Solution Manifold and Its Statistical Applications

Yen-Chi Chen

Department of Statistics
University of Washington

- Supported by NSF DMS - 181096o and DMS - 195278, NIH Uo1 - AGo169761

Solution manifolds

- A solution manifold is a manifold formed by the solutions of a system of equations (Rheinboldt 1988).

Solution manifolds

- A solution manifold is a manifold formed by the solutions of a system of equations (Rheinboldt 1988).
- Let $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ be a system of s equations with d augments.
- The solution manifold generated by Ψ is

$$
M=\{x: \Psi(x)=0\} .
$$

Solution manifolds

- A solution manifold is a manifold formed by the solutions of a system of equations (Rheinboldt 1988).
- Let $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ be a system of s equations with d augments.
- The solution manifold generated by Ψ is

$$
M=\{x: \Psi(x)=0\}
$$

- Namely, the solution manifold is the solution set of a system of functions.
- We called Ψ the generator (function) of M.

Solution manifolds

- A solution manifold is a manifold formed by the solutions of a system of equations (Rheinboldt 1988).
- Let $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ be a system of s equations with d augments.
- The solution manifold generated by Ψ is

$$
M=\{x: \Psi(x)=0\} .
$$

- Namely, the solution manifold is the solution set of a system of functions.
- We called Ψ the generator (function) of M.
- Although the construct of a solution manifold seems to be abstract, it appears in many statistical problems.

Example: constrained likelihood

- Let $Y_{1}, \cdots, Y_{n} \sim N\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} are unknown parameters.

Example: constrained likelihood

- Let $Y_{1}, \cdots, Y_{n} \sim N\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} are unknown parameters.
- Suppose that we want to test the hypothesis

$$
H_{0}: P\left(-5<Y_{1}<2\right)=0.5
$$

Example: constrained likelihood

- Let $Y_{1}, \cdots, Y_{n} \sim N\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} are unknown parameters.
- Suppose that we want to test the hypothesis

$$
H_{0}: P\left(-5<Y_{1}<2\right)=0.5
$$

- There is one constraint $(s=1)$ and we have two parameters $(d=2)$.
- So the parameter space under H_{0} forms a solution manifold.

Example: constrained likelihood

- Let $Y_{1}, \cdots, Y_{n} \sim N\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} are unknown parameters.
- Suppose that we want to test the hypothesis

$$
H_{0}: P\left(-5<Y_{1}<2\right)=0.5
$$

- There is one constraint $(s=1)$ and we have two parameters $(d=2)$.
- So the parameter space under H_{0} forms a solution manifold.
- In this case,

$$
\Psi\left(\mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-5}^{2} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y-0.5
$$

Example: mixture models with moment constraints

- Let $Y_{1}, \cdots, Y_{n} \in \mathbb{R}$ be IID random variables from an unknown distribution.
- We fit a 2-Gaussian mixture model to the data; namely, the PDF can be written as

$$
p(y)=\rho \phi\left(y ; \mu_{1}, \sigma_{2}^{2}\right)+(1-\rho) \phi\left(y ; \mu_{2}, \sigma_{2}^{2}\right),
$$

where $\phi\left(y ; \mu, \sigma^{2}\right)$ is the PDF of a normal distribution with mean μ variance σ^{2}.

Example: mixture models with moment constraints

- Let $Y_{1}, \cdots, Y_{n} \in \mathbb{R}$ be IID random variables from an unknown distribution.
- We fit a 2-Gaussian mixture model to the data; namely, the PDF can be written as

$$
p(y)=\rho \phi\left(y ; \mu_{1}, \sigma_{2}^{2}\right)+(1-\rho) \phi\left(y ; \mu_{2}, \sigma_{2}^{2}\right),
$$

where $\phi\left(y ; \mu, \sigma^{2}\right)$ is the PDF of a normal distribution with mean μ variance σ^{2}.

- There are a total of 5 parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.

Example: mixture models with moment constraints

- Let $Y_{1}, \cdots, Y_{n} \in \mathbb{R}$ be IID random variables from an unknown distribution.
- We fit a 2-Gaussian mixture model to the data; namely, the PDF can be written as

$$
p(y)=\rho \phi\left(y ; \mu_{1}, \sigma_{2}^{2}\right)+(1-\rho) \phi\left(y ; \mu_{2}, \sigma_{2}^{2}\right),
$$

where $\phi\left(y ; \mu, \sigma^{2}\right)$ is the PDF of a normal distribution with mean μ variance σ^{2}.

- There are a total of 5 parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.
- Consider matching the first two moments to the data:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} Y_{i}=\rho \mu_{1}+(1-\rho) \mu_{2} \\
& \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}=\rho\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\rho)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
\end{aligned}
$$

Example: geometric features

- Consider a nonparametric density estimation problem where $X_{1}, \cdots, X_{n} \sim p$, where p is the underlying unknown PDF.
- Many geometric features of p are solution manifolds.

Example: geometric features

- Consider a nonparametric density estimation problem where $X_{1}, \cdots, X_{n} \sim p$, where p is the underlying unknown PDF.
- Many geometric features of p are solution manifolds.
- The λ-level set (Polonik 1995, Walther 1997):

$$
\{x: p(x)-\lambda=0\} .
$$

- The critical points:

$$
\{x: \nabla p(x)=0\} .
$$

- The k-ridges (Genovese et al. 2014):

$$
\left\{x: V_{k}(x) \nabla p(x)=0, \lambda_{d-k}<0\right\},
$$

where $V_{k}(x)$ is the matrix of eigenvectors of the Hessian matrix corresponding to the $(d-k)$ smallest eigenvalues.

Solution manifolds

- In this talk, we will discuss both geometric and computational properties of solution manifolds.
- We will propose a gradient descent algorithm to compute the manifold.

Solution manifolds

- In this talk, we will discuss both geometric and computational properties of solution manifolds.
- We will propose a gradient descent algorithm to compute the manifold.
- Geometric properties:
- Smoothness: how smooth the manifold is?
- Stability: if we perturb the generator a bit, how much the manifold can change?

Solution manifolds

- In this talk, we will discuss both geometric and computational properties of solution manifolds.
- We will propose a gradient descent algorithm to compute the manifold.
- Geometric properties:
- Smoothness: how smooth the manifold is?
- Stability: if we perturb the generator a bit, how much the manifold can change?
- Computational properties:
- Gradient flow convergence: when will the gradient flow converges to the manifold?
- Local manifold properties: will the basin of attraction of a point on the manifold forms another manifold?
- Gradient descent algorithm convergence: will the gradient descent converges? how fast it converges?

Assumptions

- Let the gradient and Hessian be $G_{\Psi}(x)=\nabla \Psi(x) \in \mathbb{R}^{s \times d}, \quad H \Psi(x)=\nabla \nabla \Psi(x) \in \mathbb{R}^{s \times d \times d}$.

Assumptions

- Let the gradient and Hessian be

$$
G_{\Psi}(x)=\nabla \Psi(x) \in \mathbb{R}^{s \times d}, \quad H_{\Psi}(x)=\nabla \nabla \Psi(x) \in \mathbb{R}^{s \times d \times d} .
$$

- Define

$$
\|\Psi\|_{2, \infty}^{*}=\max \left\{\sup _{x}\|\Psi(x)\|_{\max }, \sup _{x}\left\|G_{\Psi}(x)\right\|_{\max }, \sup _{x}\left\|H_{\Psi}(x)\right\|_{\max }\right\} .
$$

Assumptions

- Let the gradient and Hessian be

$$
G_{\Psi}(x)=\nabla \Psi(x) \in \mathbb{R}^{s \times d}, \quad H_{\Psi}(x)=\nabla \nabla \Psi(x) \in \mathbb{R}^{s \times d \times d} .
$$

- Define

$$
\|\Psi\|_{2, \infty}^{*}=\max \left\{\sup _{x}\|\Psi(x)\|_{\max }, \sup _{x}\left\|G_{\Psi}(x)\right\|_{\max }, \sup _{x}\left\|H_{\Psi}(x)\right\|_{\max }\right\} .
$$

- For a set A, define $A \oplus r=\{x: d(x, A) \leq r\}$.

Assumptions

- Let the gradient and Hessian be

$$
G_{\Psi}(x)=\nabla \Psi(x) \in \mathbb{R}^{s \times d}, \quad H_{\Psi}(x)=\nabla \nabla \Psi(x) \in \mathbb{R}^{s \times d \times d} .
$$

- Define

$$
\|\Psi\|_{2, \infty}^{*}=\max \left\{\sup _{x}\|\Psi(x)\|_{\max }, \sup _{x}\left\|G_{\Psi}(x)\right\|_{\max }, \sup _{x}\left\|H_{\Psi}(x)\right\|_{\max }\right\} .
$$

- For a set A, define $A \oplus r=\{x: d(x, A) \leq r\}$.
- Consider the following assumptions:
(F1) Ψ is three-times bounded differentiable.
(F2) There exists $\lambda_{0}, \delta_{0}, c_{0}>0$ such that

1. $\lambda_{\min }\left(G_{\Psi}(x) G_{\Psi}(x)^{T}\right) \geq \lambda_{0}^{2}$ for all $x \in M \oplus \delta_{0}$.
2. $\|\Psi(x)\|_{\max }>c_{0}$ for all $x \notin M \oplus \delta_{0}$.

Smoothness of a solution manifold

Theorem (Smoothness theorem)

Assume (F1-2). Then

$$
\operatorname{reach}(M) \geq \min \left\{\frac{\delta_{0}}{2}, \frac{\lambda_{0}}{\|\Psi\|_{2, \infty}^{*}}\right\}
$$

- Reach (Federer 1959): the maximal distance that every point within this distance to M has a unique projection on M.
- This theorem links the smoothness of the generator Ψ into the smoothness of the solution manifold.

Stability of a solution manifold

- Let $\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}$ be the Hausdorff distance between A and B.
- Let $\widetilde{\Psi}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ be another generator function with at least bounded twice differentiable and \widetilde{M} be its solution manifold.

Stability of a solution manifold

- Let $\operatorname{Haus}(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{x \in B} d(x, A)\right\}$ be the Hausdorff distance between A and B.
- Let $\widetilde{\Psi}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ be another generator function with at least bounded twice differentiable and \widetilde{M} be its solution manifold.

Theorem (Stability theorem)

Assume (F1-2) of Ψ. When $\|\Psi-\widetilde{\Psi}\|_{2, \infty}^{*}$ is sufficiently small,

- $\operatorname{Haus}(M, \widetilde{M})=O\left(\sup _{x}\|\Psi(x)-\widetilde{\Psi}(x)\|_{\max }\right)$.
- $\operatorname{reach}(\tilde{M}) \geq \min \left\{\frac{\delta_{0}}{2}, \frac{\lambda_{0}}{\|\Psi\|_{2, \infty}^{*}}\right\}+O\left(\|\Psi-\widetilde{\Psi}\|_{2, \infty}^{*}\right)$.

Consistency of a manifold estimator

- The stability theorem implies the consistency of a manifold estimator.

Consistency of a manifold estimator

- The stability theorem implies the consistency of a manifold estimator.
- Consider the 2-Gaussian mixture examples where the population solution manifold M is formed by

$$
\mathbb{E}\left(Y_{1}\right)=\rho \mu_{1}+(1-\rho) \mu_{2}, \quad \mathbb{E}\left(Y_{1}^{2}\right)=\rho\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\rho)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
$$

Consistency of a manifold estimator

- The stability theorem implies the consistency of a manifold estimator.
- Consider the 2-Gaussian mixture examples where the population solution manifold M is formed by

$$
\mathbb{E}\left(Y_{1}\right)=\rho \mu_{1}+(1-\rho) \mu_{2}, \quad \mathbb{E}\left(Y_{1}^{2}\right)=\rho\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\rho)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
$$

- The estimator of the solution manifold \widehat{M}_{n} will be the one based on empirical moments:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} Y_{i}=\rho \mu_{1}+(1-\rho) \mu_{2} \\
& \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}=\rho\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\rho)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
\end{aligned}
$$

Consistency of a manifold estimator

- The stability theorem implies the consistency of a manifold estimator.
- Consider the 2-Gaussian mixture examples where the population solution manifold M is formed by

$$
\mathbb{E}\left(Y_{1}\right)=\rho \mu_{1}+(1-\rho) \mu_{2}, \quad \mathbb{E}\left(Y_{1}^{2}\right)=\rho\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\rho)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
$$

- The estimator of the solution manifold \widehat{M}_{n} will be the one based on empirical moments:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} Y_{i}=\rho \mu_{1}+(1-\rho) \mu_{2} \\
& \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}=\rho\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+(1-\rho)\left(\mu_{2}^{2}+\sigma_{2}^{2}\right)
\end{aligned}
$$

- The stability theorem shows that $\operatorname{Haus}\left(\widehat{M}_{n}, M\right)=O_{P}\left(\sqrt{\frac{1}{n}}\right)$.

Computing a solution manifold

- The above results characterize geometric properties of a solution manifold.
- But in practice, how do we numerically find the manifold?

Computing a solution manifold

- The above results characterize geometric properties of a solution manifold.
- But in practice, how do we numerically find the manifold?
- Here we propose a simple gradient descent algorithm to find the manifold (Boyd and Vandenberghe 2004).

Computing a solution manifold

- The above results characterize geometric properties of a solution manifold.
- But in practice, how do we numerically find the manifold?
- Here we propose a simple gradient descent algorithm to find the manifold (Boyd and Vandenberghe 2004).
- Let

$$
f(x)=\Psi(x)^{T} \Psi(x)=\|\Psi(x)\|^{2} \in \mathbb{R}
$$

- One may notice that

$$
M=\{x: \Psi(x)=0\}=\{x: f(x)=0\} .
$$

Computing a solution manifold

- The above results characterize geometric properties of a solution manifold.
- But in practice, how do we numerically find the manifold?
- Here we propose a simple gradient descent algorithm to find the manifold (Boyd and Vandenberghe 2004).
- Let

$$
f(x)=\Psi(x)^{T} \Psi(x)=\|\Psi(x)\|^{2} \in \mathbb{R}
$$

- One may notice that

$$
M=\{x: \Psi(x)=0\}=\{x: f(x)=0\} .
$$

- So we will find M by minimizing f.

A gradient descent algorithm

1. Randomly choose an initial point $x_{0} \sim Q$, where Q is a distribution over the region of interest \mathbb{K}.
2. Iterates

$$
x_{t+1} \leftarrow x_{t}-\gamma \nabla f\left(x_{t}\right)
$$

until convergence. Let x_{∞} be the convergent point.
3. If $\Psi\left(x_{\infty}\right)=0$ (or sufficiently small), we keep x_{∞}; otherwise, discard x_{∞}.
4. Repeat the above procedure until we obtain enough points for approximating M.

Gradient descent: illustration

Gradient descent: illustration

Gradient descent: illustration

Gradient descent: illustration

Gradient flow

- To study how the gradient descent algorithm works, we first analyze the (continuous-time) gradient flow $\pi: \mathbb{R} \rightarrow \mathbb{R}^{d}$

$$
\pi_{x}(0)=x, \quad \pi_{x}^{\prime}(t)=-\nabla f\left(\pi_{x}(t)\right)
$$

Gradient flow

- To study how the gradient descent algorithm works, we first analyze the (continuous-time) gradient flow $\pi: \mathbb{R} \rightarrow \mathbb{R}^{d}$

$$
\pi_{x}(0)=x, \quad \pi_{x}^{\prime}(t)=-\nabla f\left(\pi_{x}(t)\right)
$$

- $\pi_{x}(\infty)=\lim _{t \rightarrow \infty} \pi_{x}(t)$ is called the destination of π_{x}.

Gradient flow

- To study how the gradient descent algorithm works, we first analyze the (continuous-time) gradient flow $\pi: \mathbb{R} \rightarrow \mathbb{R}^{d}$

$$
\pi_{x}(0)=x, \quad \pi_{x}^{\prime}(t)=-\nabla f\left(\pi_{x}(t)\right) .
$$

- $\pi_{x}(\infty)=\lim _{t \rightarrow \infty} \pi_{x}(t)$ is called the destination of π_{x}.
- Also, let $v_{x}(t)=\frac{\pi_{x}^{\prime}(t)}{\left\|\pi_{x}^{\prime}(t)\right\|}$ be the directional vector at time t and $v_{x}(\infty)=\lim _{t \rightarrow \infty} v_{x}(t)$.

Consistency of the gradient flow

Theorem (Gradient flow convergence)

Assume (F1-2) and let

$$
\delta_{c}=\min \left\{\frac{\delta_{0}}{2}, \frac{1}{8 d} \frac{\lambda_{0}^{2}}{\|\Psi\|_{2, \infty}^{*}\|\Psi\|_{3, \infty}^{*}}\right\} .
$$

Then

- Convergence radius. If $x \in M \oplus \delta_{c}, \pi_{x}(\infty) \in M$.
- Terminal flow orientation. If $\pi_{x}(\infty) \in M$, then $v_{x}(\infty) \perp M$ at $\pi_{x}(\infty)$.
- Namely, if the initial point is within $\delta_{\mathcal{C}}$ distance to M, the gradient flow converges to M.

Local stable manifold theorem

- For a point $z \in M$, its basin of attraction is

$$
A(z)=\left\{x: \pi_{x}(\infty)=z\right\} .
$$

- Namely, $A(z)$ is the collection of points converging to z by the gradient flow.

Local stable manifold theorem

- For a point $z \in M$, its basin of attraction is

$$
A(z)=\left\{x: \pi_{x}(\infty)=z\right\} .
$$

- Namely, $A(z)$ is the collection of points converging to z by the gradient flow.
- Interestingly, $A(z)$ forms another manifold, known as the local stable manifold of a gradient flow (Perko 2001).

Local stable manifold theorem

- For a point $z \in M$, its basin of attraction is

$$
A(z)=\left\{x: \pi_{x}(\infty)=z\right\}
$$

- Namely, $A(z)$ is the collection of points converging to z by the gradient flow.
- Interestingly, $A(z)$ forms another manifold, known as the local stable manifold of a gradient flow (Perko 2001).

Theorem (Local stable manifold theorem)

Assume (F1-2). Then $A(z)$ forms an s-dimensional manifold for each $z \in M$.

Implication on manifold data

- Here is an interesting implication.
- If we initialize from a regular PDF q over \mathbb{R}^{d}, the convergent points forms a distribution Q_{π} over M such that Q_{π} has an (d s)-dimensional Hausdorff density (Preiss 1987).

Implication on manifold data

- Here is an interesting implication.
- If we initialize from a regular PDF q over \mathbb{R}^{d}, the convergent points forms a distribution Q_{π} over M such that Q_{π} has an (d $-s$)-dimensional Hausdorff density (Preiss 1987).
- Specifically, suppose we have initial points $x_{1}, \cdots, x_{n} \sim q$ and let z_{1}, \cdots, z_{n} be the corresponding points on the manifold M by the gradient flow.

Implication on manifold data

- Here is an interesting implication.
- If we initialize from a regular PDF q over \mathbb{R}^{d}, the convergent points forms a distribution Q_{π} over M such that Q_{π} has an (d $-s$)-dimensional Hausdorff density (Preiss 1987).
- Specifically, suppose we have initial points $x_{1}, \cdots, x_{n} \sim q$ and let z_{1}, \cdots, z_{n} be the corresponding points on the manifold M by the gradient flow.
- Then z_{1}, \cdots, z_{n} can be viewed as IID from a density on M.

Implication on manifold data

- Here is an interesting implication.
- If we initialize from a regular PDF q over \mathbb{R}^{d}, the convergent points forms a distribution Q_{π} over M such that Q_{π} has an (d $-s$)-dimensional Hausdorff density (Preiss 1987).
- Specifically, suppose we have initial points $x_{1}, \cdots, x_{n} \sim q$ and let z_{1}, \cdots, z_{n} be the corresponding points on the manifold M by the gradient flow.
- Then z_{1}, \cdots, z_{n} can be viewed as IID from a density on M.
- This becomes a scenario that IID observations on a manifold is a reasonable model.

Theory of gradient descent algorithm

- In reality, we use a discrete time gradient descent algorithm; namely, we use the discrete update:

$$
x_{t+1}=x_{t}-\gamma \nabla f\left(x_{t}\right)
$$

and $\gamma>0$ is the step size.

Theory of gradient descent algorithm

- In reality, we use a discrete time gradient descent algorithm; namely, we use the discrete update:

$$
x_{t+1}=x_{t}-\gamma \nabla f\left(x_{t}\right)
$$

and $\gamma>0$ is the step size.

- When $\gamma \approx 0$, the algorithm behaves just like the gradient flow.

Theory of gradient descent algorithm

- In reality, we use a discrete time gradient descent algorithm; namely, we use the discrete update:

$$
x_{t+1}=x_{t}-\gamma \nabla f\left(x_{t}\right)
$$

and $\gamma>0$ is the step size.

- When $\gamma \approx 0$, the algorithm behaves just like the gradient flow.
- We proved that when γ is sufficiently small and x_{0} is properly initialized,

$$
\begin{aligned}
f\left(x_{K}\right) & \leq f\left(x_{0}\right) \cdot\left(1-\gamma \frac{\lambda_{0}^{4}}{\|\Psi\|_{2, \infty}^{*}}\right)^{K} \\
d\left(x_{K}, M\right) & \leq d\left(x_{0}, M\right) \cdot\left(1-\gamma \lambda_{0}^{2}\right)^{K / 2}
\end{aligned}
$$

for each $K=1,2,3, \cdots$.

Theory of gradient descent algorithm

- In reality, we use a discrete time gradient descent algorithm; namely, we use the discrete update:

$$
x_{t+1}=x_{t}-\gamma \nabla f\left(x_{t}\right)
$$

and $\gamma>0$ is the step size.

- When $\gamma \approx 0$, the algorithm behaves just like the gradient flow.
- We proved that when γ is sufficiently small and x_{0} is properly initialized,

$$
\begin{aligned}
f\left(x_{K}\right) & \leq f\left(x_{0}\right) \cdot\left(1-\gamma \frac{\lambda_{0}^{4}}{\|\Psi\|_{2, \infty}^{*}}\right)^{K} \\
d\left(x_{K}, M\right) & \leq d\left(x_{0}, M\right) \cdot\left(1-\gamma \lambda_{0}^{2}\right)^{K / 2}
\end{aligned}
$$

for each $K=1,2,3, \cdots$.

- An interesting fact: f is a non-convex function so we are using gradient descent on a non-convex function.

A 2D manifold example

- This is the density level sets in a 3D data (GvHD data in R); the level sets form 2-dimensional manifolds.
- The three panels are three different view of the level sets.

Discussion: assumptions

- One may notice that all five theorems rely on the same set of assumptions:
(F1) Ψ is three-times bounded differentiable.
(F2) There exists $\lambda_{0}, \delta_{0}, c_{0}>0$ such that

1. $\lambda_{\min }\left(G_{\Psi}(x) G_{\Psi}(x)^{T}\right) \geq \lambda_{0}$ for all $x \in M \oplus \delta_{0}$.
2. $\|\Psi(x)\|_{\max }>c_{0}$ for all $x \notin M \oplus \delta_{0}$.

Discussion: assumptions

- One may notice that all five theorems rely on the same set of assumptions:
(F1) Ψ is three-times bounded differentiable.
(F2) There exists $\lambda_{0}, \delta_{0}, c_{0}>0$ such that

1. $\lambda_{\min }\left(G_{\Psi}(x) G_{\Psi}(x)^{T}\right) \geq \lambda_{0}$ for all $x \in M \oplus \delta_{0}$.
2. $\|\Psi(x)\|_{\max }>c_{0}$ for all $x \notin M \oplus \delta_{0}$.

- This shows that the smoothness, stability, gradient flow, and gradient descent algorithm are all implicitly related.

Discussion: assumptions

- One may notice that all five theorems rely on the same set of assumptions:
(F1) Ψ is three-times bounded differentiable.
(F2) There exists $\lambda_{0}, \delta_{0}, c_{0}>0$ such that

1. $\lambda_{\min }\left(G_{\Psi}(x) G_{\Psi}(x)^{T}\right) \geq \lambda_{0}$ for all $x \in M \oplus \delta_{0}$.
2. $\|\Psi(x)\|_{\max }>c_{0}$ for all $x \notin M \oplus \delta_{0}$.

- This shows that the smoothness, stability, gradient flow, and gradient descent algorithm are all implicitly related.
- In fact, this is a generic result that other M-estimator also share but somehow we did not emphasize this in statistics.

Discussion: assumptions

- One may notice that all five theorems rely on the same set of assumptions:
(F1) Ψ is three-times bounded differentiable.
(F2) There exists $\lambda_{0}, \delta_{0}, c_{0}>0$ such that

1. $\lambda_{\min }\left(G_{\Psi}(x) G_{\Psi}(x)^{T}\right) \geq \lambda_{0}$ for all $x \in M \oplus \delta_{0}$.
2. $\|\Psi(x)\|_{\max }>c_{0}$ for all $x \notin M \oplus \delta_{0}$.

- This shows that the smoothness, stability, gradient flow, and gradient descent algorithm are all implicitly related.
- In fact, this is a generic result that other M-estimator also share but somehow we did not emphasize this in statistics.
- Note: for some theorems, these two assumptions are often stronger than what we actually need but unifying them give us some new insights.

Discussion: connections to other fields

- Econometrics. The generalized method of moments (Hansen 1982) is tightly connected to solution manifolds. In particular, they are often using the minimizer of a function f as a numerical method for finding a solution.

Discussion: connections to other fields

- Econometrics. The generalized method of moments (Hansen 1982) is tightly connected to solution manifolds. In particular, they are often using the minimizer of a function f as a numerical method for finding a solution.
- Dynamical system. The local stable manifold theorem is from dynamical system literature (Perko 2001). Here we present a new use of this theorem on data analysis.

Discussion: connections to other fields

- Econometrics. The generalized method of moments (Hansen 1982) is tightly connected to solution manifolds. In particular, they are often using the minimizer of a function f as a numerical method for finding a solution.
- Dynamical system. The local stable manifold theorem is from dynamical system literature (Perko 2001). Here we present a new use of this theorem on data analysis.
- Computational geometry. Numerically computing a manifold is a classical problem in computational geometry (Dey 2006). Here we present a set of new procedures for this purposes and analyze the underlying algorithmic properties.

Discussion: connections to other fields

- Econometrics. The generalized method of moments (Hansen 1982) is tightly connected to solution manifolds. In particular, they are often using the minimizer of a function f as a numerical method for finding a solution.
- Dynamical system. The local stable manifold theorem is from dynamical system literature (Perko 2001). Here we present a new use of this theorem on data analysis.
- Computational geometry. Numerically computing a manifold is a classical problem in computational geometry (Dey 2006). Here we present a set of new procedures for this purposes and analyze the underlying algorithmic properties.
- Optimization. We show that for a particular family of non-convex function f, the gradient descent may still converge quickly. This may reveal a new class of non-convex problem that is easy to solve.

Thank You!

More details can be found in https://arxiv.org/abs/2002.05297.

References

1. Y.-C. Chen. Solution manifold and Its Statistical Applications. arXiv preprint arXiv:2002.05297 (2020).
2. W. C. Rheinboldt. On the computation of multi-dimensional solution manifolds of parametrized equations. Numerische Mathematik, 1988.
3. G. Walther. Granulometric smoothing. The Annals of Statistics, 25(6):2273-2299, 1997.
4. W. Polonik. Measuring mass concentrations and estimating density contour clusters-an excess mass approach. The Annals of Statistics, 23(3), pp.855-881.
5. C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. Nonparametric ridge estimation. The Annals of Statistics, 42(4):1511-1545, 2014.
6. H. Federer. Curvature measures. Transactions of the American Mathematical Society, 93 (3):418-491, 1959.
7. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
8. L. Perko. Differential equations and dynamical systems, volume 7. Springer Science \& Business Media, 2001.
9. D. Preiss. Geometry of measures in r n: distribution, rectifiability, and densities. Annals of Mathematics, 125(3):537-643, 1987.
10. L. P. Hansen. Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society, pages 1029-1054, 1982.
11. T. K. Dey. Curve and surface reconstruction: algorithms with mathematical analysis, volume 23. Cambridge University Press, 2006.

Reach of a manifold

- By the implicit function theorem, if the rank of the matrix $\nabla \Psi(x)$ is s, the same as the number of equations, then M is an $(d-s)$ dimensional manifold.
- But this does not tell us anything about the smoothness of M

Reach of a manifold

- By the implicit function theorem, if the rank of the matrix $\nabla \Psi(x)$ is s, the same as the number of equations, then M is an $(d-s)$ dimensional manifold.
- But this does not tell us anything about the smoothness of M
- To quantify the smoothness, we use the concept of reach:
$\operatorname{reach}(M)=\sup \{r: x$ has a unique projection onto M for all $d(x, M) \leq r\}$,
where $d(x, M)=\inf _{y \in M}\|x-y\|$ is the projection distance from x to M.

Reach of a manifold

- By the implicit function theorem, if the rank of the matrix $\nabla \Psi(x)$ is s, the same as the number of equations, then M is an $(d-s)$ dimensional manifold.
- But this does not tell us anything about the smoothness of M
- To quantify the smoothness, we use the concept of reach:
$\operatorname{reach}(M)=\sup \{r: x$ has a unique projection onto M for all $d(x, M) \leq r\}$,
where $d(x, M)=\inf _{y \in M}\|x-y\|$ is the projection distance from x to M.
- A simple way to think of a reach is via its ball-rolling property.

Example: reach

- If r is less than the reach, then a ball with radius r can roll freely around the manifold (left panel).
- If r is larger than the reach, then a ball with radius r cannot roll freely around the manifold (right panel).

Theory of gradient descent algorithm - 1

Theorem (Convergence of gradient decent algorithm)

Assume (F1-2) and let δ_{c} be the same as the theorem of gradient flow. Suppose that the step size satisfies

$$
\gamma<\min \left\{\frac{1}{\|\Psi\|_{2, \infty}^{*}}, \frac{\|\Psi\|_{2, \infty}^{*}}{4 \lambda_{0}^{2}}, \delta_{c}\right\}
$$

and $d\left(x_{0}, M\right) \leq \delta_{c}$. Then for each $T=1,2,3, \cdots$

$$
\begin{aligned}
f\left(x_{T}\right) & \leq f\left(x_{0}\right) \cdot\left(1-\gamma \frac{\lambda_{0}^{4}}{\|\Psi\|_{2, \infty}^{*}}\right)^{T} \\
d\left(x_{T}, M\right) & \leq d\left(x_{0}, M\right) \cdot\left(1-\gamma \lambda_{0}^{2}\right)^{T / 2}
\end{aligned}
$$

Theory of gradient descent algorithm - 2

$$
\begin{aligned}
f\left(x_{T}\right) & \leq f\left(x_{0}\right) \cdot\left(1-\gamma \frac{\lambda_{0}^{4}}{\|\Psi\|_{2, \infty}^{*}}\right)^{T} \\
d\left(x_{T}, M\right) & \leq d\left(x_{0}, M\right) \cdot\left(1-\gamma \lambda_{0}^{2}\right)^{T / 2}
\end{aligned}
$$

- An equivalent statement is that the algorithm takes $O(\log (1 / \epsilon))$ to converges to ϵ-error to the minimum.

Theory of gradient descent algorithm - 2

$$
\begin{aligned}
f\left(x_{T}\right) & \leq f\left(x_{0}\right) \cdot\left(1-\gamma \frac{\lambda_{0}^{4}}{\|\Psi\|_{2, \infty}^{*}}\right)^{T} \\
d\left(x_{T}, M\right) & \leq d\left(x_{0}, M\right) \cdot\left(1-\gamma \lambda_{0}^{2}\right)^{T / 2}
\end{aligned}
$$

- An equivalent statement is that the algorithm takes $O(\log (1 / \epsilon))$ to converges to ϵ-error to the minimum.
- The above convergence is also known as the linear convergence, a common result in convex optimization.

Theory of gradient descent algorithm - 2

$$
\begin{aligned}
f\left(x_{T}\right) & \leq f\left(x_{0}\right) \cdot\left(1-\gamma \frac{\lambda_{0}^{4}}{\|\Psi\|_{2, \infty}^{*}}\right)^{T} \\
d\left(x_{T}, M\right) & \leq d\left(x_{0}, M\right) \cdot\left(1-\gamma \lambda_{0}^{2}\right)^{T / 2}
\end{aligned}
$$

- An equivalent statement is that the algorithm takes $O(\log (1 / \epsilon))$ to converges to ϵ-error to the minimum.
- The above convergence is also known as the linear convergence, a common result in convex optimization.
- An interesting fact: f is a non-convex function so we are using gradient descent on a non-convex function. But we still obtain a similar result to a convex problem.

Extension 1: manifold-constraint maximization

- In likelihood inference, finding the manifold is often not the final goal.
- What we need is the MLE on the manifold.
- Here we propose an alternating algorithm consisting of two major steps: ascent of likelihood and descent to the manifold.

Manifold-constraint maximizing algorithm

1. Randomly choose an initial point $\theta_{0}^{(0)}=\theta_{\infty}^{(0)} \in \Theta$.
2. For $m=1,2, \cdots$, do step 3-6:
3. Ascent of likelihood. Update

$$
\theta_{0}^{(m)}=\theta_{\infty}^{(m-1)}+\alpha \nabla \ell\left(\theta_{\infty}^{(m-1)} \mid X_{1}, \cdots, X_{n}\right),
$$

where $\alpha>0$ is the step size of the gradient ascent over likelihood function and $\ell\left(\theta \mid X_{1}, \cdots, X_{n}\right)$ is the log-likelihood function.
4. Descent to manifold. For each $t=0,1,2, \cdots$ iterates

$$
\theta_{t+1}^{(m)} \leftarrow \theta_{t}^{(m)}-\gamma \nabla f\left(\theta_{t}^{(m)}\right)
$$

until convergence. Let $\theta_{\infty}^{(m)}$ be the convergent point.
5. If $\Psi\left(\theta_{\infty}^{(m)}\right)=0$ (or sufficiently small), we keep $\theta_{\infty}^{(m)}$; otherwise, discard $\theta_{\infty}^{(m)}$ and return to step 1.
6. If $\nabla \ell\left(\theta_{\infty}^{(m)} \mid X_{1}, \cdots, X_{n}\right)$ belongs to the row space of $\nabla \Psi\left(\theta_{\infty}^{(m)}\right)$, we stop and output $\theta_{\infty}^{(m)}$.

Illustration: manifold-constraint maximization

Extension 2: approximating a posterior on a manifold

- Suppose that we place a prior distribution $\pi(\theta)$ over a solution manifold M, i.e.,

$$
\pi(\theta)=0 \text { if } \theta \notin M
$$

Extension 2: approximating a posterior on a manifold

- Suppose that we place a prior distribution $\pi(\theta)$ over a solution manifold M, i.e.,

$$
\pi(\theta)=0 \text { if } \theta \notin M
$$

- And then we observe data Y_{1}, \cdots, Y_{n} so we will update the prior to be the posterior distribution $\pi\left(\theta \mid Y_{1}, \cdots, Y_{n}\right)$.

Extension 2: approximating a posterior on a manifold

- Suppose that we place a prior distribution $\pi(\theta)$ over a solution manifold M, i.e.,

$$
\pi(\theta)=0 \text { if } \theta \notin M
$$

- And then we observe data Y_{1}, \cdots, Y_{n} so we will update the prior to be the posterior distribution $\pi\left(\theta \mid Y_{1}, \cdots, Y_{n}\right)$.
- One may be wondering how do we represent the posterior distribution in this case.

Extension 2: approximating a posterior on a manifold

- Suppose that we place a prior distribution $\pi(\theta)$ over a solution manifold M, i.e.,

$$
\pi(\theta)=0 \text { if } \theta \notin M
$$

- And then we observe data Y_{1}, \cdots, Y_{n} so we will update the prior to be the posterior distribution $\pi\left(\theta \mid Y_{1}, \cdots, Y_{n}\right)$.
- One may be wondering how do we represent the posterior distribution in this case.
- Here we propose a simple approach to approximate the posterior distribution.

Approximated manifold posterior algorithm

1. Generate many points $Z_{1}, \cdots, Z_{N} \in M$ by the gradient descent.
2. Estimate a density score of Z_{i} using

$$
\widehat{\rho}_{i, N}=\frac{1}{N} \sum_{j=1}^{N} K\left(\frac{\left\|Z_{i}-Z_{j}\right\|}{h}\right)
$$

where $h>0$ is a tuning parameter and K is a smooth function such as a Gaussian.
3. Compute the posterior density score of Z_{i} as

$$
\widehat{\omega}_{i, N}=\frac{1}{\widehat{\rho}_{i, N}} \cdot \widehat{\pi}_{i, N}, \quad \widehat{\pi}_{i, N}=\pi\left(Z_{i}\right) \cdot \prod_{j=1}^{n} p\left(X_{j} \mid Z_{i}\right)
$$

4. Return: Weighted point clouds $\left(\mathrm{Z}_{1}, \widehat{\omega}_{i, N}\right), \cdots,\left(\mathrm{Z}_{N}, \widehat{\omega}_{N, N}\right)$.

Illustration: approximated manifold posterior

