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1 Problem setup

In this note, I will briefly review the idea of proximal causal inference approach. This will be a short
summary/introduction to the above two recent papers.

We consider a standard causal inference problem under observational data that A € {0,1} is the binary
treatment variable and Y € R is the outcome/response of interest. Let X be observed covariates that may
include part of the confounders. Under the potential outcome model, the outcome Y admits two potential
outcomes Y (0),Y (1). The parameter of interest is the average treatment effect (ATE) T =E(Y (1) —Y(0)).

Suppose X contains all confounders, we have
(¥ (0), (1)) LA[X
and it is well-known that the ATE is identifiable.

However, if X does not contain all confounders, i.e., there is another unobserved random vector U, the ATE
is in general non-identifiable. Note that in this case, we still have

(U)  (¥(0),x(1)) LAX,U. (D

To identify the ATE, we need additional information. The idea of proximal causal inference is based on the
introduction of two proxy variables (Z,W):

o The treatment proxy Z. Z is a variable that is caused by the treatment A so it admits two potential out-
comes Z(0),Z(1) and it may be dependent with the confounders (X,U). However, the proxy control
Z is not associated with Y or W conditioned on the confounders.

o The outcome proxy (negative control outcome) W. W is a variable that is known to be unaffected by
the treatment A but it may be dependent with confounders (X,U) and Y.
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Figure 1: A causal DAG for the proximal inference.

Figure 1 provides a graphical representation under the proximal inference. Formally, the two proxies (Z, W)
has to satisfy the following proximal assumptions:

(P1)  Z(a) LY(a)|X,U 2
(P2) W1 (A, Z(a))X,U. 3)
Note that the above assumptions imply that

Y L Z|U,X,A, W LZ|UX,A. “)

2 Bridge function

Based on the above notations, our observed data consists of variables (Y,A,X,Z,W). And there is a bridge
function b*(y, w,a,x,z) such that

pOlas,2) = [ b (s ax,2)p(wlax,
Namely,
p(yla,x,z) =E[b*(y,W,A,X,Z)|A =a,X =x,Z=7].
To identify the ATE, we need two additional assumptions related to the bridge function

(AL) b (yw,a,x,2) = b (5, m,0,) )
(A2)  E(f(U)A.X.Z)=0 YAX.Z& fu)=0. ©)

Assumption (Al) is the main assumption on the bridge function. Under assumption (A1), [TYCSM2020]
has provided an approach to construct b* from the data. So in what follows, we assume that the bridge
function b*(y, w,a,x) is known.

Assumption (A2) is called the completeness assumption. It requires that most information/randomness of
unmeasured confounders U is contained in the variables (4,X,Z).

3 Identification of potential outcome

Now we will show that under (U), (P1-2), and (A1-2), the distribution of potential outcome Y (a) is identifi-
able.



Theorem 1 Assume (U), (P1-2), and (A1-2). Then the distribution of potential outcome Y (a), p(y(a)), is
identified from the following formula:

pO(@) = [ (wa.5)plow,2)dwa.

The above formula is also known as proximal g-formula.
Proof.

First, note that

pliax.2) = [ pludax,d)
=/p(ylu,a,x,Z)p(ula,x,Z)du
(:)/p(y\a,u,x)p(u\a,x,z)du.
Similarly,
p(W\a,x,z) - p(W,u‘a,X,Z)

p(wlu,a,x)p(ula,x,z).

/
:/p(w|u,a,x,z)p(u|a,x7z)d”
/

Recall from assumption (A1), we have
pOla.2) = [ b Gow.ap(wla,x )
So the above two new representations of p(y|a,x,z) and p(w|a,x,z) will imply:

[ g upulasdi= [ [ 0ow.a0)p(wlua.n) pluda.2)dwdu,

which is equivalent to

0

pOla) ~ 5 Goman)pOolian)dn] plulasz)du
=E[p(y|A,U,X)— /b*(y7w,A,X)p(WIU,A,X)dW\A =a,X=x,Z=17

for all a,x,z. By assumption (A2), this implies that



By assumption (U),

pOla,u,x) = ply(@)la,u,x) L p(y(a)u).
Thus,
pO(@) = [ po(@)2)plax)dud
= /p(y\a, u,x)p(u,x)dudx

@//b*(yawvaax) p(w|a,u,x) P(M,X)dwdudx
——
=p(wux) by (3)

:/b*(y,w,a,x)/p(w,u,x)dudwdx
:/b*(y,w,a,x)dwdx,
which completes the proof.
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