A short note on the proximal causal inference

Yen-Chi Chen
University of Washington

February 17, 2022

References:

[TYCSM2020] Tchetgen, E. J. T., Ying, A., Cui, Y., Shi, X., \& Miao, W. (2020). An introduction to proximal causal learning. arXiv preprint arXiv:2009.10982.
[SWT2021] Shpitser, I., Wood-Doughty, Z., \& Tchetgen, E. J. T. (2021). The proximal id algorithm. arXiv preprint arXiv:2108.06818.

1 Problem setup

In this note, I will briefly review the idea of proximal causal inference approach. This will be a short summary/introduction to the above two recent papers.

We consider a standard causal inference problem under observational data that $A \in\{0,1\}$ is the binary treatment variable and $Y \in \mathbb{R}$ is the outcome/response of interest. Let X be observed covariates that may include part of the confounders. Under the potential outcome model, the outcome Y admits two potential outcomes $Y(0), Y(1)$. The parameter of interest is the average treatment effect (ATE) $\tau=\mathbb{E}(Y(1)-Y(0))$.

Suppose X contains all confounders, we have

$$
(Y(0), Y(1)) \perp A \mid X
$$

and it is well-known that the ATE is identifiable.
However, if X does not contain all confounders, i.e., there is another unobserved random vector U, the ATE is in general non-identifiable. Note that in this case, we still have

$$
\begin{equation*}
(\mathbf{U}) \quad(Y(0), Y(1)) \perp A \mid X, U . \tag{1}
\end{equation*}
$$

To identify the ATE, we need additional information. The idea of proximal causal inference is based on the introduction of two proxy variables (Z, W) :

- The treatment proxy $Z . Z$ is a variable that is caused by the treatment A so it admits two potential outcomes $Z(0), Z(1)$ and it may be dependent with the confounders (X, U). However, the proxy control Z is not associated with Y or W conditioned on the confounders.
- The outcome proxy (negative control outcome) W. W is a variable that is known to be unaffected by the treatment A but it may be dependent with confounders (X, U) and Y.

Figure 1: A causal DAG for the proximal inference.

Figure 1 provides a graphical representation under the proximal inference. Formally, the two proxies (Z, W) has to satisfy the following proximal assumptions:
(P1) $\quad Z(a) \perp Y(a) \mid X, U$
(P2) $\quad W \perp(A, Z(a)) \mid X, U$.
Note that the above assumptions imply that

$$
\begin{equation*}
Y \perp Z|U, X, A, \quad W \perp Z| U, X, A \tag{4}
\end{equation*}
$$

2 Bridge function

Based on the above notations, our observed data consists of variables (Y, A, X, Z, W). And there is a bridge function $b^{*}(y, w, a, x, z)$ such that

$$
p(y \mid a, x, z)=\int b^{*}(y, w, a, x, z) p(w \mid a, x, z) d w
$$

Namely,

$$
p(y \mid a, x, z)=\mathbb{E}\left[b^{*}(y, W, A, X, Z) \mid A=a, X=x, Z=z\right]
$$

To identify the ATE, we need two additional assumptions related to the bridge function
(A1) $\quad b^{*}(y, w, a, x, z)=b^{*}(y, w, a, x)$
(A2) $\quad \mathbb{E}(f(U) \mid A, X, Z)=0 \quad \forall A, X, Z \Leftrightarrow f(u)=0$.

Assumption (A1) is the main assumption on the bridge function. Under assumption (A1), [TYCSM2020] has provided an approach to construct b^{*} from the data. So in what follows, we assume that the bridge function $b^{*}(y, w, a, x)$ is known.

Assumption (A2) is called the completeness assumption. It requires that most information/randomness of unmeasured confounders U is contained in the variables (A, X, Z).

3 Identification of potential outcome

Now we will show that under (U), (P1-2), and (A1-2), the distribution of potential outcome $Y(a)$ is identifiable.

Theorem 1 Assume (U), (P1-2), and (Al-2). Then the distribution of potential outcome $Y(a), p(y(a))$, is identified from the following formula:

$$
p(y(a))=\int b^{*}(y, w, a, x) p(w, x) d w d x
$$

The above formula is also known as proximal g-formula.

Proof.

First, note that

$$
\begin{aligned}
p(y \mid a, x, z) & =\int p(y, u \mid a, x, z) \\
& =\int p(y \mid u, a, x, z) p(u \mid a, x, z) d u \\
& \stackrel{(4)}{=} \int p(y \mid a, u, x) p(u \mid a, x, z) d u
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
p(w \mid a, x, z) & =\int p(w, u \mid a, x, z) \\
& =\int p(w \mid u, a, x, z) p(u \mid a, x, z) d u \\
& \stackrel{(4)}{=} \int p(w \mid u, a, x) p(u \mid a, x, z)
\end{aligned}
$$

Recall from assumption (A1), we have

$$
p(y \mid a, x, z)=\int b^{*}(y, w, a, x) p(w \mid a, x, z) d w
$$

So the above two new representations of $p(y \mid a, x, z)$ and $p(w \mid a, x, z)$ will imply:

$$
\int p(y \mid a, u, x) p(u \mid a, x, z) d u=\iint b^{*}(y, w, a, x) p(w \mid u, a, x) p(u \mid a, x, z) d w d u
$$

which is equivalent to

$$
\begin{aligned}
0 & =\int\left[p(y \mid a, u, x)-\int b^{*}(y, w, a, x) p(w \mid u, a, x) d w\right] p(u \mid a, x, z) d u \\
& =\mathbb{E}\left[p(y \mid A, U, X)-\int b^{*}(y, w, A, X) p(w \mid U, A, X) d w \mid A=a, X=x, Z=z\right]
\end{aligned}
$$

for all a, x, z. By assumption (A2), this implies that

$$
\begin{equation*}
p(y \mid a, u, x)=\int b^{*}(y, w, a, x) p(w \mid a, u, x) d w \tag{7}
\end{equation*}
$$

By assumption (U),

$$
p(y \mid a, u, x)=p(y(a) \mid a, u, x) \stackrel{(U)}{=} p(y(a) \mid u, x)
$$

Thus,

$$
\begin{aligned}
p(y(a)) & =\int p(y(a) \mid u, x) p(u, x) d u d x \\
& =\int p(y \mid a, u, x) p(u, x) d u d x \\
& \stackrel{(7)}{=} \iint b^{*}(y, w, a, x) \underbrace{p(w \mid a, u, x)}_{=p(w \mid u, x) \text { by }(3)} p(u, x) d w d u d x \\
& =\int b^{*}(y, w, a, x) \int p(w, u, x) d u d w d x \\
& =\int b^{*}(y, w, a, x) d w d x
\end{aligned}
$$

which completes the proof.

