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1 Problem setup

In this note, I will briefly review the idea of proximal causal inference approach. This will be a short
summary/introduction to the above two recent papers.

We consider a standard causal inference problem under observational data that A ∈ {0,1} is the binary
treatment variable and Y ∈ R is the outcome/response of interest. Let X be observed covariates that may
include part of the confounders. Under the potential outcome model, the outcome Y admits two potential
outcomes Y (0),Y (1). The parameter of interest is the average treatment effect (ATE) τ = E(Y (1)−Y (0)).

Suppose X contains all confounders, we have

(Y (0),Y (1))⊥ A|X

and it is well-known that the ATE is identifiable.

However, if X does not contain all confounders, i.e., there is another unobserved random vector U , the ATE
is in general non-identifiable. Note that in this case, we still have

(U) (Y (0),Y (1))⊥ A|X ,U. (1)

To identify the ATE, we need additional information. The idea of proximal causal inference is based on the
introduction of two proxy variables (Z,W ):

• The treatment proxy Z. Z is a variable that is caused by the treatment A so it admits two potential out-
comes Z(0),Z(1) and it may be dependent with the confounders (X ,U). However, the proxy control
Z is not associated with Y or W conditioned on the confounders.

• The outcome proxy (negative control outcome) W . W is a variable that is known to be unaffected by
the treatment A but it may be dependent with confounders (X ,U) and Y .
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Figure 1: A causal DAG for the proximal inference.

Figure 1 provides a graphical representation under the proximal inference. Formally, the two proxies (Z,W )
has to satisfy the following proximal assumptions:

(P1) Z(a)⊥ Y (a)|X ,U (2)

(P2) W ⊥ (A,Z(a))|X ,U. (3)

Note that the above assumptions imply that

Y ⊥ Z|U,X ,A, W ⊥ Z|U,X ,A. (4)

2 Bridge function

Based on the above notations, our observed data consists of variables (Y,A,X ,Z,W ). And there is a bridge
function b∗(y,w,a,x,z) such that

p(y|a,x,z) =
∫

b∗(y,w,a,x,z)p(w|a,x,z)dw.

Namely,
p(y|a,x,z) = E[b∗(y,W,A,X ,Z)|A = a,X = x,Z = z].

To identify the ATE, we need two additional assumptions related to the bridge function

(A1) b∗(y,w,a,x,z) = b∗(y,w,a,x) (5)

(A2) E( f (U)|A,X ,Z) = 0 ∀ A,X ,Z⇔ f (u) = 0. (6)

Assumption (A1) is the main assumption on the bridge function. Under assumption (A1), [TYCSM2020]
has provided an approach to construct b∗ from the data. So in what follows, we assume that the bridge
function b∗(y,w,a,x) is known.

Assumption (A2) is called the completeness assumption. It requires that most information/randomness of
unmeasured confounders U is contained in the variables (A,X ,Z).

3 Identification of potential outcome

Now we will show that under (U), (P1-2), and (A1-2), the distribution of potential outcome Y (a) is identifi-
able.
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Theorem 1 Assume (U), (P1-2), and (A1-2). Then the distribution of potential outcome Y (a), p(y(a)), is
identified from the following formula:

p(y(a)) =
∫

b∗(y,w,a,x)p(w,x)dwdx.

The above formula is also known as proximal g-formula.

Proof.

First, note that

p(y|a,x,z) =
∫

p(y,u|a,x,z)

=
∫

p(y|u,a,x,z)p(u|a,x,z)du

(4)
=

∫
p(y|a,u,x)p(u|a,x,z)du.

Similarly,

p(w|a,x,z) =
∫

p(w,u|a,x,z)

=
∫

p(w|u,a,x,z)p(u|a,x,z)du

(4)
=

∫
p(w|u,a,x)p(u|a,x,z).

Recall from assumption (A1), we have

p(y|a,x,z) =
∫

b∗(y,w,a,x)p(w|a,x,z)dw.

So the above two new representations of p(y|a,x,z) and p(w|a,x,z) will imply:∫
p(y|a,u,x)p(u|a,x,z)du =

∫ ∫
b∗(y,w,a,x)p(w|u,a,x)p(u|a,x,z)dwdu,

which is equivalent to

0 =
∫ [

p(y|a,u,x)−
∫

b∗(y,w,a,x)p(w|u,a,x)dw
]

p(u|a,x,z)du

= E[p(y|A,U,X)−
∫

b∗(y,w,A,X)p(w|U,A,X)dw|A = a,X = x,Z = z]

for all a,x,z. By assumption (A2), this implies that

p(y|a,u,x) =
∫

b∗(y,w,a,x)p(w|a,u,x)dw. (7)
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By assumption (U),

p(y|a,u,x) = p(y(a)|a,u,x) (U)
= p(y(a)|u,x).

Thus,

p(y(a)) =
∫

p(y(a)|u,x)p(u,x)dudx

=
∫

p(y|a,u,x)p(u,x)dudx

(7)
=

∫ ∫
b∗(y,w,a,x) p(w|a,u,x)︸ ︷︷ ︸

=p(w|u,x) by (3)

p(u,x)dwdudx

=
∫

b∗(y,w,a,x)
∫

p(w,u,x)dudwdx

=
∫

b∗(y,w,a,x)dwdx,

which completes the proof.
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