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1 Problem setup

In this note, I will summarize a simple information bound on the generalization error. Consider a classical
prediction problem where our training data is

(XlaYl)v'“ a(XmYn) EXXD/

that are IID from some unknown distribution Pyy. For simplicity, we may denote Z; = (X;,Y;) so that
the training data can be viewed as IID from P;. We denote P?” = Pz X Pz X --- Pz as the joint PDF of
(Z1,++,Zy).

In a typical supervised learning, we try to construct a predictor ¢ : X — 9. To simplify the problem, we
assume that this predictor is indexed by a parameter 6, so we can write c(x) = cg(x).

Let 4y : 9 x 9 — R be the loss function. For a new observation (X', Y’) = Z' and a given predictor cg, the
loss incurred is
lo(co(X"),Y") =£(8,7)).

Namely, we can rewrite the loss in terms of © and Z. This expression will be a key in our future analysis.

With the above notations, we define both the training and test error for a given classifier cg:

e Training error (empirical risk):

=

. 1 1
R,(8) = - Y lo(co(Xi),Y:) = - 0(0,7)).
i=1 i=1

If the predictor is trained from the training data, we plug-in 0= 6(21 .-+ ,Zy,) into the above expression
and obtain

1
i

R,(8) =Y 0(6,7).



e Test error (test risk):
R(8) =E[lo(co(X"),Y")] = E[£(6,Z)].

When the predictor is 5, its test risk is

The expectation only applies to Z’, not 0.

e Generalization error (generalization risk): In this case, the generalization error is the expected differ-
ence between the training error and test error of the estimator 0, which is

Gen = E[R,(8) — R(8)] = E[R,(8)] — E[R(8)]. (1)

The expectation is applied to the training data Z;, - - - , Z,, which includes 0.

In the end, we will show that
Gen = E[R,(8) —R(8)] < O < 10,2y, ,zn)> ,

where [ (6,21 .-+ ,Zy) is the mutual information between 0 and the training data (Z,,--- ,Z,).

2 Generalization error and independence

A key insight is that the generalization error in equation (1) is related to the difference between independent
and dependent distributions. Recall that Pz, is the joint distribution of Zi,---,Z,. We denote Py 7, ... 7, to
be the joint distribution of ﬁ, Zy,-+,Zy and Py|z , to be the conditional distribution of 6]21 ,++ ,Zy. Note that
here we assume that 8 is a randomized estimator so that even if the data is held fixed, © may still be random.

~

We can rewrite E[R,(8)] as

Z(G,Zi)
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Thus, in the expectation of the empirical risk, we are integrating over the joint distribution

,2i)Po|z,(d6) HPZ dz;)

Poz,...2, = Poyzn-Py", (3)

where P?” = Pz X Pz X --- Pz is the joint distribution of Z;,--- ,Z,.



Now we turn to our analysis on the test risk. Let Py be the marginal distribution of 9 from Poz,....7,- We can
rewrite the test risk as R R
E[R(6)] = E [e(e,z’)}

/ 0(8,2)Py(dB) - P (d2)

Iy / / “)
|5 X t(e.5)poa0) - Polaz)
i=1
1 n n
[ X 1o.)Po(ae)- [T Pela)).
i=1 j=1
So in the test risk, we are integrating over the joint distribution
Poz ..z =Py-P;", )
which is the case of assuming © and Z,- - - ,Z,, are independent!
As aresult, the generalization error is the difference between expectation of dependent 0,7y, - - - ,Z, and the
independent 6 and Z1, - - - , Z,,. From this perspective, you can see why the information bounds on dependence

will be useful in controlling the generalization errors.

3 A useful mutual information bound

From the above analysis, we have seen that we may bound the generalization errors using measures of
dependency. Here is a simple bound based on mutual information.

Lemma 1 Let (U,V) be two continuous random vectors that are dependent with each other. Let (U,V) be

random vectors such that U - U and V £V with U 1 V. Namely, U has the same distribution as U but it is
independent of V. Consider a function f(u,v). If f(U,V) is 6—sub-Gaussian, then

|E[f(U7V)] _E(f(Uv‘_/))‘ < \/ 2621(U7V)7

where [(U,V) is the mutual information between U and V.

Proof. Recall that the mutual information I(U,V) = KL(py v||pu - pv), where KL is the Kullback-Leiber
divergence and py v is the joint PDF of U, V.

A key of the proof is the following variational form of the KL-divergence. For any two PDF ¢, T,

KL(q|m) = s?]p{/n(x)dq(x) _10g/en(x)dn(x)};

see, e.g. Corollary 4.15 of

S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford Univ. Press, 2013.



We choose g to be the PDF of (U, V) and 7 to be the PDF of (U, V) and 1 = A f, where A is a free parameter.

Then the above variational form implies

I(U,V)=KL(puyllpu - pv)
> /kf(u,v)dpy,v(u,v) —log/ekf(”’v)dpy(u)dpv(v)

—EMAf(U,V)) - logE (e’”f © »V>>

By 6-sub-Gaussian property of f(U,V), we have
logE (er(U,V)fE(f(U,V))]) <Leg
So the above inequality becomes

1U.V) = E(Af(U,V)) ~ logE (HOV-EUCNN) _p1(0,7))

o 1
> ME(f(U,V) = f(0,V)) = 56
_E(fU,v) - f(0,V))
- 202 ’
where the last inequality follows from optimizing A, which occurs at A* = w

Thus, this implies

E[f(U,V)]=E(f(U,V))] <4/26%(U,V),

which completes the proof.

O

4 Conclusion

By applying Lemma | with 0=Uand (Zy,---,Z,) =V, we conclude that

Gen = E[R,(8) — R(®)] < \/264(8,21, -+, 7,)

assuming the o-sub-Gaussianity.
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