Cosmic Web Reconstruction through Density Ridges

Yen-Chi Chen

Shirley Ho Peter E. Freeman
Christopher R. Genovese Larry Wasserman

Department of Statistics McWilliams Center for Cosmology Carnegie Mellon University

February 12, 2015

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Cosmic Web: What Does Our Universe Look Like

Credit: Millennium Simulation

Cosmic Web: What Does Our Universe Look Like

Credit: Millennium Simulation

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.
- Brightness of galaxies is influenced by filaments.

Focus of the Research: Filaments

Why filament?

- Galaxies tend to concentrate around filaments.
- Brightness of galaxies is influenced by filaments.
- Shape of galaxies is correlated with filaments.

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

A Glance at our Universe

Statistical Model for Filaments: Density Ridges

Formally, we define a filament to be a ridge of the density.

Example: Ridges in Mountians

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Formal Definition of Density Ridges

- $p(x)$: a density function.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right)$: jth eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2nd to last eigenvectors
- $V(x) V(x)^{T}$: a projection

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2nd to last eigenvectors
- $V(x) V(x)^{T}$: a projection
- Ridges:

$$
\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of 2nd to last eigenvectors
- $V(x) V(x)^{T}$: a projection
- Ridges:

$$
\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\} .
$$

Formal Definition of Density Ridges

- $p(x)$: a density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of $2 n d$ to last eigenvectors
- $V(x) V(x)^{T}$: a projection
- Ridges:

$$
\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\} .
$$

- In practice, we estimate p by the kernel density estimator \widehat{p}_{n}.

Algorithm

(1) Rawdata

Algorithm

(1) Rawdata
(2) Density Reconstruction

Algorithm

(1) Rawdata
(2) Density Reconstruction
(3) Thresholding

Algorithm

(1) Rawdata
(2) Density Reconstruction
(3) Thresholding
(1) Ridge Recovery (Ozertem and Erdogmus 2011)

Algorithm

(1) Rawdata
(2) Density Reconstruction
(3) Thresholding
(1) Ridge Recovery (Ozertem and Erdogmus 2011)

SCMS: Ridge Recovery Algorithm

Summary for the Algorithm

Density Ridges on the SDSS data

Density Ridges on the SDSS data

Density Ridges on the SDSS data

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Simulation: Consistency for Density Ridges

- To evaluate the quality of our method, we use the N-body simulation.

Simulation: Consistency for Density Ridges

- To evaluate the quality of our method, we use the N-body simulation.
- We define 'true' filaments as applying our method to 'all' galaxies in the simulation.
- We subsample part of the galaxies from the simulation.

Simulation: Consistency

Simulation: Consistency

Simulation: Consistency

Simulation: Consistency

Filament Coverage

- Can we quantify the process of convergence?

Filament Coverage

- Can we quantify the process of convergence?
- Filament coverage provides a simple way to attain this.

Filament Coverage

- Can we quantify the process of convergence?
- Filament coverage provides a simple way to attain this.
- True positive coverage:

$$
T P(r)=\frac{\text { length }\left(R \cap \widehat{R}_{n} \oplus r\right)}{\text { length }(R)}
$$

- False positive coverage:

$$
F P(r)=1-\frac{\text { length }\left(\widehat{R}_{n} \cap R \oplus r\right)}{\text { length }\left(\widehat{R}_{n}\right)}
$$

- R and \widehat{R}_{n} are the 'true' filaments and estimated filaments.

Illustration: Filament Coverage

Figure: TP(r)

Figure: 1 - $\mathrm{FP}(\mathrm{r})$

Filament Coverage

The Need for Uncertainty Measure

- Filament coverage gives a (global) evaluation for filaments.
- We have no idea about the local uncertainty along filaments.
- Moreover, filament coverage requires the knowledge of truth.

Uncertianty Measures

Let R and \widehat{R}_{n} be the true filaments and the estimated filaments. For each $x \in R$, we define the (local) uncertainty measure as

$$
\rho_{n}^{2}(x)=\mathbb{E}\left(d^{2}\left(x, \widehat{R}_{n}\right)\right),
$$

where $d(x, A)$ is the projection distance from point x to a set A. Remark:

- This is analogous to the mean square error.

Estimating Uncertainty Measures

We apply the local uncertainty measure to our estimated filaments and use the bootstrap to evaluate the errors.

Real Data Evaluation

Real Data Evaluation

Density Ridges on the SDSS data

$\mathrm{z}=0.105$

Density Ridges on the SDSS data

$\mathrm{z}=0.325$

Density Ridges on the SDSS data

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Filaments and Galaxy Luminosity

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.

Filaments and Galaxy Luminosity

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.

Filaments and Galaxy Luminosity

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.
- Variable 1: distance to filaments.

Filaments and Galaxy Luminosity

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.
- Variable 1: distance to filaments.
- Variable 2: brightness-absolute luminosity ($-1 \times$ absolute magnitude).

Filaments and Galaxy Luminosity

- Goal: We want to see if galaxies close to filament are brighter than those away from filaments.
- For each galaxy, we have two variables.
- Variable 1: distance to filaments.
- Variable 2: brightness-absolute luminosity ($-1 \times$ absolute magnitude).
- We analyze three datasets (at different ranges of redshifts).

Filaments and Galaxy Luminosity

Filaments and Galaxy Intrinsic Alignment

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.

Filaments and Galaxy Intrinsic Alignment

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.

Filaments and Galaxy Intrinsic Alignment

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable $1, \mu_{F}$: the nearby filament orientation (vector).

Filaments and Galaxy Intrinsic Alignment

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_{F} : the nearby filament orientation (vector).
- Variable 2, $\mu_{j}: j$-th principal axes for the galaxy (vector).

Filaments and Galaxy Intrinsic Alignment

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_{F} : the nearby filament orientation (vector).
- Variable 2, μ_{j} : j-th principal axes for the galaxy (vector).
- Variable 3: distance to filaments.

Filaments and Galaxy Intrinsic Alignment

- Goal: We want to see if the orientation of a galaxy is influenced by the orientation of nearby filaments.
- For each galaxy, we have three variables.
- Variable 1, μ_{F} : the nearby filament orientation (vector).
- Variable 2, μ_{j} : j-th principal axes for the galaxy (vector).
- Variable 3: distance to filaments.
- We analyze the massive blackhole dataset (a simulation dataset).

Filaments and Galaxy Intrinsic Alignment

Outline

- Introduction to Cosmic Web
- Statistical Model and Algorithm
- Filament Coverage and Uncertainty Measures
- Scientific Applications
- Summary

Summary

(1) Model: density ridges.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.
(3) Consistency: filament coverage.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.
(3) Consistency: filament coverage.
(Errors: uncertainty measures.

Summary

(1) Model: density ridges.
(2) Algorithm: SCMS.
(3) Consistency: filament coverage.
(1) Errors: uncertainty measures.
(0) Application: galaxy luminosity, alignment.

Thank you!

reference

1. Chen, Yen-Chi, Shirley Ho, Peter E. Freeman, Christopher R. Genovese, and Larry Wasserman. "Cosmic Web Reconstruction through Density Ridges: Method and Algorithm." arXiv preprint arXiv:1501.05303 (2015).
2. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." arXiv preprint arXiv:1406.5663 (2014).
3. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Generalized mode and ridge estimation." arXiv preprint arXiv:1406.1803 (2014).
4. Eberly, David. Ridges in image and data analysis. Vol. 7. Springer Science \& Business Media, 1996.
5. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
6. Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.
