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1 Problem setup

In this note, I will summarize a simple information bound on the generalization error. Consider a classical
prediction problem where our training data is

(X1,Y1), · · · ,(Xn,Yn) ∈ X ×Y

that are IID from some unknown distribution PXY . For simplicity, we may denote Zi = (Xi,Yi) so that
the training data can be viewed as IID from PZ . We denote P⊗n

Z = PZ ×PZ × ·· ·PZ as the joint PDF of
(Z1, · · · ,Zn).

In a typical supervised learning, we try to construct a predictor c : X → Y . To simplify the problem, we
assume that this predictor is indexed by a parameter θ, so we can write c(x) = cθ(x).

Let `0 : Y ×Y → R be the loss function. For a new observation (X ′,Y ′) = Z′ and a given predictor cθ, the
loss incurred is

`0(cθ(X ′),Y ′) = `(θ,Z′).

Namely, we can rewrite the loss in terms of θ and Z. This expression will be a key in our future analysis.

With the above notations, we define both the training and test error for a given classifier cθ:

• Training error (empirical risk):

R̂n(θ) =
1
n

n

∑
i=1

`0(cθ(Xi),Yi) =
1
n

n

∑
i=1

`(θ,Zi).

If the predictor is trained from the training data, we plug-in θ̂= θ̂(Z1, · · · ,Zn) into the above expression
and obtain

R̂n(θ̂) =
1
n

n

∑
i=1

`(θ̂,Zi).
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• Test error (test risk):
R(θ) = E[`0(cθ(X ′),Y ′)] = E[`(θ,Z′)].

When the predictor is θ̂, its test risk is

R(θ̂) = E[`(θ̂,Z′)|θ̂].

The expectation only applies to Z′, not θ̂.

• Generalization error (generalization risk): In this case, the generalization error is the expected differ-
ence between the training error and test error of the estimator θ̂, which is

Gen= E[R̂n(θ̂)−R(θ̂)] = E[R̂n(θ̂)]−E[R(θ̂)]. (1)

The expectation is applied to the training data Z1, · · · ,Zn, which includes θ̂.

In the end, we will show that

Gen= E[R̂n(θ̂)−R(θ̂)]≤ O
(√

I(θ̂,Z1, · · · ,Zn)

)
,

where I(θ̂,Z1, · · · ,Zn) is the mutual information between θ̂ and the training data (Z1, · · · ,Zn).

2 Generalization error and independence

A key insight is that the generalization error in equation (1) is related to the difference between independent
and dependent distributions. Recall that PZ,n is the joint distribution of Z1, · · · ,Zn. We denote Pθ,Z1,··· ,Zn to
be the joint distribution of θ̂,Z1, · · · ,Zn and Pθ|Z,n to be the conditional distribution of θ̂|Z1, · · · ,Zn. Note that
here we assume that θ̂ is a randomized estimator so that even if the data is held fixed, θ̂ may still be random.

We can rewrite E[R̂n(θ̂)] as

E[R̂n(θ̂)] = E

[
1
n

n

∑
i=1

`(θ̂,Zi)

]

=
∫ 1

n

n

∑
i=1

`(θ,zi)Pθ,Z1,··· ,Zn(dθ,dz1, · · · ,dzn)

=
∫ 1

n

n

∑
i=1

`(θ,zi)Pθ|Z,n(dθ)
n

∏
j=1

PZ(dz j)

(2)

Thus, in the expectation of the empirical risk, we are integrating over the joint distribution

Pθ,Z1,··· ,Zn = Pθ|Z,n ·P⊗n
Z , (3)

where P⊗n
Z = PZ×PZ×·· ·PZ is the joint distribution of Z1, · · · ,Zn.
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Now we turn to our analysis on the test risk. Let Pθ be the marginal distribution of θ̂ from Pθ,Z1,··· ,Zn . We can
rewrite the test risk as

E[R(θ̂)] = E
[
`(θ̂,Z′)

]
∫

`(θ,z′)Pθ(dθ) ·PZ(dz′)∫ 1
n

n

∑
i=1

`(θ,z′i)Pθ(dθ) ·PZ(dz′i)∫ 1
n

n

∑
i=1

`(θ,z′i)Pθ(dθ) ·
n

∏
j=1

PZ(dz′j).

(4)

So in the test risk, we are integrating over the joint distribution

Pθ,Z′1,··· ,Z′n = Pθ ·P⊗n
Z , (5)

which is the case of assuming θ and Z′1, · · · ,Z′n are independent!

As a result, the generalization error is the difference between expectation of dependent θ,Z1, · · · ,Zn and the
independent θ and Z1, · · · ,Zn. From this perspective, you can see why the information bounds on dependence
will be useful in controlling the generalization errors.

3 A useful mutual information bound

From the above analysis, we have seen that we may bound the generalization errors using measures of
dependency. Here is a simple bound based on mutual information.

Lemma 1 Let (U,V ) be two continuous random vectors that are dependent with each other. Let (Ū ,V̄ ) be

random vectors such that Ū d
=U and V̄ d

=V with Ū ⊥ V̄ . Namely, Ū has the same distribution as U but it is
independent of V̄ . Consider a function f (u,v). If f (Ū ,V̄ ) is σ−sub-Gaussian, then

|E[ f (U,V )]−E( f (Ū ,V̄ ))| ≤
√

2σ2I(U,V ),

where I(U,V ) is the mutual information between U and V .

Proof. Recall that the mutual information I(U,V ) = KL(pU,V ||pU · pV ), where KL is the Kullback-Leiber
divergence and pU,V is the joint PDF of U,V .

A key of the proof is the following variational form of the KL-divergence. For any two PDF q,π,

KL(q||π) = sup
η

{∫
η(x)dq(x)− log

∫
eη(x)dπ(x)

}
;

see, e.g. Corollary 4.15 of

S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford Univ. Press, 2013.
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We choose q to be the PDF of (U,V ) and π to be the PDF of (Ū ,V̄ ) and η= λ · f , where λ is a free parameter.

Then the above variational form implies

I(U,V ) = KL(pU,V ||pU · pV )

≥
∫

λ f (u,v)d pU,V (u,v)− log
∫

eλ f (u,v)d pU(u)d pV (v)

= E(λ f (U,V ))− logE
(

eλ f (Ū ,V̄ )
)

= E(λ f (U,V ))− logE
(

eλ[ f (Ū ,V̄ )−E( f (Ū ,V̄ ))]
)
−E(λ f (Ū ,V̄ )).

By σ-sub-Gaussian property of f (Ū ,V̄ ), we have

logE
(

eλ[ f (Ū ,V̄ )−E( f (Ū ,V̄ ))]
)
≤ 1

2
λ

2
σ

2.

So the above inequality becomes

I(U,V )≥ E(λ f (U,V ))− logE
(

eλ[ f (Ū ,V̄ )−E( f (Ū ,V̄ ))]
)
−E(λ f (Ū ,V̄ ))

≥ λE( f (U,V ))− f (Ū ,V̄ ))− 1
2

λ
2
σ

2

≥ E2( f (U,V ))− f (Ū ,V̄ ))

2σ2 ,

where the last inequality follows from optimizing λ, which occurs at λ∗ = E( f (U,V ))− f (Ū ,V̄ ))
σ2 .

Thus, this implies

|E[ f (U,V )]−E( f (Ū ,V̄ ))| ≤
√

2σ2I(U,V ),

which completes the proof.

�

4 Conclusion

By applying Lemma 1 with θ̂ =U and (Z1, · · · ,Zn) =V , we conclude that

Gen= E[R̂n(θ̂)−R(θ̂)]≤
√

2σ2I(θ̂,Z1, · · · ,Zn)

assuming the σ-sub-Gaussianity.
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