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Introduction to Geometric Estimation

I Geometric estimation studies the problem of estimating a
geometric feature of a function (of interest).

I Often this function is the underlying probability density
function (PDF) that generates our data.

I Other the functions of interest in statistics: the regression
function, the difference between two densities/regression
functions, conditional probability of an event.
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What are Geometric Features? - An Astronomy Example
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What are Geometric Features? - An Astronomy Example

The data can be viewed as

X1, · · · ,Xn ∼ p,

p is a probability density function.

Scientists are interested in geometric
features of p.
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Nonparametric Density
Estimation
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Density Estimation: Introduction

I A statistical model views the data as random variables
X1, · · · ,Xn from an unknown distribution function P(x) with
a PDF p(x).

I In most cases, we do not know the PDF p(x) but we want to
reconstruct it from the data.

I The goal of density estimation is to estimate p(x) using
X1, · · · ,Xn.

I In other words, the parameter of interest is the PDF p(x).
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Nonparametric Approach: Introduction

I A common approach to estimate p(x) is to assume a
parametric model such as a Gaussian and recover the
parameters of the model by fitting to the data.

I However, this idea is often either too restrictive to capture the
intricate structure of the PDF or computationally infeasible
(in the case of mixture models).

I An alternative approach is to estimate the PDF
nonparametrically.

I Namely, we directly estimate the PDF without assuming a
parametric form of the PDF.
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Kernel Density Estimation - 1

I In this lecture, we will focus on one particular nonparametric
estimator–the kernel density estimator (KDE).

I The KDE estimates the PDF using the following form:

p̂h(x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
,

where K (x) is a function called the kernel function and h > 0
is a quantity called smoothing bandwidth that controls the
amount of smoothing.

I Common choice of K (x) includes the Gaussian

K (x) = 1√
2π
e−

x2

2 and the uniform K (x) = 1
2 I (−1 ≤ x ≤ 1).

I The idea of KDE is: we smooth out each data point using the
kernel function into small bumps and then we sum over all
bumps to obtain a density estimate.
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Kernel Density Estimation - 2
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Black dots: locations of observations.
Purple bumps: the kernel function at each observation.
Brown curve: final density estimate from KDE.
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Kernel Density Estimation - 3
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The kernel function generally does not affect the density estimate
too much. 10 / 67



Kernel Density Estimation - 4
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The smoothing bandwidth often has a much stronger effect on the
quality of estimation.
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Asymptotic Theory - 1
I In statistics, there are two common quantities to measure the

accuracy of estimation– bias and variance of an estimator.

I When the smoothing bandwidth h ≈ 0 and sample size n is
large,

bias(p̂h(x)) = E(p̂h(x))− p(x) = C1,Kp
′′(x)h2 + o(h2),

and the variance has the asymptotic form:

Var(p̂h(x)) = C2,K
p(x)

nhd
+ o

(
1

nhd

)
,

where C1,K and C2,K are constants depending on the kernel
function.

I The mean squared error (MSE) is a common quantity of
measuring the accuracy that takes both the bias and variance
into consideration. For the KDE, it is

MSE(p̂h(x)) = bias2(p̂h(x)) + Var(p̂h(x))

= C 2
1,K |p′′(x)|2h4 + C2,K

p(x)

nhd
+ o(h4) + o

(
1

nhd

)
.
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Asymptotic Theory - 2

I The MSE measures the accuracy at a single point x . The
overall performance is often quantified by the mean integrated
squared error (MISE):

MISE(p̂h) =

∫
MSE(p̂h(x))

= C 2
1,K

(∫
|p′′(x)|2dx

)
h4 +

C2,K

nhd
+ o(h4) + o

(
1

nhd

)
.

I This implies several interesting facts:

1. when h is too large, we suffer from the bias.
2. when h is too small, we suffer from the variance.
3. the optimal choice is h � n−1/(d+4).
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L∞ Analysis - 1

I The MISE is essentially just the L2 distance between p̂h and p.

I We can then generalize the result to other Lp distance
between the two quantities.

I Among all p, one particularly interesting case is L∞ distance.
In this case,

sup
x
|p̂h(x)− p(x)| = ‖p̂h − p‖∞ = O(h2) + OP

(√
log n

nhd

)
.

I The above bound follows from the following decomposition:

‖p̂h − p‖∞ ≤ ‖p̂h − ph‖∞︸ ︷︷ ︸
OP

+ ‖ph − p‖∞︸ ︷︷ ︸
O

,

where ph = E(p̂h) = p⊗K is also called the smoothed density.
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L∞ Analysis - 2

‖p̂h − p‖∞ ≤ ‖p̂h − ph‖∞︸ ︷︷ ︸
OP

+ ‖ph − p‖∞︸ ︷︷ ︸
O

,

I The fact that the bias term at rate O(h2) is from the usual
analysis (Taylor expansion).

I The bound on the stochastic variation is more involved.

I In short, it follows from the Talagrand’s inequality:

P(‖p̂h − ph‖∞ > t) ≤ c0e
−c1nhd t2

when t >
√
| log h|
nhd

. This result is formally given in Giné and

Guillou (2002).

I In fact, after rescaling, the random variable ‖p̂h − ph‖∞
converges in distribution to an extreme value distribution
(Bickel and Rosenblatt (1973)).
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L∞ Analysis - 3

I The L∞ analysis can be generalized to derivatives of the
density function.

I Gradient:

sup
x
‖∇p̂h(x)−∇p(x)‖max = O(h2) + OP

(√
log n

nhd+2

)
.

I Hessian:

sup
x
‖∇∇p̂h(x)−∇∇p(x)‖max = O(h2) + OP

(√
log n

nhd+4

)
.

I And higher-order derivatives can be derived accordingly.
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Application of L∞ Analysis - 1

I The L∞ analysis implies a construction of a simultaneous
confidence band of p.

I There are two types of confidence bands for a function p:
pointwise confidence bands and simultaneous confidence
bands.

I Pointwise CI: for any given point x and confidence level 1−α,
we construct an interval C1−α = [`1−α, u1−α] from the data
such that

P(`1−α ≤ p(x) ≤ u1−α) = 1− α + o(1).

I Simultaneous CB (confidence band): given 1− α, we
construct a band C1−α(x) = [L1−α(x),U1−α(x)] from the
data such that

P(L1−α(x) ≤ p(x) ≤ U1−α(x) for all x) = 1− α + o(1).
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Application of L∞ Analysis - 2

We can construct a simultaneous confidence band by
bootstrapping the L∞ distance.
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Pointwise CI (left) and simultaneous CB (right)1.

1More details can be found in: https://arxiv.org/abs/1702.07027
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Application of L∞ Analysis - 3

I The L∞ analysis also implies the convergence of geometric
structures.

I In particular, some geometric structures converge when the
derivatives converge2.

I Convergence rate depending on ‖p̂h − ph‖∞:
I Level sets, cluster trees, and persistent diagrams.

I Convergence rate depending on ‖∇p̂h −∇ph‖∞:
I Local modes, Morse-Smale complex, and gradient system.

I Convergence rate depending on ‖∇∇p̂h −∇∇ph‖∞:
I Ridges.

2A tutorial on this topic is in: https://arxiv.org/abs/1704.03924
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Geometric Estimation
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Level Sets - 1

I Given a level λ > 0, the density level set is

Lλ = {x : p(x) = λ}.

I A natural estimator of Lλ is the plug-in using a KDE3:

L̂λ = {x : p̂h(x) = λ}.

I Note that sometime in the literature, the set of interest is the
upper level set:

Sλ = {x : p(x) ≥ λ}.

Under smoothness conditions, the boundary of the upper level
set is the level set Lλ.

I Level set is a particularly interesting example so we take a
deeper look at this problem.

3Materials on this topic can be found in:
https://arxiv.org/abs/1504.05438 and the reference therein.

21 / 67

https://arxiv.org/abs/1504.05438


Level Sets - 2
I Level set has two common applications:

1. Anomaly detection–observations in the low density area
(outside the level set) are going to be classified as anomaly.

2. Clustering–observations inside the level set (high density area)
are going to be clustered together.
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Level Sets - 3

I There has been a tremendous amount of literature on the
convergence of level set.

I Often the convergence is expressed in terms of the Hausdorff
distance

Haus(A,B) = max{sup
x∈A

d(x ,B), sup
x∈B

d(x ,A)},

where d(x ,A) = infy∈A ‖x − y‖ is the distance from a point x
to a set A.

I The Hausdorff distance can be viewed as an L∞ distance for
sets.
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Level Sets - 4

I A common assumption to ensure the convergence of
Hausdorff distance is the gradient bound:

inf
x∈Lλ
‖∇p(x)‖ ≥ g0 > 0,

for some constant g0.

I Under this assumption (and some other common
assumptions),

Haus(L̂λ, Lλ) = OP (‖p̂h − p‖∞) .
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Level Sets - 5

I If we further assume that p(x) has bounded second derivative
everywhere, then the level set Lλ is smooth in the sense that
the reach is positive.

I The reach of a set is the longest distance away from a set that
still has a unique projection back to the set.

I If Lλ has a reach r0, then for any point x with d(x , Lλ) < r0,
x has a unique projection back to Lλ.

I The positive reach properties of level sets imply that L̂λ and
Lλ are (asymptotically) normal compatible, meaning that
there is a unique projection from every point in Lλ to L̂λ and
vice versa.
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Level Sets - 6

I The normal compatibility implies that we can decompose the
Hausdorff distance as

Haus(L̂λ, Lλ) = sup
x∈Lλ

d(x , L̂λ).

I An more interesting fact is that for any x ∈ Lλ,

d(x , L̂λ) =
1

‖∇p(x)‖
|p̂h(x)− p(x)|+ smaller order terms.

I This implies that asymptotically,

Haus(L̂λ, Lλ) = sup
x∈Lλ

1

‖∇p(x)‖
|p̂h(x)− p(x)|,

which is the supremum of a stochastic process defined over
the manifold.
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Level Sets - 7

Haus(L̂λ, Lλ) = sup
x∈Lλ

1

‖∇p(x)‖
|p̂h(x)− p(x)|.

I This shows that the Hausdorff distance follows an extreme
value distribution after rescaling.

I Also, it implies that we can use the bootstrap to construct a
confidence set of Lλ.
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Local Modes - 1

I Another interesting geometric structure is the local modes of
the PDF:

M = {x : ∇p(x) = 0, λ1(x) < 0},

where λ1(x) is the largest eigenvalue of the Hessian matrix
∇∇p(x)4.

I Similar to the level set problem, a simple estimator of M is
the plug-in from the KDE

M̂h = {x : ∇p̂h(x) = 0, λ̂1(x) < 0}.

4A tutorial on this topic is in: https://arxiv.org/abs/1406.1780 and
https://arxiv.org/abs/1408.1381.
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Local Modes - 2

I Before talking about the applications of local modes, we first
discuss some of its properties.

I If the density function p is a Morse function, i.e., all critical
points of p are non-degenerated, then

1. Haus(M̂h,M) = OP (supx ‖∇p̂h(x)−∇p(x)‖max) ,
2. with a probability approaching to 1, there exists a one-to-one

correspondence between elements in M̂h and elements in M.

I A common assumption to replace the Morse condition is that
there exists a lower bound λ > 0 such that

min
x∈M
|λ1(x)| ≥ λ > 0.

I In fact, one can obtain a faster convergence rate of
Haus(M̂h,M) without the log n term in the variance.
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Local Modes - 3

I Local modes can be used to perform a cluster analysis.

I This is known as the mode clustering method (mean-shift
clustering).
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Local Modes - 4

I The clusters are defined through a gradient system of p (or in
the sample case, p̂h).

I For a given point x , we define a gradient flow πx such that

πx(0) = x , π′x(t) = ∇p(πx(t)).

I The destination πx(∞) = limt→∞ πx(t) ∈ M when p is a
Morse function for almost every x except a set of point with
Lebesgue measure 0.

I Thus, we can use the destination πx(∞) of each x to cluster
data points. Namely, points with the same destination will be
clustered together.
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Local Modes - 5
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Local Modes - 6

I Numerically, we use the mean-shift algorithm to do the
gradient ascent.

I Let x0 be the initial point.

I We iterate

xt+1 =

∑n
i=1 XiK

(
Xi−xt

h

)
∑n

i=1 K
(
Xi−xt

h

)
until convergence.

I Note that this works for Gaussian kernel. Some other kernel
functions also work after modifications.
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Local Modes - 7

I For each m ∈ M, let D(m) = {x : πx(∞) = m} be the basin
of attraction with respect to m.

I The set D = {D(m) : m ∈ M} forms a partition of the entire
support of p (except for a set of Lebesgue measure 0).

I Similarly, we may define the sample version of it
{D̂(m) : m ∈ M̂h}, where D̂ = D̂(m) = {x : π̂x(∞) = m} is
the basin of attraction using the gradient system of p̂h.

I The sample version partition D̂ converges to the ‘population’
partition D with proper assumptions5.

5Materials on this topic can be found in:
https://arxiv.org/abs/1506.08826
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Local Modes - 8

I Let B = {∂D(m) : m ∈ M} be the collection of boundaries of
the basins and B̂ = {∂D̂(m) : m ∈ M} be the sample version
of it.

I The convergence of D̂ toward D can be characterized by the
convergence of B̂ to B.

I If for every x ∈ M, p(x) are convex with respect to the
‘normal space’ of B at x , then

Haus(B̂,B) = OP

(
sup
x
‖∇p̂h(x)−∇p(x)‖max

)
.
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Cluster Tree - 1

I There is an elegant idea combining both level sets and modes:
cluster tree6.

I The cluster tree considers the collection of clusters formed by
the upper level sets and keeps track of their relationships.

I When applying to a density function, a cluster tree is also
called a density tree.

6Materials on this topic can be found in:
https://arxiv.org/abs/1605.06416
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Cluster Tree - 2
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Cluster Tree - 2
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Cluster Tree - 3
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Cluster Tree - 4

I Level sets are the basis of constructing a cluster tree.

I Local modes are associated to the creation of a new branch in
a cluster tree.

I Saddle points or local minima are related to the elimination
(merging) of a branch in a cluster tree.

I Cluster tree provides an elegant way to represent the shape of
the PDF and can be used to visualize the data.
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Cluster Tree - 5
Let Tp be the cluster tree based on the PDF and T̂p = Tp̂h be the
cluster tree based on the KDE.

I To measure the estimation error, a simple metric is

d∞(T̂p,Tp) = sup
x
‖p̂h(x)− p(x)‖,

so the convergence rate is

d∞(T̂p,Tp) = O(h2) + OP

(√
log n

nhd

)
.

I Another way of defining statistical convergence is based on
the probability

Pn = P
(
T̂p and Tp are topological equivalent

)
.

I Under smoothness conditions and n→∞, h→ 0,

Pn ≥ 1− e−nh
d+4·Cp ,

for some constant Cp depending on the density function p.
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Cluster Tree - 6

I There are other notions of convergence/consistency of a tree
estimator.

I Convergence in the merge distortion metric (Eldridge et al.
2015) is one example.

I However, it was shown in Kim et al. (2016) that this metric is
equivalent to the L∞ metric.

I Hartigan consistency (Chaudhuri and Dasgupta 2010;
Balakrishnan et al. 2013) is another way to measure the
consistency of a tree estimator.

I Note: cluster tree can also be recovered by a kNN approach;
see Chaudhuri and Dasgupta (2010) and Chaudhuri et al.
(2014) for more details.
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2015) is one example.

I However, it was shown in Kim et al. (2016) that this metric is
equivalent to the L∞ metric.

I Hartigan consistency (Chaudhuri and Dasgupta 2010;
Balakrishnan et al. 2013) is another way to measure the
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Persistent Diagrams - 1

I Cluster trees contain only the information about connected
components of level sets.

I Connected components are 0th order homology group.

I One can generalize this concept to higher order homology
groups.

I The creation and elimination of homology groups can be
summarized using the persistent diagram.
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Persistent Diagrams - 2

I Again, we may define the persistent diagram formed by using
the population PDF p and the KDE p̂h.

I Let PD = PD(p) be the persistent diagram formed by level

sets of p and P̂D = PD(p̂h) be the one formed by level sets of
p̂h.

I Using the fact the bottleneck distance of persistent diagrams
is bounded by the L∞ distance of the generated function7, we
conclude that

dB(P̂D,PD) ≤ ‖p̂h − p‖∞ = O(h2) + OP

(√
log n

nhd

)
.

7https://link.springer.com/article/10.1007/s00454-006-1276-5.
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Persistent Diagrams - 3

I There are other distance for persistent diagrams such as the
Wasserstein distance.

I But the bottleneck distance has a nice property that it is an
L∞ type distance so we can use it to construct a confidence
set8.

I This is often done by bootstrapping the upper bound
‖p̂h − p‖∞ since it is unclear if bootstrapping the bottleneck
distance will work or not.

I Also, computing the bottleneck distance is challenging.

8See https://arxiv.org/abs/1303.7117 for more details..
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Ridges - 1

I Ridges are another interesting geometric structure that we
may want to study9.

I They can be viewed as generalized local modes.

9Materials on this topic can be found in:
https://arxiv.org/abs/1406.5663 and
https://arxiv.org/abs/1212.5156
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Ridges - 2

I Here is the formal definition of ridges.

I Let v1(x), · · · , vd(x) be the ordered eigenvectors of ∇∇p(x),
where v1(x) corresponds to the largest eigenvalue.

I Define V (x) = [v2(x), · · · , vd(x)] ∈ Rd×(d−1).

I Ridges are defined as the collection:

R = {x : V (x)V (x)T∇p(x) = 0, λ2(x) < 0}.

I V (x)V (x)T is the projection matrix onto the subspace
spanned by v2(x), · · · , vd(x).

I Thus, the ridge R is the collection of projected local modes.
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Ridges -3

An application of ridges in Astronomy.
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Ridges -4

I Ridges can be estimated by the KDE.

I Let V̂h(x) be the KDE version of V (x) and λ̂2(x) be the KDE
version of λ2(x). Then the ridge estimator is

R̂h = {x : V̂h(x)V̂h(x)T∇p̂h(x) = 0, λ̂2(x) < 0}.

I One can use the subspace constrained mean shift algorithm10

to numerically calculate the estimator.

I The convergence rate is

Haus(R̂h,R) = O(sup
x
‖∇∇p̂h(x)−∇∇p(x)‖max).

10See http://www.jmlr.org/papers/v12/ozertem11a.html.
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Singular distribution

49 / 67



Failure of the KDE - 1

I In the previous few sections, we see that the KDE is a
powerful tool.

I However, it may not work in certain situations.
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Failure of the KDE - 2

I The KDE does not work because there is no underlying PDF
for GPS data!

I A better model to describe a GPS data is the following
distribution:

PGPS(x) = π0P0(x) + π1P1(x) + π2P2(x),

where P0(x) is a distribution of point mass, and P1(x) is a
distribution of a 1D density function, and P2(x) is a
distribution of a 2D density function, and π0 + π1 + π2 = 1
with πj ≥ 0 are proportions.

I The components P0 and P1 make the distribution function
singular so the KDE diverges.
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Density Ranking - 1

I Although the KDE fails, the density ranking still works11!

I The density ranking is a density surrogate that

α̂h(x) =
1

n

n∑
i=1

I (p̂h(x) ≥ p̂h(Xi )).

I α̂h(x) is the proportion of observations’ density below the
density of the point x .

I It preserves the ordering of p̂h(x) on each observed data
points.

I α̂h(x) ∈ [0, 1] so it will not diverge.

11See https://arxiv.org/abs/1611.02762 and
https://arxiv.org/abs/1708.05017.
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Density Ranking - 2

Another example of possibly singular distribution in an Astronomy
dataset.
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Density Ranking - 3

I To see why the density ranking is stable in handling GPS data
(or more general, singular distributions), we consider its
population quantity.

I When the PDF exists, it is easy to see that the population
quantity is

α(x) = P(p(x) ≥ p(X )),

where X ∼ P.

I When the distribution is singular, we need to use the concept
of Hausdorff density.
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Density Ranking - 4

I Let Cd be the volume of a d dimensional unit ball and
B(x , r) = {y : ‖x − y‖ ≤ r}.

I For any integer s, we define

Hs(x) = lim
r→0

P(B(x , r))

Csr s
.

I Hs(x) occurs in three regimes: 0, ∞, or a number between
(0,∞).

I Example of 0: s = 1 on a place with 2D density (s < the
structural dimension).

I Example of ∞: s = 1 on a point mass (s > the structural
dimension).

I For a point x , we then define

τ(x) = max{s ≤ d : Hs(x) <∞}, ρ(x) = Hτ(x)(x).
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Density Ranking: Example - 1

I Assume the distribution function P is a mixture of a 2D
uniform distribution within [−1, 1]2, a 1D uniform distribution
over the ring {(x , y) : x2 + y2 = 0.52}, and a point mass at
(0.5, 0), then the support can be partitioned as follows:
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Density Ranking: Example - 2

I Orange region: τ(x) = 2⇔ contribution of P2(x).

I Red region: τ(x) = 1⇔ contribution of P1(x).

I Blue region: τ(x) = 0⇔ contribution of P0(x).
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Hausdorff Density and Ranking - 1

I The function τ(x) measures the dimension of P at point x .

I The function ρ(x) describes the density of that corresponding
dimension.

I We can use τ and ρ to compare any pairs of points and
construct a ranking.

I For two points x1, x2, we define an ordering such that
x1 �τ,ρ x2 if

τ(x1) < τ(x2), or τ(x1) = τ(x2), ρ(x1) > ρ(x2).

I Namely, we first compare the dimension of the two points, the
lower dimensional structure wins. If they are on regions of the
same dimension, we then compare the density of that
dimension.
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Hausdorff Density and Ranking - 2

I Using the ordering �τ,ρ, we then define the population density
ranking as

α(x) = P(x �τ,ρ X1)

I When the PDF exists, the ordering �τ,ρ equals to �d ,p so

α(x) = P(x �d ,p X1) = P(p(x) ≥ p(X1)),

which recovers the definition in the simple case.
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Dimensional Critical Points - 1

I In singular measure, there is a new type of critical points. We
call them the dimensional critical points.

I These critical points contribute to the change of topology of
level sets as the usual critical points but they cannot be
defined by setting gradient to be 0.
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Dimensional Critical Points - 2

I The box in the following figure is a dimensional critical point.

I Note: this is a mixture of 2D distribution and a 1D
distribution on the black line (maximum value occurs at the
cross).
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Convergence under Singular Measure: Density Ranking - 1
I When P is a singular distribution and satisfies certain

regularity conditions,∫
|α̂h(x)− α(x)|2 dP(x) = O(h) + OP

(√
1

nhd

)
I Intuition of convergence: as h→ 0, the KDE

p̂h(x) =
1

nhd

n∑
i=1

K

(
Xi − x

h

)
diverges when x is in a lower dimensional structure
(τ(x) < d).

I The bias of order O(h) is due to the smoothing from a nearby
lower dimensional structure.

I However, the speed of diverging depends on τ(x). The smaller
τ(x), the faster (actually the diverging rate is O(hτ(x)−d)).

I Note: we do not estimate τ(x) when using α̂h(x)!
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Convergence under Singular Measure: Density Ranking - 2

I Although we have L2(P) convergence (also we have L2 and
pointwise convergence), we do not have a uniform
convergence.

I Example of non-convergence of supreme norm: consider a
sequence of points on a higher dimensional space but moving
toward a lower dimensional structure within distance h

2 .

I Interestingly, we can still prove that some topological features
(local modes, level sets, cluster trees, persistent diagrams) are
converging.
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Convergence under Singular Measure: Density Ranking - 3

I Although we do not have uniform convergence, many
geometric structures still converge.

I The cluster tree, local modes, and 0-th order homology
groups of density ranking converge to the population version.

I However, it is unclear if other quantities such as ridges or
higher-order homology groups converge.

64 / 67



Conclusion

I In this lecture, we study the problem of estimating a
geometric structure of the underlying PDF.

I We show that we can estimate the PDF, level sets, local
modes, gradient systems, cluster trees, persistent diagrams,
and ridges using the KDE.

I There are two alternative ways to view this problem.

I First, when the KDE converges to the true population PDF,
many geometric structures also converge.

I Second, many geometric structures have an intrinsic stability
with respect to the underlying function so small perturbation
will not change it drastically.
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