FINDING COSMIC FILAMENT BY THE DIRECTIONAL RIDGE FINDING ALGORITHM

Yen-Chi Chen

Department of Statistics
University of Washington

- Supported by NSF DMS - 1810960 and DMS - 195278 and DMS - 2112907.

Joint work with Yikun Zhang

Cosmic Web: What Does Our Universe Look Like

Credit: Millennium Simulation

Cosmic Web: What Does Our Universe Look Like

Credit: Millennium Simulation

The Importance of Filaments

- A galaxy's brightness, size, and mass are associated with the distance to filaments.

The Importance of Filaments

- A galaxy's brightness, size, and mass are associated with the distance to filaments.
- A galaxy's alignment is associated with filaments.

Density Ridges

We formalize the notion of filaments as density ridges.

Example: Ridges in Mountains

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

- A generalized local mode in a specific 'subspace'.

Formal Definition of Density Ridges

- $p: \mathbb{R}^{d} \mapsto \mathbb{R}$, the density function.
- $\left(\lambda_{j}(x), v_{j}(x)\right): j$ th eigenvalue/vector of $H(x)=\nabla \nabla p(x)$.
- $V(x)=\left[v_{2}(x), \cdots, v_{d}(x)\right]$: matrix of the 2nd eigenvector to the last eigenvector.
- $V(x) V(x)^{T}$: a projection.
- Ridges:

$$
R=\operatorname{Ridge}(p)=\left\{x: V(x) V(x)^{T} \nabla p(x)=0, \lambda_{2}(x)<0\right\}
$$

- Local modes:

$$
\operatorname{Mode}(p)=\left\{x: \nabla p(x)=0, \lambda_{1}(x)<0\right\}
$$

Dimension of Ridges

The dimension of a ridge is 1 .

This is because ridges are points satisfying $V(x) V(x)^{T} \nabla p(x)=0$.
$V(x) V(x)^{T}$ has rank $d-1$, so there are $d-1$ effective constraints.

By the Implicit Function Theorem, ridges have dimension 1.

Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where $\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)$ is the kernel density estimator (KDE) and X_{1}, \cdots, X_{n} are the locations of galaxies.

[^0]
Estimator and Algorithm

We use the plug-in estimate:

$$
\widehat{R}_{n}=\operatorname{Ridge}\left(\widehat{p}_{n}\right),
$$

where $\widehat{p}_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)$ is the kernel density estimator (KDE) and X_{1}, \cdots, X_{n} are the locations of galaxies.

- In general, finding ridges from a given function is hard.
- The Subspace Constraint Mean Shift ${ }^{1}$ (SCMS) algorithm allows us to find \widehat{R}_{n}, ridges of the KDE.

[^1]
SCMS: Ridge Recovery Algorithm

SCMS moves blue mesh points by gradient ascent and a projection.

Example for Estimated Density Ridges

3D Example for Estimated Ridges

Blue curves: density ridges.
Red points: density local modes.

Formal definition of the SCMS algorithm

- Starting at an initial point $x^{(0)}$, the SCMS algorithm generates a sequence of points $x^{(1)}, x^{(2)}, \cdots$ via the following updating procedure:

$$
x^{(t+1)}=x^{(t)}+\eta \widehat{V}\left(x^{(t)}\right) \widehat{V}\left(x^{(t)}\right)^{T} \nabla \widehat{p}_{n}\left(x^{(t)}\right)
$$

for $t=0,1,2,3, \cdots$.

- The tuning parameter $\eta>0$ is the step size.

Convergence of the SCMS algorithm

- Let $x^{(\infty)} \in \widehat{R}_{n}$ be its destination.

Theorem (Linear convergence of SCMS)

Under suitable conditions and $\left\|x^{(0)}-x^{(\infty)}\right\|_{2} \leq r_{0}$, we have

$$
\left\|x^{(t)}-x^{(\infty)}\right\|_{2} \leq \Gamma^{t}\left\|x^{(0)}-x^{(\infty)}\right\|_{2}
$$

where $\Gamma \in(0,1)$.

- We provide an explicit description of Γ, r_{0} in our paper.
- Technical challenge: the projection matrix $\widehat{V}\left(x^{(t)}\right) \widehat{V}\left(x^{(t)}\right)^{T}$ also depends on the current location $x^{(t)}$, so we have to bound this difference as well.

Asymptotic Theory

To study the uncertainty of the ridge estimator, we use the Hausdorff distance to quantify the errors: $\operatorname{Haus}\left(\widehat{R}_{n}, R\right)$.
\longrightarrow Hausdorff distance is like an L_{∞} distance for sets.
Key observation:

$$
\begin{aligned}
\operatorname{Haus}\left(\widehat{R}_{n}, R\right) & \approx \sup \{\text { Empirical process on } R\} \\
& \approx \sup \{\text { Gaussian process on } R\} .
\end{aligned}
$$

Theorem

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$, there exists a Gaussian process \mathbb{B}_{n} defined on a certain function space \mathscr{F} such that

$$
\sup _{t}\left|\mathbb{P}\left(\sqrt{n h^{d+2}} \operatorname{Haus}\left(\widehat{R}_{n}, R\right)<t\right)-\mathbb{P}\left(\sup _{f \in \mathscr{F}}\left|\mathbb{B}_{n}(f)\right|<t\right)\right|=O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right)
$$

Confidence Set: \oplus operation

We define $A \oplus r=\{x: d(x, A) \leq r\}$.

Then we have the following inclusion property:

$$
A \subset B \oplus \operatorname{Haus}(A, B), \quad B \subset A \oplus \operatorname{Haus}(A, B)
$$

This also implies

$$
R \subset \widehat{R}_{n} \oplus \operatorname{Haus}\left(\widehat{R}_{n}, R\right)
$$

Bootstrap Consistency

Let \widehat{R}_{n}^{*} be the bootstrap ridges. We proved that

$$
\begin{aligned}
\operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right) & \approx \sup \left\{\text { Gaussian process on } \widehat{R}_{n}\right\} \\
& \approx \sup \{\text { Gaussian process on } R\} \\
& \approx \operatorname{Haus}\left(\widehat{R}_{n}, R\right) .
\end{aligned}
$$

Theorem

Under regularity conditions and $\frac{\log n}{n h^{d+8}} \rightarrow 0$,

$$
\mathbb{P}\left(R \subset \widehat{R}_{n} \oplus \widehat{t}_{1-\alpha}\right)=1-\alpha+O\left(\left(\frac{\log ^{7} n}{n h^{d+2}}\right)^{1 / 8}\right)
$$

where $\widehat{t}_{1-\alpha}=$ is the $1-\alpha$ quantile of $\operatorname{Haus}\left(\widehat{R}_{n}^{*}, \widehat{R}_{n}\right)$.

Uncertainty of Ridges

SDSS: Comparing to Clusters

- Blue: filaments. Red: galaxy clusters (redMaPPer).

SDSS: Comparing to Clusters

- Blue: filaments. Red: galaxy clusters (redMaPPer).

SDSS: Comparing to Clusters

- Blue: filaments. Red: galaxy clusters (redMaPPer).

SDSS: Filament Effects VS Environments

Do filaments have an extra effect other than environments?
\longrightarrow Yes!

SDSS: Color

Similar pattern also appears for other galaxy properties such as brightness, size, and age.

Accounting for the spherical geometry

Directional data

- While the above results seem to be good, it has a severe problem: our data (locations of galaxies) is not in Euclidean space.
- In particular, we use (RA, dec) to represent the location of a galaxy.
- (RA, dec) are spherical coordinate!
- The Euclidean ridge finding algorithm may lead to a severe bias.

Failure of usual SCMS

Failure of usual SCMS

Failure of usual SCMS

Directional ridges - 1

- Let $X_{1}, \cdots, X_{n} \in \Omega_{q}$, where $\Omega_{q}=\left\{x \in \mathbb{R}^{q+1}:\|x\|_{2}=1\right\}$ be the directional data on q-dimensional sphere.
- To define ridges on Ω_{q}, we need to use gradient on a Riemannian manifold.
- Luckily, in this case, we have a simple representation of the gradient on Riemannian manifold grad using the usual gradient operator ∇ (in $(q+1)$-dimension):

$$
\operatorname{grad} f(x)=\left(I_{q+1}-x x^{T}\right) \nabla f(x)
$$

where $x \in \mathbb{R}^{q+1}$ and $I_{q+1}=\operatorname{diag}(1,1, \cdots, 1) \in \mathbb{R}^{(q+1) \times(q+1)}$.

- When $x \in \Omega_{q}$, this will lead to the gradient on a Riemannian manifold.

Directional ridges - 2

- With the above representation, the Hessian on Riemannian manifold can be expressed as

$$
\mathscr{H} f(x)=\left(I_{q+1}-x x^{T}\right) \nabla \nabla f(x)\left(I_{q+1}-x x^{T}\right)
$$

when $x \in \Omega_{q}$.

- The directional ridges are then defined as

$$
\underline{R}=\operatorname{Ridge}(p)=\left\{x: \underline{V}(x) \underline{V}(x)^{T} \nabla p(x)=0, \underline{\lambda}_{2}(x)<0\right\},
$$

where $\underline{V}(x)$ is the matrix of the smallest ($q-1$) eigenvectors and $\underline{\lambda}_{2}(x)$ is the second largest eigenvalue of $\mathscr{H} p(x)$.

Directional ridges - 3

- In practice, we estimate p by the directional KDE:

$$
\widehat{p}_{\operatorname{dir}}(x)=\frac{c_{L, q}(h)}{n} \sum_{i=1}^{n} L\left(\frac{1-x^{T} X_{i}}{h^{2}}\right),
$$

where $c_{L, q}(h)=O\left(h^{-q}\right)$ is the normalizing constant and L is the directional kernel.

- A popular choice is the von-Mises kernel, i.e., $L(r)=e^{-r}$.
- This leads to $\widehat{\mathscr{H} f}(x)$ and $\underline{\widehat{V}}(x)$ and $\underline{\hat{\lambda}}_{2}(x)$ and $\underline{\widehat{R}}$.

Directional SCMS

- The SCMS algorithm can be generalized to a directional SCMS with some modifications.
- We showed that the directional SCMS can be expressed as the following fixed-point iteration (starting at $x^{(0)}$):

$$
x^{(t+1)}=\frac{\underline{\widehat{V}}\left(x^{(t)}\right) \underline{\widehat{V}}\left(x^{(t)}\right)^{T} \nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)+\left\|\nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)\right\|_{2} \cdot x^{(t)}}{\left\|\underline{\widehat{V}}\left(x^{(t)}\right) \underline{\widehat{V}}\left(x^{(t)}\right)^{T} \nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)+\right\| \nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)\left\|_{2} \cdot x^{(t)}\right\|_{2}},
$$

for $t=0,1,2,3, \cdots$.

Convergence of the directional SCMS algorithm

- Let $x^{(0)}$ be an initial point of the SCMS on Ω_{q} and let $x^{(\infty)} \in \underline{\widehat{R}}$ be its destination.

Theorem (Linear convergence of directional SCMS)

Under suitable conditions and $\left\|x^{(t)}-x^{(\infty)}\right\|_{2} \leq r_{\text {dir }}$, we have

$$
\left\|x^{(t)}-x^{(\infty)}\right\|_{2} \leq \Gamma_{\text {dir }}^{t}\left\|x^{(0)}-x^{(\infty)}\right\|_{2}
$$

where $\Gamma_{\text {dir }} \in(0,1)$.

- We provide bounds on $\Gamma_{\text {dir }}$ and $r_{\text {dir }}$ in the paper.

Applying to the SDSS data

Directional SCMS with $\mathrm{h}=0.032722047245190816$,
$0.095<=z<0.1$, and RA centered at 185 degree

Applying to the SDSS data

Directional SCMS with $\mathrm{h}=0.04820183700959344$,
$0.3<=z<0.305$, and RA centered at 185 degree

Applying to the SDSS data

Directional SCMS with $\mathrm{h}=0.03799852656312165$,
$0.49<=z<0.495$, and RA centered at 185 degree

Incorporating the redshift

Incorporating the redshift information

- All the above approach is based on the idea of 'slicing the Universe'.
- Namely, we take slices based on redshift and find filaments in each slice.
- How to incorporate the information from redshift is a key problem.

Failure of a naive idea

- Naively, one may think that we can convert (RA, dec, z) into 3-dimensional Cartesian coordinate and apply the 3D ridge finding algorithm.
- This idea may lead to unstable results. See the following simulation:

$\Omega_{2} \times \mathbb{R}$ space

- To incorporate the redshift, we consider the product space $\Omega_{2} \times \mathbb{R}$.
- Ω_{2} is the 2-sphere, which describes the angular position (RA, dec).
- \mathbb{R} is the 1-dimensional Euclidean space, which describes the redshift z .
- We attempt to find ridges in $\Omega_{2} \times \mathbb{R}$.

Filament findings in $\Omega_{2} \times \mathbb{R}$

- The right panel is the result from our directional-linear SCMS, which recover the true filament (red curve).

Density estimation in $\Omega_{2} \times \mathbb{R}$

- The idea is to estimate the density in the product space directly.
- Let $x \in \Omega_{2}$ denotes the angular coordinate and $z \in \mathbb{R}$ denotes the redshift.
- Our data will be $\left(X_{1}, Z_{1}\right), \cdots,\left(X_{n}, Z_{n}\right) \in \Omega_{2} \times \mathbb{R}$.
- We estimate the density using the product kernel:

$$
\widehat{p}_{\mathrm{DL}}(x, z)=\frac{c_{L, 2}\left(h_{x}\right)}{n h_{z}} \sum_{i=1}^{n} L\left(\frac{1-x^{T} X_{i}}{h_{x}^{2}}\right) K\left(\frac{Z_{i}-z}{h_{z}}\right),
$$

where $L(y)=e^{-y}$ and $K(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right)$ are a directional and Gaussian kernel.

Idea: Mean-Shift in $\Omega_{2} \times \mathbb{R}$

- We show that a gradient ascent of $\hat{p}_{\mathrm{DL}}(x, z)$ with a suitable step size can be written as follows.
- Starting at $x^{(t)}, z^{(t)}$, we compute

$$
\widetilde{x}^{(t+1)}=\frac{\sum_{i=1}^{n} X_{i} L\left(\frac{1-x^{(t) T} X_{i}}{h_{x}^{2}}\right) K\left(\frac{Z_{i}-z^{(t)}}{h_{z}}\right)}{\sum_{i=1}^{n} L\left(\frac{1-x^{(t) T} X_{i}}{h_{x}^{2}}\right) K\left(\frac{Z_{i}-z^{(t)}}{h_{z}}\right)},
$$

and update

$$
x^{(t+1)}=\frac{\widetilde{x}^{(t+1)}}{\left\|\widetilde{x}^{(t+1)}\right\|} .
$$

Also, the location $z^{(t)}$ is updated to

$$
z^{(t+1)}=\frac{\sum_{i=1}^{n} Z_{i} L\left(\frac{1-x^{(t+1) T} X_{i}}{h_{x}^{2}}\right) K\left(\frac{Z_{i}-z^{(t)}}{h_{z}}\right)}{\sum_{i=1}^{n} L\left(\frac{1-x^{(t) T} X_{i}}{h_{x}^{2}}\right) K\left(\frac{Z_{i}-z^{(t)}}{h_{z}}\right)} .
$$

Directional-Euclidean SCMS on SDSS

Cosmic Filament Detection via Directional-Linear SCMS Algorithm
on the 3D (RA,DEC,Redshift) space with $0.05 \leqslant z<0.07$

- Detected Filaments

Cosmic Filament Detection via Directional-Linear SCMS Algorithm
on the 3D (RA,DEC,Redshift) space with $0.05 \leqslant z<0.07$

- Detected Filaments

Subsompled galaxies

Directional-Euclidean SCMS on SDSS

Cosmic Filament Detection via Directional-Linear SCMS Algorithm
on the 3 D (RA,DEC,Redshift) space with $0.01 \leq z<0.1$

- Detected filaments

Cosmic Filament Detection via Directional-Linear SCMS Algorithm
on the 3D (RA,DEC,Redshift) space with $0.01 \leq z<0.1$

- Detected Filaments Subsampled galaxies

Conclusion and future direction

- We have generalized the usual ridge finding problem into directional x Euclidean data, which is better suited for Astronomy data.
- We proved both statistical and computational learning theory of our algorithm.
- Currently, we are applying this to the whole SDSS data and analyzing how filaments affect nearby galaxies.
- We are also designing a weighted approach that each galaxy is weighted differently (e.g., by its stellar mass).

Thank You!

More details can be found in http://faculty.washington.edu/yenchic.

References

1. Zhang, Yikun, and Yen-Chi Chen. "Linear Convergence of the Subspace Constrained Mean Shift Algorithm: From Euclidean to Directional Data." arXiv preprint arXiv:2104.14977 (2021).
2. Zhang, Yikun, and Yen-Chi Chen. "Kernel smoothing, mean shift, and their learning theory with directional data." arXiv preprint arXiv:2010.13523 (2020) To appear in the Journal of Machine Learning Research.
3. Chen, Yen-Chi, et al. "Cosmic web reconstruction through density ridges: method and algorithm." Monthly Notices of the Royal Astronomical Society 454.1 (2015): 1140-1156.
4. Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." The Annals of Statistics 43, no. 5 (2015): 1896-1928.
5. Conroy, Charlie, James E. Gunn, and Martin White. "The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies." The Astrophysical Journal 699.1 (2009): 486.
6. Eberly, David. Ridges in image and data analysis. Vol. 7. Springer Science \& Business Media, 1996.
7. Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.

Directional SCMS

$$
x^{(t+1)}=\frac{\underline{\widehat{V}}\left(x^{(t)}\right) \underline{\widehat{V}}\left(x^{(t)}\right)^{T} \nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)+\left\|\nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)\right\|_{2} \cdot x^{(t)}}{\left\|\underline{\widehat{V}}\left(x^{(t)}\right) \underline{\widehat{V}}\left(x^{(t)}\right)^{T} \nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)+\right\| \nabla \widehat{p}_{\operatorname{dir}}\left(x^{(t)}\right)\left\|_{2} \cdot x^{(t)}\right\|_{2}},
$$

Note: $\widehat{p}_{\text {dir }}=\widehat{f}_{h}$.

Comparison: Euclidean ridges vs directional ridges

We apply both Euclidean and directional ridge finding algorithms and study the errors of Euclidean ridges as a function of latitude.

Linear convergence: high-level idea

The projection matrix makes the algorithm not a conventional gradient ascent.

A key step to the proof is to bound the projection $\left(I_{q+1}-V_{d}\left(x^{(t)}\right) V_{d}\left(x^{(t)}\right)^{T}\right)\left(x^{(t)}-x^{*}\right)$ to be $O\left(\left\|x^{(t)}-x^{*}\right\|^{2}\right)$.

We use this decomposition to achieve that.

[^0]: ${ }^{1}$ Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." JMLR (2011).

[^1]: ${ }^{1}$ Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." JMLR (2011).

