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Introduction

Density Mode Clustering: A Population Level Clustering

Let p : Rd 7! R be a density function.

The gradient g(x) = rp(x) and the Hessian H(x) = rrp(x).

For each x 2 Rd , we construct a flow � : [0,1] 7! Rd s.t.

�
x

(0) = x , �0
x

(t) = g(�
x

(t)).

By Morse theory, lim
t! �

t

(t) 2 M, where

M = {x : rp(x) = 0,H(x) negative definite}

is the set of local modes.

We denote M = {m1, · · · ,m
k

}.
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Introduction

Density Mode Clustering: An Example

Given a smooth function.

Find the local modes.

Following the gradient
until arriving a mode.
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Introduction

Density Mode Clustering: Based on the KDE

The kernel density estimator (KDE):

bp
n

(x) =
1

nhd

nX

i=1

K

✓
x � X

i

h

◆
.

The gradient:

bg
n

(x) = rbp
n

(x) =
1

nhd

nX

i=1

rK

✓
x � X

i

h

◆
.

Clustering: Based on the gradient of bg
n

(x).

Algorithm: The mean shift algorithm [Fukunaga1975, Cheng1995, Comaniciu2002].
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Introduction

Conventions on Notations

True local modes
M = {m1, · · · ,m

k

}.

Estimated local modes

cM
n

= {bm1, · · · , bmb
k

}.

The cluster regions (also known as basins of attraction):

C
j

= {x : x being assigned to m
j

under g}.

The estimated cluster regions:

bC
j

= {x : x being assigned to bm
j

under bg
n

}.
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Outline for the Proposed Methods
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Soft Clustering

Basic Ideas for Soft Clustering

Usual (Hard) clustering: assign each data to a cluster.

e.g. a(x) = (0, 1, 0, 0, 0): assign x to the second cluster.

Soft clustering: assign each data to a mixture of clusters.

e.g. a(x) = (0.05, 0.7, 0.2, 0.05, 0):

�! We have strong confidence that x is assinged to cluster 2
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Soft Clustering

Soft Mixture Clustering

A common soft clustering method: mixture model.

p(x) = ⇡p1(x) + (1� ⇡)p2(x)

But this is ill-defined.
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Soft Clustering

Basic Ideas for Soft Mode Clustering

In mode clustering, we have fixed local modes bm1, · · · , bmb
k

.

All we need is to construct the soft assignment vector a(x).
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Soft Clustering The Bootstrap

Soft Mode Clustering: The Bootstrap

1 Given data points X1, · · · ,Xn

, we find the local modes.

2 For each x 2 R, perform the bootstrap and redo the mode clusteirng.

3 Construct the soft assignment vector a(x) =
�
a1, · · · , ab

k

(x)
�
where

a`(x) = fraction of x being assigned to cluster `.
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Soft Clustering The Bootstrap

The Bootstrap: Example

Yen-Chi Chen (CMU) Enhanced Mode Clustering May 22, 2014 18 / 43



Soft Clustering The Hitting Probability

Soft Mode Clustering: The Hitting Probability

We define a di↵usion between local modes and data points.
bk + n states: bm1, · · · , bmb

k

,X1, · · · ,Xn

.

The first K states: absorbing states.
The transition probability between data points:

P(X
i

! X
j

) =
K
⇣
X

i

�X

j

h

⌘

P
n

j=1 K
⇣
X

i

�X

j

h

⌘
+
Pb

k

`=1 K
⇣
X

i

�b
m`

h

⌘ .

The transition probability to local modes:

P(X
i

! bm`) =
K
⇣
X

i

�m`
h

⌘

P
n

j=1 K
⇣
X

i

�X

j

h

⌘
+
Pb

k

`=1 K
⇣
X

i

�b
m`

h

⌘ .

Soft assignement vector:

a`(Xi

) = P (from X
i

and hits bm` first)
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Soft Clustering The Hitting Probability

The Hitting Probability: Example
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set

The third method is based on the level set.

We create a distance d`(x) for each ` = 1, · · · , k .
Transform the distance into soft assignment vector. e.g.

a`(x) =
exp(��0d`(x))P
k

j=1 exp(��0dj(x))
.
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set

p
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Soft Mode Clustering: The Level Set

p

m1 m2

m3

m4

m5

x

p(x)
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Soft Clustering The Level Set

Soft Mode Clustering: The Level Set

p

m1 m2

m3

m4

m5

x

p(x)

D1 D2 D3 D4d2(x)

d1(x)
d4(x)

d3(x) = 0

d5(x) = 1
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Soft Clustering The Level Set

The Level Set: Example
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Soft Clustering The Level Set

Soft Mode Clustering: Other Distance Methods

Other possible approaches:

Di↵usion distance

Density integral distance

We need a conversion between distances d`(x) and soft assignment vector
a(x).
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Outline for the Proposed Methods
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Connectivity Measures

A Motivating Example
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Connectivity Measures

Soft Assignment Vector: A Measure of Overlapping

Recall: bC
j

the regions belong to cluster j .

The soft assignment vector a(x) measures the confidence to be
assigned to each cluster.

a`(x) : the confidence of x being assigned to cluster `.

The quantity
1

N
j

X

i :X
i

2b
C

j

a`(Xi

)

measures the confidence for cluster j being assigned to cluster `; note
N
j

is the number of points in bC
j

.

We define the connectivity measure between cluster j , ` as

⌦
j` =

1

2

0

B@
1

N
j

X

i :X
i

2b
C

j

a`(Xi

) +
1

N`

X

i :X
i

2b
C`

a
j

(X
i

)

1

CA .
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Connectivity Measures

Example for Connectivity Matrix

1 2 3
1 – 0.27 0.21
2 0.27 – 0.12
3 0.21 0.12 –
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Bandwidth Selection

Outline for the Proposed Methods
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Bandwidth Selection

Optimality for Bandwidth

Usually, we select smoothing bandwidth h according to minimize
some loss function.

Mean integrated square errors (MISE):

MISE (bp
n

) = E
✓Z

(bp
n

(x)� p(x))2 dx

◆
.

L1 loss:
kbp

n

� pk1 = sup
x

|bp
n

(x)� p(x)|.
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Bandwidth Selection

Optimality for Mode Clustering

For mode clustering, the important quantity is the gradient g(x) and its
estimator bg

n

(x).

MISE:

MISE (bg
n

) = E
✓Z

kbg
n

(x)� g(x)k22 dx
◆
.

L1 loss:
kbg

n

� gk1 = sup
x

kbg
n

(x)� g(x)kmax.
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Bandwidth Selection

Rate of Convergence and Bandwidth Selection

MISE:

MISE (bg
n

) = O(h4) + O

✓
1

nhd+2

◆
.

L1 loss:

kbg
n

� gk1 = O(h2) + O
P

 r
log n

nhd+2

!
.

This suggests two di↵erent optimality criteria:

h
MISE

= C1

✓
1

n

◆ 1
d+6

h
L1 = C2

✓
log n

n

◆ 1
d+6

In practice, we use the normal reference rule [Sliverman1986, Chacon2011,13]:

h
NR

= sd(X)⇥
✓

4

d + 4

◆ 1
d+6
✓
1

n

◆ 1
d+6

.
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Visualization

Outline for the Proposed Methods
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Visualization

Multidimensional Scaling (MDS): An Introduction

Input: X1, · · · ,Xn

2 Rd .

Output: Z1, · · · ,Zn

2 Rr with r < d .

Distance preserved:

min
X

i 6=j

|d(X
i

,X
j

)� d(Z
i

,Z
j

)|

for some distance function d .

In practice, we use the classical scaling.
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Visualization

Two-Stage MDS

1 We apply MDS to local modes
bm1, · · · , bmb

k

.

2 For each cluster, we apply MDS
for the cluster points.

3 By matching the local modes,
we plot cluster points around
the mode.

4 Repeat (2-3) to each mode.
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Data Analysis

Outline

Introduction
Proposed Methods:

Soft Mode Clustering
Connectivity Measures
Bandwidth Selection
Visualizations
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Data Analysis

5-Cluster in d=6

5 clusters each with n
C

= 200.

4 edges connecting clusters and
each with n

E

= 100.

Embedding this structure in
d = 6 and add Gaussian noise.
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Data Analysis

5-Cluster in d=6

1 2 3 4 5
1 – 0.17 0.19 0.15 0.05
2 0.17 – 0.05 0.04 0.01
3 0.19 0.05 – 0.05 0.01
4 0.15 0.04 0.05 – 0.20
5 0.05 0.01 0.01 0.20 –
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Data Analysis

The Olive Oil Data: Description

A data consists of 572 olive oil sample produced in 9 di↵erent areas in
Italy.

We measure 8 di↵erent chemical contents for each oil.

palmitic palmitoleic stearic oleic linoleic linolenic arachidic eicosenoic
1 1088 73 224 7709 781 31 61 29
2 911 54 246 8113 549 31 63 29
3 966 57 240 7952 619 50 78 35
4 1051 67 259 7771 672 50 80 46
5 911 49 268 7924 678 51 70 44
6 1100 61 235 7728 734 39 64 35
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Data Analysis

The Olive Oil Data: Analysis
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Data Analysis

The Olive Oil Data: Analysis

1 2 3 4 5 6 7
Calabria 0 51 5 0 0 0 0

Coast-Sardinia 0 0 0 33 0 0 0
East-Liguria 0 0 0 1 32 11 6

Inland-Sardinia 0 0 0 65 0 0 0
North-Apulia 23 2 0 0 0 0 0

Sicily 6 19 11 0 0 0 0
South-Apulia 0 2 204 0 0 0 0

Umbria 0 0 0 0 0 51 0
West-Liguria 0 0 0 0 0 0 50
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Data Analysis

The Olive Oil Data: Analysis

1 2 3 4 5 6 7
1 – 0.08 0.05 0.00 0.01 0.02 0.00
2 0.08 – 0.30 0.01 0.01 0.00 0.00
3 0.05 0.30 – 0.02 0.01 0.00 0.00
4 0.00 0.01 0.02 – 0.09 0.02 0.01
5 0.01 0.01 0.01 0.09 – 0.19 0.04
6 0.02 0.00 0.00 0.02 0.19 – 0.09
7 0.00 0.00 0.00 0.01 0.04 0.09 –
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Conclusion

Conclusion
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Conclusion

Thank you!
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Conclusion

The Classical Scaling
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