.

Here is an interesting fact: β̂RL will demonstrate the benign overfitting! See Figure 1.

1 Setup

To investigate this phenomenon, we will consider the following IID setup:

Y= Xβ
∗+ ε, ε∼ N(0,σ2In),

where In ∈ Rn×n is the identity matrix. Moreover, we assume that entries {Xi j} are IID from N(0,1).
Namely, each row vectors X1, · · · ,Xn are IID from N(0,Ip)
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Figure 1: The MSE of the ridgeless estimator β̂RL as a function of γ = p
n under σ2 = 1 and ‖β∗‖= 1.

To investigate the mean square error, we will separately analyze the bias and variance. In particular, we will
consider the conditional bias and variance:

Bias(β̂RL|X) ∈ Rn, Var(β̂RL|X) = Tr[Cov(β̂RL|X)],

where Cov(β̂RL|X) is the covariance matrix.

The conditional MSE is
MSE(β̂RL|X) = ‖Bias(β̂RL|X)‖2 +Var(β̂RL|X).

2 Analysis on p < n

When p < n, it is clear that the bias is 0 because β̂RL = β̂. Thus,

Bias(β̂RL|X) = 0.

For the variance, the story is more interesting. First, let

Σ̂ =
XTX

n
∈ Rp×p

be the (sample) covariance matrix. For the ordinary least square, we know that

Var(β̂RL|X) = Tr[Cov(β̂RL|X)]
= Tr[(XTX)−1

σ
2]

=
σ2

n
·Tr(Σ̂−1).

2



Using the property of trace,

Tr(Σ̂−1) =
p

∑
j=1

µ−1
j (Σ̂),

where µ j(A) is the j-th eigenvalue of A.

To investigate the property of eigenvalues of a Gaussian covariance matrix, we will use the Marchenko-
Pastar theorem (MP theorem).

Theorem 1 (Marchenko-Pastar theorem) Let {Zi j} be IID random variables with E(Zi j) = 0,Var(Zi j) =

1. Let Z ∈ Rn×p be the matrix of {Zi j}. Define Ω̂ = ZTZ
n ∈ Rp×p and S

Ω̂
be the distribution of eigenvalues

of Ω̂, i.e.,

S
Ω̂
(t) =

1
p

p

∑
j=1

I(µ j(Ω̂)≤ t).

When n, p→ ∞, p
n → γ < 1, we have the following results:

1. S
Ω̂

converges in distribution to Sγ, where Sγ has a PDF

Sγ(t) =

{
1

2πγ

1
t

√
(b− t)(t−a), t ∈ [a,b]

0, Otherwise.

and a = (1−√γ)2,b = (1+
√

γ)2.

2. The Stieltjes transform of Sγ(t) is

ωγ(−z) =
∫ dSγ(t)

t− z

=
−(1− γ− z)+

√
(1+ γ− z)2−4γ

2γz
.

3. Using L’Hospital rule, we further have

ωγ(0) = lim
λ→0

ωγ(z) =
1

1− γ
.

The above theorem is from Chapter 3 of

Bai, Z., & Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices
(Vol. 20). New York: Springer.

The power of Theorem 1 is that the trace of inverse covariance matrix

Tr(Σ̂−1) =
p

∑
j=1

µ−1
j (Σ̂),
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can can be written as

Tr(Σ̂−1) = p
1
p

p

∑
j=1

µ−1
j (Σ̂)

= p
∫ 1

t
dS

Σ̂
(t)

≈ p
∫ 1

t
dSγ(t)

= p ·ωγ(0) =
p

1− γ

when γ = p
n < 1, which is our current setting.

To sum up,

Var(β̂RL|X) =
σ2

n
Tr(Σ̂−1)≈ σ

2 p
n

1
1− γ

= σ
2 γ

1− γ
,

so
MSE(β̂RL|X)≈ σ

2 γ

1− γ

when γ = p
n < 1. Thus, when γ increases, the mean square error increases as long as γ < 1.

3 Analysis on p > n

When p > n, β̂RL = limλ→0 β̂λ, so we will first investigate the bias and variance of the ridge regression.

A feature of the ridge regression is its closed form:

β̂λ = (XTX+nλIp)
−1XTY

= XT (XTX+nλIn)
−1Y,

where the last equality can be verified by multiplying (XTX+nλIp) in both sides.

Analysis of variance. We first analyze the variance.

Var(β̂RL|X) = Tr[Cov(β̂RL|X)]

= lim
λ→0

Tr[Cov(β̂λ|X)],

Cov(β̂λ|X) = XT (XTX+nλIn)
−2X ·σ2,

Tr[Cov(β̂λ|X)] = Tr[XT (XTX+nλIn)
−2X] ·σ2

= Tr[XXT (XTX+nλIp)
−2] ·σ2 (trace property)

=
1
p
Tr

[
XXT

p

(
XTX

p
+

n
p

λIn

)−2
]
·σ2

=
σ2

p
Tr[Q̂(Q̂+ τλIn)

−2],
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where

Q̂ =
XXT

p
∈ Rn×n, τ =

1
λ
=

n
p
< 1.

As λ→ 0,

Var(β̂RL|X) = Tr[Cov(β̂RL|X)]

=
σ2

p
Tr[Q̂(Q̂+ τλIn)

−2]

≈ σ2

p
Tr(Q̂−1)

= τ · 1
n

n

∑
j=1

µ−1
j (Q̂).

Now we apply Theorem 1 again with swapping n, p in the setting and conclude that

Var(β̂RL|X)≈ σ
2 τ

1− τ
=

σ2

γ−1
.

Analysis of bias. To analyze the bias, we will use another property about β̂RL that it can be expressed by the
pseudo-inverse when p > n:

β̂RL = (XTX)†XTY,

where for a matrix A ∈ Rp×p its pseudo-inverse A† satisfies AA†A = A,A†AA† = A†. Note that if A has rank
r < p, then Tr[A†A] = r.

Let Ω̂ = XTX. A direct computation shows that

E(β̂RL|X) = Ω̂
†
Ω̂β
∗

Bias(β̂RL|X) = (Ip− Ω̂
†
Ω̂)β∗

‖Bias(β̂RL|X)‖2 = β
∗T (Ip− Ω̂

†
Ω̂)β∗.

Here is an interesting property about the Gaussian vectors Xi ∼ N(0,Ip). For any rotation matrix U ∈Rp×p,

UXi
d
= Xi,

i.e., UXi has identical distribution as Xi.

Thus, we can rewrite the bias as

‖Bias(β̂RL|X)‖2 = β
∗T (Ip− Ω̂

†
Ω̂)β∗

= (Uβ
∗)T (Ip− Ω̂

†
Ω̂)(Uβ

∗).

Now we pick U1, · · · ,Up such that
Uiβ

∗ = ‖β∗‖ · ei,
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where ei is the unit i-th coordinate vector.

Thus,
‖Bias(β̂RL|X)‖2 = (Uiβ

∗)T (Ip− Ω̂
†
Ω̂)(Uiβ

∗) = ‖β∗‖2(1− [Ω̂†
Ω̂]ii)

for i = 1, · · · , p.

With this result, we ‘average’ them, which leads to

‖Bias(β̂RL|X)‖2 =
1
p

p

∑
i=1
‖β∗‖2(1− [Ω̂†

Ω̂]ii) = ‖β∗‖2

1− 1
p
Tr(Ω̂†

Ω̂)︸ ︷︷ ︸
=n

= ‖β∗‖2(1− 1
γ
).

Putting variance and bias together, we conclude that when p > n,

‖Bias(β̂RL|X)‖2 = ‖β∗‖2
(

1− 1
γ

)
Var(β̂RL|X)≈

σ2

γ−1

MSE(β̂RL|X)≈ ‖β∗‖2
(

1− 1
γ

)
+

σ2

γ−1
.

When γ = p
n →∞ and ‖β∗‖ remains fixed, we see that bias is converging to a fixed quantity but the variance

keeps decreasing. Thus, the total mean squared error is decreasing as γ→ ∞.

4 Summary

Now we consider both regimes and conclude that

MSE(β̂RL|X)≈

σ2 γ

1−γ
, when p < n

‖β∗‖2
(

1− 1
γ

)
+ σ2

γ−1 when p > n.

As γ = p
n increases from 0, the MSE first increases until γ = 1, and then the MSE decreases, leading to

the famous phenomenon of the benign overfitting. Figure 1 shows the asymptotic MSE under σ2 = 1 and
‖β∗‖2 = 1.

Note that a crucial feature of the MSE decreasing is based on the assumption that ‖β∗‖2 remains fixed as
p→ ∞. Since the total signal is fixed, the average signal on each coordinate is shrinking.
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